7-Ethyl-10-hydroxycamptothecin (BioDeep_00000008528)

 

Secondary id: BioDeep_00000396396

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs Antitumor activity Cytotoxicity natural product


代谢物信息卡片


(19S)-10,19-diethyl-7,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0^{2,11}.0^{4,9}.0^{15,20}]henicosa-1(21),2(11),3,5,7,9,15(20)-heptaene-14,18-dione

化学式: C22H20N2O5 (392.1372)
中文名称: 7-乙基-10羟基喜树碱, 4,11-二乙基-4,9-二羟基-1H-吡喃并[3',4':6,7]中氮茚并[1,2-B]喹啉-3,14(4H,12H)-二酮, 7-乙基-10-羟基喜树碱
谱图信息: 最多检出来源 Homo sapiens(blood) 34.56%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

7-Ethyl-10-hydroxycamptothecin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/7-ethyl-10-hydroxycamptothecin (retrieved 2025-01-05) (BioDeep RN: BioDeep_00000008528). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CCC1=C2C=C(O)C=CC2=NC2=C1CN1C2=CC2=C(COC(=O)[C@]2(O)CC)C1=O
InChI: InChI=1S/C22H20N2O5/c1-3-12-13-7-11(25)5-6-17(13)23-19-14(12)9-24-18(19)8-16-15(20(24)26)10-29-21(27)22(16,28)4-2/h5-8,25,28H,3-4,9-10H2,1-2H3

描述信息

SN-38 is a member of the class of pyranoindolizinoquinolines that is (4S)-pyrano[3,4:6,7]indolizino[1,2-b]quinoline-3,14-dione bearing two additional ethyl substituents at positions 4 and 11 as well as two additional hydroxy substituents at positions 4 and 9. It is the active metabolite of irinotecan and is ~1000 times more active than irinotecan itself. It has a role as an apoptosis inducer, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, a drug metabolite and an antineoplastic agent. It is a pyranoindolizinoquinoline, a delta-lactone, a tertiary alcohol and a member of phenols.
7-ethyl-10-hydroxycamptothecin (SN 38) is a liposomal formulation of the active metabolite of Irinotecan [DB00762], a chemotherapeutic pro-drug approved for the treatment of advanced colorectal cancer. SN 38 has been used in trials studying the treatment of Cancer, Advanced Solid Tumors, Small Cell Lung Cancer, Metastatic Colorectal Cancer, and Triple Negative Breast Cancer, among others.
7-Ethyl-10-hydroxycamptothecin is a natural product found in Apis cerana with data available.
A semisynthetic camptothecin derivative that inhibits DNA TOPOISOMERASE I to prevent nucleic acid synthesis during S PHASE. It is used as an antineoplastic agent for the treatment of COLORECTAL NEOPLASMS and PANCREATIC NEOPLASMS.
7-Ethyl-10-hydroxycamptothecin (SN38) is the active metabolite of irinotecan (an analog of camptothecin - a topoisomerase I inhibitor); it is 1000 times more active than irinotecan itself. In vitro cytotoxicity assays show that the potency of SN-38 relative to irinotecan varies from 2- to 2000-fold. SN38 is metabolized via glucoronidation by UGT1A1. (Wikipedia) 7-Ethyl-10-hydroxycamptothecin (SN38), the active metabolite of irinotecan, exerts a 100-fold to 1000-fold higher effect than irinotecan itself against several tumor cell lines. (PMID: 23233044) Among five chemotherapeutic agents commonly used for breast cancer treatment, only an irinotecan metabolite SN38 showed additive antitumor activity with olaparib. (PMID: 22454224) Metabolism of irinotecan to SN38 is inefficient and subject to considerable patient-to-patient variability. One approach to more controlled administration of the anticancer agent is direct administration of the active SN38. (PMID: 23299391)
A member of the class of pyranoindolizinoquinolines that is (4S)-pyrano[3,4:6,7]indolizino[1,2-b]quinoline-3,14-dione bearing two additional ethyl substituents at positions 4 and 11 as well as two additional hydroxy substituents at positions 4 and 9. It is the active metabolite of irinotecan and is ~1000 times more active than irinotecan itself.


SN-38 (NK012) is an active metabolite of the Topoisomerase I inhibitor Irinotecan. SN-38 (NK012) inhibits DNA and RNA synthesis with IC50s of 0.077 and 1.3 μM, respectively[1][2][3][4].
SN-38 (NK012) is an active metabolite of the Topoisomerase I inhibitor Irinotecan. SN-38 (NK012) inhibits DNA and RNA synthesis with IC50s of 0.077 and 1.3 μM, respectively[1][2][3][4].

同义名列表

60 个代谢物同义名

(19S)-10,19-diethyl-7,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0^{2,11}.0^{4,9}.0^{15,20}]henicosa-1(21),2(11),3,5,7,9,15(20)-heptaene-14,18-dione; (19S)-10,19-diethyl-7,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.02,11.04,9.015,20]henicosa-1(21),2,4(9),5,7,10,15(20)-heptaene-14,18-dione; (19S)-10,19-diethyl-7,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.02,11.04,9.015,20]henicosa-1(21),2(11),3,5,7,9,15(20)-heptaene-14,18-dione; 7-Ethyl-10-hydroxycamptothecin ((S)-4,11-Diethyl-4,9-dihydroxy-1H-pyrano[3,4:6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione); (4S)-4,11-Diethyl-4,9-dihydroxy-1H-pyrano[3,4:6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)dione, AldrichCPR; (4S)-4,9-Dihydroxy-4,11-diethyl-1H-pyrano[3,4:6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione;SN-38; 1H-PYRANO(3,4:6,7)INDOLIZINO(1,2-B)QUINOLINE-3,14(4H,12H)-DIONE, 4,11-DIETHYL-4,9-DIHYDROXY-, (4S)-; 1H-Pyrano[3,4:6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione, 4,11-diethyl-4,9-dihydroxy-, (4S)-; H-Pyrano(3,4:6,7)indolizino(1,2-b)quinoline-3,14(4H,12H)-dione, 4,11-diethyl-4,9-dihydroxy-, (S)-; 1H-Pyrano[3,7]indolizino[1,2-b]quinoline- 3,14(4H,12H)-dione, 4,11-diethyl-4,9-dihydroxy-, (4S)-; (4S)-4,11-Diethyl-4,9-dihydroxy-1H-pyrano(3,4:6,7)indolizino(1,2-b)quinoline-3,14(4H,12H)-dione; (4S)-4,11-diethyl-4,9-dihydroxy-1H-pyrano[3,4:6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione; (S)-4,11-Diethyl-4,9-dihydroxy-1H-pyrano[3,4:6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione; (4S)-4,11-Diethyl-4,9-dihydroxy-1H-pyrano[3,4:6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)dione; (S)-4,11-Diethyl-4,9-di-OH-1,12-dihydro-4H-2-oxa-6,12a-diaza-dibenzo[b,h]fluorene-3,13-dione; 7-Ethyl-10-hydroxycamptothecin, >=98\\% (HPLC), powder; 7-ethyl-10-hydroxy-20(s)-campthothecin; 7-Ethyl-10-hydroxy-20(S)-camptothecin; S-(+)-7-ETHYL-10-HYDROXYCAMPOTHECIN; (+)-7-ETHYL-10-HYDROXYCAMPTOTHECIN; CAMPTOTHECIN, 7-ETHYL-10-HYDROXY-; Captothecin, 7-ethyl-10-hydroxy-; 7-Ethyl-10-Hydroxy-Camptothecin; 10-hydroxy-7-ethyl-camptothecin; 10-hydroxy-7-ethyl camptothecin; 7-ethyl-10-hydroxycamptothecin; 10-Hydroxy-7-ethylcamptothecin; 12-Ethyl-9-hydroxycamptothecin; 7 Ethyl 10 hydroxycamptothecin; 7-Ethyl-10-hydroxy-20(S)-CPT; FJHBVJOVLFPMQE-QFIPXVFZSA-N; diethyl(dihydroxy)[?]dione; Irinotecan Hydrochloride; camptothecin-11; Camptothecin 11; UNII-0H43101T0J; NK012 Compound; SN 38 [WHO-DD]; SN-38(NK-012); SN 38 lactone; SN 38- Bio-X; NCI60_026056; Irrinotecan; C22H20N2O5; 0H43101T0J; Irinotecan; Camptosar; sn38 CPD; SN 38 11; SN-38-11; LE-SN38; CPT 11; CPT-11; CPT11; SN-38; SN 38; SN38; RS4; 4,11-Diethyl-4,9-dihydroxy-1H-pyrano[3,4:6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione; SN-38



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

5 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(2)

PharmGKB(2)

12 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ABCB1, AKT1, BCL2, CDKN1A, CHEK1, EGFR, ERBB2, TNK1, TP53
Peripheral membrane protein 1 TNK1
Endosome membrane 2 EGFR, ERBB2
Endoplasmic reticulum membrane 5 BCL2, EGFR, UGT1A1, UGT1A7, UGT1A9
Mitochondrion membrane 1 ABCG2
Nucleus 11 AKT1, BCL2, CDKN1A, CHEK1, DDX53, EGFR, ERBB2, PARP1, TACSTD2, TOP1, TP53
cytosol 9 AKT1, BCL2, CDKN1A, CHEK1, DDX53, ERBB2, PARP1, TACSTD2, TP53
mitochondrial membrane 1 ABCG2
nuclear body 2 CDKN1A, PARP1
centrosome 2 CHEK1, TP53
nucleoplasm 9 ABCG2, AKT1, CDKN1A, CHEK1, DDX53, ERBB2, PARP1, TOP1, TP53
Cell membrane 7 ABCB1, ABCC1, ABCG2, AKT1, EGFR, ERBB2, TNF
lamellipodium 1 AKT1
ruffle membrane 2 EGFR, ERBB2
Early endosome membrane 1 EGFR
Multi-pass membrane protein 4 ABCB1, ABCC1, ABCG2, SLC45A2
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 3 ABCB1, EGFR, TNF
glutamatergic synapse 2 AKT1, EGFR
Golgi membrane 1 EGFR
neuromuscular junction 1 ERBB2
neuronal cell body 1 TNF
postsynapse 1 AKT1
presynaptic membrane 1 ERBB2
Cytoplasm, cytosol 1 PARP1
endosome 1 EGFR
plasma membrane 9 ABCB1, ABCC1, ABCG2, AKT1, EGFR, ERBB2, TNF, TNK1, UGT1A1
Membrane 15 ABCB1, ABCC1, ABCG2, AKT1, BCL2, EGFR, ERBB2, PARP1, SLC45A2, TACSTD2, TNK1, TP53, UGT1A1, UGT1A7, UGT1A9
apical plasma membrane 5 ABCB1, ABCC1, ABCG2, EGFR, ERBB2
basolateral plasma membrane 3 ABCC1, EGFR, ERBB2
extracellular exosome 3 ABCB1, ABCC1, TACSTD2
endoplasmic reticulum 5 BCL2, TP53, UGT1A1, UGT1A7, UGT1A9
extracellular space 4 CHEK1, EGFR, TACSTD2, TNF
perinuclear region of cytoplasm 4 CDKN1A, EGFR, ERBB2, UGT1A1
mitochondrion 3 BCL2, PARP1, TP53
protein-containing complex 7 AKT1, BCL2, CDKN1A, CHEK1, EGFR, PARP1, TP53
intracellular membrane-bounded organelle 2 CHEK1, DDX53
Single-pass type I membrane protein 3 EGFR, ERBB2, TACSTD2
extracellular region 2 ERBB2, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 4 BCL2, UGT1A1, UGT1A7, UGT1A9
mitochondrial outer membrane 1 BCL2
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
transcription regulator complex 2 PARP1, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 CHEK1, TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, EGFR
external side of plasma membrane 1 TNF
perikaryon 1 TOP1
cytoplasmic vesicle 1 ERBB2
microtubule cytoskeleton 1 AKT1
nucleolus 5 CDKN1A, DDX53, PARP1, TOP1, TP53
Melanosome membrane 1 SLC45A2
P-body 1 TOP1
Early endosome 1 ERBB2
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Apical cell membrane 2 ABCB1, ABCG2
Cell projection, ruffle membrane 1 ERBB2
Cytoplasm, perinuclear region 2 ERBB2, UGT1A1
Membrane raft 3 ABCG2, EGFR, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 1 EGFR
spindle 1 AKT1
intracellular vesicle 1 EGFR
Nucleus, PML body 1 TP53
PML body 1 TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
lateral plasma membrane 2 ABCC1, TACSTD2
receptor complex 2 EGFR, ERBB2
ciliary basal body 1 AKT1
chromatin 3 CHEK1, PARP1, TP53
phagocytic cup 1 TNF
Chromosome 3 CHEK1, PARP1, TOP1
brush border membrane 1 ABCG2
Nucleus, nucleolus 2 PARP1, TOP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
site of double-strand break 2 PARP1, TP53
fibrillar center 1 TOP1
nuclear envelope 1 PARP1
Nucleus, nucleoplasm 1 TOP1
germ cell nucleus 1 TP53
replication fork 2 CHEK1, TP53
myelin sheath 2 BCL2, ERBB2
basal plasma membrane 4 ABCC1, EGFR, ERBB2, TACSTD2
synaptic membrane 1 EGFR
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
male germ cell nucleus 1 TOP1
condensed nuclear chromosome 1 CHEK1
semaphorin receptor complex 1 ERBB2
clathrin-coated endocytic vesicle membrane 1 EGFR
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 2 PARP1, TOP1
external side of apical plasma membrane 2 ABCB1, ABCG2
[Isoform 1]: Cell membrane 1 ERBB2
site of DNA damage 1 PARP1
cyclin-dependent protein kinase holoenzyme complex 1 CDKN1A
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
ERBB3:ERBB2 complex 1 ERBB2
endoplasmic reticulum chaperone complex 1 UGT1A1
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
PCNA-p21 complex 1 CDKN1A
cytochrome complex 1 UGT1A1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Miaomiao Sun, Honghong Zhan, Xiaoliang Long, Ali M Alsayed, Zhe Wang, Fancheng Meng, Guowei Wang, Jingxin Mao, Zhihua Liao, Min Chen. Dehydrocostus lactone alleviates irinotecan-induced intestinal mucositis by blocking TLR4/MD2 complex formation. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jun; 128(?):155371. doi: 10.1016/j.phymed.2024.155371. [PMID: 38518649]
  • Supusson Pengnam, Watcharapa Jitkaroon, Roongtiwa Srisuphan, Pawaris Wongprayoon, Kanok-On Rayanil, Purin Charoensuksai. Furanocoumarin compounds isolated from Dorstenia foetida potentiate irinotecan anticancer activity against colorectal cancer cells. Acta pharmaceutica (Zagreb, Croatia). 2024 Mar; 74(1):67-79. doi: 10.2478/acph-2024-0004. [PMID: 38554381]
  • Jingya Wang, Jiangli Xu, Shuhui Yang, Liu He, Wenhuai Xu, Yan'e Liu, Baoshan Cao, Siwang Yu. SN-38, an active metabolite of irinotecan, inhibits transcription of nuclear factor erythroid 2-related factor 2 and enhances drug sensitivity of colorectal cancer cells. Molecular carcinogenesis. 2024 Jan; ?(?):. doi: 10.1002/mc.23685. [PMID: 38270247]
  • Huanyu Guan, Qian Wang, Yao Mei, Junyan Ran, Fanli Zeng, Haimin Cai, Daoping Wang, Shenggang Yang, Min Zhang, Yue Shi, Shanggao Liao, Pengfei Li. A multistep approach for exploring quality markers of Shengjiang Xiexin decoction by integrating plasma pharmacochemistry-pharmacokinetics-pharmacology. Journal of pharmaceutical and biomedical analysis. 2024 Jan; 241(?):115999. doi: 10.1016/j.jpba.2024.115999. [PMID: 38306867]
  • Qing-Rui Qi, Huan Tian, Bao-Sen Yue, Bing-Tao Zhai, Feng Zhao. Research Progress of SN38 Drug Delivery System in Cancer Treatment. International journal of nanomedicine. 2024; 19(?):945-964. doi: 10.2147/ijn.s435407. [PMID: 38293612]
  • Jianzheng He, Shuzhen Han, Yixuan Wang, Qian Kang, Xiaoqian Wang, Yun Su, Yaling Li, Yongqi Liu, Hui Cai, Minghui Xiu. Irinotecan cause the side effects on development and adult physiology, and induces intestinal damage via innate immune response and oxidative damage in Drosophila. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Dec; 169(?):115906. doi: 10.1016/j.biopha.2023.115906. [PMID: 37984304]
  • Cornelia Schmutz, Frank Will, Elisabeth Varga, Carola Jaunecker, Gudrun Pahlke, Walter Berger, Doris Marko. In Vitro Inhibitory Potential of Different Anthocyanin-Rich Berry Extracts in Murine CT26 Colon Cancer Cells. Molecules (Basel, Switzerland). 2023 Nov; 28(23):. doi: 10.3390/molecules28237684. [PMID: 38067418]
  • Wenxuan Li, Ya Zhang, Yuanyuan Wu, Guanghao Zhu, Xiaoyu Liu, Yunqing Song, Bo Ma, Sheng Lin, Guangbo Ge, Xiaozhen Jiao, Ping Xie. New bysspectin A derivatives as potent inhibitors of human carboxylesterase 2A. European journal of medicinal chemistry. 2023 Nov; 259(?):115708. doi: 10.1016/j.ejmech.2023.115708. [PMID: 37544184]
  • Ke Li, Kun Xu, Shaopeng Liu, Ye He, Meijun Tan, Yulan Mao, Yulu Yang, Jing Wu, Qian Feng, Zhong Luo, Kaiyong Cai. All-in-One Engineering Multifunctional Nanoplatforms for Sensitizing Tumor Low-Temperature Photothermal Therapy In Vivo. ACS nano. 2023 10; 17(20):20218-20236. doi: 10.1021/acsnano.3c05991. [PMID: 37838975]
  • Jingbo Pei, Yuanyuan Zou, Wenying Zhou, Yakun Wang. Baicalein, a component of banxia xiexin decoction, alleviates CPT-11-induced gastrointestinal dysfunction by inhibiting ALOX15-mediated ferroptosis. Chemical biology & drug design. 2023 Sep; ?(?):. doi: 10.1111/cbdd.14349. [PMID: 37735740]
  • Xiao-Qin Yang, Shu-Yang Wu, Min Li, Jia-Mei Chen, Yan-Fen Cheng, Yi-Tao Wang, Yi-Han Wu, Jin-Ming Zhang. [Q-marker prediction of resin ethanol extract of Gegen Qinlian Decoction based on characteristic spectrum and network pharmacology]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Sep; 48(18):4993-5002. doi: 10.19540/j.cnki.cjcmm.20230518.303. [PMID: 37802841]
  • XiaoLi Lin, Yu Fang, Yuan Cheng, QiaoLing Wang. Chinese herbal medicine for irinotecan-induced diarrhea: A systematic review and meta-analysis. Explore (New York, N.Y.). 2023 Aug; ?(?):. doi: 10.1016/j.explore.2023.08.003. [PMID: 37640591]
  • Caiyan Wang, Xiaojun Teng, Chuang Wang, Binjie Liu, Runze Zhou, Xueyu Xu, Huawei Qiu, Yu Fu, Rongjin Sun, Zuhui Liang, Rong Zhang, Zhongqiu Liu, Lin Zhang, Lijun Zhu. Insight into the mechanism of Xiao-Chai-Hu-Tang alleviates irinotecan-induced diarrhea based on regulating the gut microbiota and inhibiting Gut β-GUS. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Aug; 120(?):155040. doi: 10.1016/j.phymed.2023.155040. [PMID: 37683587]
  • Anna Radajewska, Helena Moreira, Dorota Bęben, Oliwia Siwiela, Anna Szyjka, Katarzyna Gębczak, Paulina Nowak, Jakub Frąszczak, Fathi Emhemmed, Christian D Muller, Ewa Barg. Combination of Irinotecan and Melatonin with the Natural Compounds Wogonin and Celastrol for Colon Cancer Treatment. International journal of molecular sciences. 2023 May; 24(11):. doi: 10.3390/ijms24119544. [PMID: 37298495]
  • Changpei Gan, Jing Wang, Yaogeng Wang, Alejandra Martínez-Chávez, Michel Hillebrand, Niels de Vries, Joke Beukers, Maria C Lebre, Els Wagenaar, Hilde Rosing, Sjoerd Klarenbeek, Onno B Bleijerveld, Ji-Ying Song, Maarten Altelaar, Jos H Beijnen, Alfred H Schinkel. Natural deletion of mouse carboxylesterases Ces1c/d/e impacts drug metabolism and metabolic syndrome development. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 May; 164(?):114956. doi: 10.1016/j.biopha.2023.114956. [PMID: 37267638]
  • Congjian Shi, Zhenghong Zhang, Renfeng Xu, Yan Zhang, Zhengchao Wang. Contribution of HIF-1α/BNIP3-mediated autophagy to lipid accumulation during irinotecan-induced liver injury. Scientific reports. 2023 04; 13(1):6528. doi: 10.1038/s41598-023-33848-y. [PMID: 37085612]
  • Youngjoo Lee, Soo-Hyun Lee, Geon Kook Lee, Eun Jin Lim, Ji-Youn Han. A randomized Phase II Study of Irinotecan Plus Cisplatin with or without Simvastatin in ever Smokers with Extended Disease Small Cell Lung Cancer. Cancer research and treatment. 2023 Mar; ?(?):. doi: 10.4143/crt.2023.283. [PMID: 36960628]
  • Aranka Brockmueller, Samson Mathews Samuel, Alena Mazurakova, Dietrich Büsselberg, Peter Kubatka, Mehdi Shakibaei. Curcumin, calebin A and chemosensitization: How are they linked to colorectal cancer?. Life sciences. 2023 Feb; 318(?):121504. doi: 10.1016/j.lfs.2023.121504. [PMID: 36813082]
  • Md Monirujjaman, Leila Baghersad Renani, Peter Isesele, Abha R Dunichand-Hoedl, Vera C Mazurak. Increased Expression of Hepatic Stearoyl-CoA Desaturase (SCD)-1 and Depletion of Eicosapentaenoic Acid (EPA) Content following Cytotoxic Cancer Therapy Are Reversed by Dietary Fish Oil. International journal of molecular sciences. 2023 Feb; 24(4):. doi: 10.3390/ijms24043547. [PMID: 36834959]
  • Annamaria Di Turi, Marina Antonacci, Jacopo Raffaele Dibenedetto, Fatima Maqoud, Francesco Leonetti, Gerardo Centoducati, Nicola Colonna, Domenico Tricarico. Molecular Composition and Biological Activity of a Novel Acetonitrile-Water Extract of Lens Culinaris Medik in Murine Native Cells and Cell Lines Exposed to Different Chemotherapeutics Using Mass Spectrometry. Cells. 2023 Feb; 12(4):. doi: 10.3390/cells12040575. [PMID: 36831242]
  • Tao Zhou, Yushi Liu, Kelu Lei, Junjing Liu, Minghao Hu, Li Guo, Yiping Guo, Qiang Ye. A 'Trojan Horse' Strategy: The Preparation of Bile Acid-Modifying Irinotecan Hydrochloride Nanoliposomes for Liver-Targeted Anticancer Drug Delivery System Study. Molecules (Basel, Switzerland). 2023 Feb; 28(4):. doi: 10.3390/molecules28041577. [PMID: 36838565]
  • Yi Ding, Sizhe Chen, Feng Zhang, Wenda Li, Guangbo Ge, Tian Liu, Qing Yang. Chitinase is a Potent Insecticidal Molecular Target of Camptothecin and Its Derivatives. Journal of agricultural and food chemistry. 2023 Feb; 71(4):1845-1851. doi: 10.1021/acs.jafc.2c06607. [PMID: 36655791]
  • Kuei-Yen Tsai, Po-Li Wei, Mohamed Azarkan, Nasiha M'Rabet, Precious Takondwa Makondi, Hsin-An Chen, Chien-Yu Huang, Yu-Jia Chang. Cytotoxic properties of unfractionated and fractionated bromelain alone or in combination with chemotherapeutic agents in colorectal cancer cells. PloS one. 2023; 18(6):e0285970. doi: 10.1371/journal.pone.0285970. [PMID: 37262048]
  • Bin Huang, Mengxuan Gui, Zhuona Ni, Yanbin He, Jinyan Zhao, Jun Peng, Jiumao Lin. Chemotherapeutic Drugs Induce Different Gut Microbiota Disorder Pattern and NOD/RIP2/NF-κB Signaling Pathway Activation That Lead to Different Degrees of Intestinal Injury. Microbiology spectrum. 2022 12; 10(6):e0167722. doi: 10.1128/spectrum.01677-22. [PMID: 36222691]
  • Youqiang Liu, Hongxin Zhang, Haijing Cui, Futong Zhang, Liyan Zhao, Yibing Liu, Qingju Meng. Combined and targeted drugs delivery system for colorectal cancer treatment: Conatumumab decorated, reactive oxygen species sensitive irinotecan prodrug and quercetin co-loaded nanostructured lipid carriers. Drug delivery. 2022 Dec; 29(1):342-350. doi: 10.1080/10717544.2022.2027573. [PMID: 35049388]
  • Wei Li, Yin-Nan Chen, Yue-Yue Chen, Zhe Wang, Zhen Wang, Li-Li Jiang, Hong-Can Shi, Yong Liu. Inhibition of UGT1A1*1 and UGT1A1*6 catalyzed glucuronidation of SN-38 by silybins. Chemico-biological interactions. 2022 Dec; 368(?):110248. doi: 10.1016/j.cbi.2022.110248. [PMID: 36343684]
  • Bohao Liu, Cong Ding, Wenbin Tang, Chen Zhang, Yiying Gu, Zhiqiang Wang, Tingzi Yu, Zhuan Li. Hepatic ROS Mediated Macrophage Activation Is Responsible for Irinotecan Induced Liver Injury. Cells. 2022 Nov; 11(23):. doi: 10.3390/cells11233791. [PMID: 36497051]
  • Amanda J Stolarz, Bijay P Chhetri, Michael J Borrelli, Samir V Jenkins, Azemat Jamshidi-Parsian, Joshua H Phillips, Daniel Fologea, Jay Gandy, Robert J Griffin. Liposome Formulation for Tumor-Targeted Drug Delivery Using Radiation Therapy. International journal of molecular sciences. 2022 Oct; 23(19):. doi: 10.3390/ijms231911662. [PMID: 36232973]
  • Siqi Ma, Zhaoqing Cong, Jiaxing Wei, Weiya Chen, Di Ge, Feifei Yang, Yonghong Liao. Pulmonary delivery of size-transformable nanoparticles improves tumor accumulation and penetration for chemo-sonodynamic combination therapy. Journal of controlled release : official journal of the Controlled Release Society. 2022 10; 350(?):132-145. doi: 10.1016/j.jconrel.2022.08.003. [PMID: 35940360]
  • Marina Antonacci, Jacopo Raffaele Dibenedetto, Fatima Maqoud, Gerardo Centoducati, Nicola Colonna, Francesco Leonetti, Domenico Tricarico. Counteractions of a Novel Hydroalcoholic Extract from Lens Culinaria against the Dexamethasone-Induced Osteoblast Loss of Native Murine Cells. Cells. 2022 09; 11(19):. doi: 10.3390/cells11192936. [PMID: 36230898]
  • Luana David do Carmo, Gisele de Fátima Pinheiro Rangel, Liviane Maria Alves Rabelo, Tamiris de Fátima Goebel de Souza, Roberto César Pereira Lima Júnior, Deysi Viviana Tenazoa Wong, Renata Ferreira de Carvalho Leitão, Alfredo Augusto Vasconcelos da Silva, Pedro Jorge Caldas Magalhães, Andréa Santos Costa, Dyély de Carvalho Oliveira Campos, Nylane Maria Nunes de Alencar, Hermógenes David de Oliveira. Therapeutic effects of a lipid transfer protein isolated from Morinda citrifolia L. (noni) seeds on irinotecan-induced intestinal mucositis in mice. Naunyn-Schmiedeberg's archives of pharmacology. 2022 09; 395(9):1097-1107. doi: 10.1007/s00210-022-02267-7. [PMID: 35776167]
  • Zhiren Wang, Wenpan Li, Jonghan Park, Karina Marie Gonzalez, Aaron James Scott, Jianqin Lu. Camptothesome elicits immunogenic cell death to boost colorectal cancer immune checkpoint blockade. Journal of controlled release : official journal of the Controlled Release Society. 2022 09; 349(?):929-939. doi: 10.1016/j.jconrel.2022.07.042. [PMID: 35926754]
  • Lijia Luo, Xiang Wang, Yu-Pei Liao, Chong Hyun Chang, Andre E Nel. Nanocarrier Co-formulation for Delivery of a TLR7 Agonist plus an Immunogenic Cell Death Stimulus Triggers Effective Pancreatic Cancer Chemo-immunotherapy. ACS nano. 2022 08; 16(8):13168-13182. doi: 10.1021/acsnano.2c06300. [PMID: 35920660]
  • Matthew Ng, Sylvia Chen, Whee Sze Ong, Akhila Balachander, Amanda Seet, Joe Yeong, Natalia Sutiman, Tony Kiat Hon Lim, Bernett Lee, Yu Amanda Guo, Wai Fook Leong, Sze Sing Lee, Justina Lam, Su Pin Choo, Anders Jacobsen Skanderup, Subhra Kumar Biswas, David Tai, Balram Chowbay. A phase 1b study of OXIRI in pancreatic adenocarcinoma patients and its immunomodulatory effects. International journal of cancer. 2022 08; 151(3):435-449. doi: 10.1002/ijc.34021. [PMID: 35415893]
  • Gérard Milano, Federico Innocenti, Hironobu Minami. Liposomal irinotecan (Onivyde): Exemplifying the benefits of nanotherapeutic drugs. Cancer science. 2022 Jul; 113(7):2224-2231. doi: 10.1111/cas.15377. [PMID: 35445479]
  • Navya Ajitkumar Bhaskaran, Srinivas Reddy Jitta, Salwa, SriPragnya Cheruku, Nitesh Kumar, Lalit Kumar. Orally delivered solid lipid nanoparticles of irinotecan coupled with chitosan surface modification to treat colon cancer: Preparation, in-vitro and in-vivo evaluations. International journal of biological macromolecules. 2022 Jun; 211(?):301-315. doi: 10.1016/j.ijbiomac.2022.05.060. [PMID: 35568152]
  • Xieyi Zhang, Wangyang Liu, Kazue Edaki, Yuta Nakazawa, Saori Takahashi, Hiroki Sunakawa, Kenta Mizoi, Takuo Ogihara. Slug Mediates MRP2 Expression in Non-Small Cell Lung Cancer Cells. Biomolecules. 2022 06; 12(6):. doi: 10.3390/biom12060806. [PMID: 35740931]
  • Victoire Béchet, Hubert Benoist, Frédéric Beau, Fabienne Divanon, Stéphanie Lagadu, F Sichel, Raphael Delépée, Guillaume Saint-Lorant. Blood contamination of the pharmaceutical staff by irinotecan and its two major metabolites inside and outside a compounding unit. Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners. 2022 Jun; 28(4):777-784. doi: 10.1177/10781552211012059. [PMID: 33878975]
  • Jiajia Pan, Nan Li, Alex Renn, Hu Zhu, Lu Chen, Min Shen, Matthew D Hall, Min Qian, Ira Pastan, Mitchell Ho. GPC1-Targeted Immunotoxins Inhibit Pancreatic Tumor Growth in Mice via Depletion of Short-lived GPC1 and Downregulation of Wnt Signaling. Molecular cancer therapeutics. 2022 06; 21(6):960-973. doi: 10.1158/1535-7163.mct-21-0778. [PMID: 35312769]
  • Kanakaraju Kaliannan, Shane O Donnell, Kiera Murphy, Catherine Stanton, Chao Kang, Bin Wang, Xiang-Yong Li, Atul K Bhan, Jing X Kang. Decreased Tissue Omega-6/Omega-3 Fatty Acid Ratio Prevents Chemotherapy-Induced Gastrointestinal Toxicity Associated with Alterations of Gut Microbiome. International journal of molecular sciences. 2022 May; 23(10):. doi: 10.3390/ijms23105332. [PMID: 35628140]
  • Shuhei Sakai, Shinji Kobuchi, Yukako Ito, Toshiyuki Sakaeda. Assessment of Drug-drug Interaction and Optimization in Capecitabine and Irinotecan Combination Regimen using a Physiologically Based Pharmacokinetic Model. Journal of pharmaceutical sciences. 2022 05; 111(5):1522-1530. doi: 10.1016/j.xphs.2021.12.021. [PMID: 34965386]
  • Olumide B Gbolahan, Bert H O'Neil, Autumn J McRee, Hanna K Sanoff, John K Fallon, Philip C Smith, Anastasia Ivanova, Dominic T Moore, Julie Dumond, Gary N Asher. A phase I evaluation of the effect of curcumin on dose-limiting toxicity and pharmacokinetics of irinotecan in participants with solid tumors. Clinical and translational science. 2022 05; 15(5):1304-1315. doi: 10.1111/cts.13250. [PMID: 35157783]
  • R Biesen, M Frese-Schaper, P Enghard, Q Cheng, F Hiepe, S Frese. Refractory mixed proliferative and membranous lupus nephritis treated with the topoisomerase I inhibitor irinotecan as add-on therapy. Scandinavian journal of rheumatology. 2022 05; 51(3):237-240. doi: 10.1080/03009742.2021.1980979. [PMID: 34726116]
  • Zena Wilson, Rajesh Odedra, Yann Wallez, Paul W G Wijnhoven, Adina M Hughes, Joe Gerrard, Gemma N Jones, Hannah Bargh-Dawson, Elaine Brown, Lucy A Young, Mark J O'Connor, Alan Lau. ATR Inhibitor AZD6738 (Ceralasertib) Exerts Antitumor Activity as a Monotherapy and in Combination with Chemotherapy and the PARP Inhibitor Olaparib. Cancer research. 2022 03; 82(6):1140-1152. doi: 10.1158/0008-5472.can-21-2997. [PMID: 35078817]
  • Silvia Baldo, Patrícia Antunes, João Falcão Felicidade, Fábio M F Santos, Jesús F Arteaga, Fábio Fernandes, Uwe Pischel, Sandra N Pinto, Pedro M P Gois. The BASHY Platform Enables the Assembly of a Fluorescent Bortezomib-GV1001 Conjugate. ACS medicinal chemistry letters. 2022 Jan; 13(1):128-133. doi: 10.1021/acsmedchemlett.1c00615. [PMID: 35059132]
  • Zineb Aoullay, Xander M R Van Wijk, Ma Yanhui, Bouchra Meddah, Kara L Lynch, Yahia Cherrah, Alan H B Wu. Development of an LC-MS/MS Method for Measurement of Irinotecan and Its Major Metabolites in Plasma: Technical Considerations. Laboratory medicine. 2022 Jan; 53(1):47-52. doi: 10.1093/labmed/lmab059. [PMID: 34351422]
  • Taro Shibuki, Toshihiko Mizuta, Mototsugu Shimokawa, Futa Koga, Yujiro Ueda, Junichi Nakazawa, Azusa Komori, Satoshi Otsu, Shiho Arima, Masaru Fukahori, Akitaka Makiyama, Hiroki Taguchi, Takuya Honda, Kenji Mitsugi, Kenta Nio, Yasushi Ide, Norio Ureshino, Tsuyoshi Shirakawa, Taiga Otsuka. Prognostic nomogram for patients with unresectable pancreatic cancer treated with gemcitabine plus nab-paclitaxel or FOLFIRINOX: A post-hoc analysis of a multicenter retrospective study in Japan (NAPOLEON study). BMC cancer. 2022 Jan; 22(1):19. doi: 10.1186/s12885-021-09139-y. [PMID: 34980029]
  • Dalong Wang, Tingting Zhao, Shan Zhao, Jing Chen, Tongyi Dou, Guangbo Ge, Changyuan Wang, Huijun Sun, Kexin Liu, Qiang Meng, Jingjing Wu. Substrate-dependent Inhibition of Hypericin on Human Carboxylesterase 2: Implications for Herb-drug Combination. Current drug metabolism. 2022; 23(1):38-44. doi: 10.2174/1389200223666220202093303. [PMID: 35114918]
  • Gisele F P Rangel, Márcio V Ramos, Luana D do Carmo, Liviane M A Rabelo, Alfredo A V Silva, Tamiris F G de Sousa, Roberto C P Lima Júnior, Deysi V T Wong, Renata F C Leitão, Pedro J C Magalhães, Brandon F Sousa, Marisa J S Frederico, Nylane M N Alencar. Successful Pre-Clinical Management of Irinotecan-Debilitated Animals: A Protein- Based Accessory Phytomedicine. Anti-cancer agents in medicinal chemistry. 2022; 22(18):3163-3171. doi: 10.2174/1871520622666220610115617. [PMID: 35692152]
  • Wenjun Zhao, Qingming Wang. Knockdown of TRIM9 attenuates irinotecan‑induced intestinal mucositis in IEC‑6 cells by regulating DUSP6 expression via the P38 pathway. Molecular medicine reports. 2021 Dec; 24(6):. doi: 10.3892/mmr.2021.12507. [PMID: 34676875]
  • Ling-Chun Chen, Wei-Jie Cheng, Shyr-Yi Lin, Ming-Tse Hung, Ming-Thau Sheu, Hong-Liang Lin, Chien-Ming Hsieh. CPT11 with P-glycoprotein/CYP 3A4 dual-function inhibitor by self-nanoemulsifying nanoemulsion combined with gastroretentive technology to enhance the oral bioavailability and therapeutic efficacy against pancreatic adenocarcinomas. Drug delivery. 2021 Dec; 28(1):2205-2217. doi: 10.1080/10717544.2021.1989087. [PMID: 34662257]
  • Ying Huang, Lei Wang, Zhiyang Cheng, Biyu Yang, Jiahui Yu, Yi Chen, Wei Lu. SN38-based albumin-binding prodrug for efficient targeted cancer chemotherapy. Journal of controlled release : official journal of the Controlled Release Society. 2021 11; 339(?):297-306. doi: 10.1016/j.jconrel.2021.09.040. [PMID: 34619226]
  • Seiya Takemoto, Masataka Nakano, Tatsuki Fukami, Miki Nakajima. m6A modification impacts hepatic drug and lipid metabolism properties by regulating carboxylesterase 2. Biochemical pharmacology. 2021 11; 193(?):114766. doi: 10.1016/j.bcp.2021.114766. [PMID: 34536357]
  • Hui Zhu, Chunyi Lu, Fei Gao, Zhixiang Qian, Yu Yin, Shidong Kan, Daijie Chen. Selenium-enriched Bifidobacterium longum DD98 attenuates irinotecan-induced intestinal and hepatic toxicity in vitro and in vivo. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Nov; 143(?):112192. doi: 10.1016/j.biopha.2021.112192. [PMID: 34649340]
  • Md Monirujjaman, Asha Pant, Randy Nelson, Oliver Bathe, Rene Jacobs, Vera C Mazurak. Alterations in hepatic fatty acids reveal depletion of total polyunsaturated fatty acids following irinotecan plus 5-fluorouracil treatment in an animal model of colorectal cancer. Prostaglandins, leukotrienes, and essential fatty acids. 2021 11; 174(?):102359. doi: 10.1016/j.plefa.2021.102359. [PMID: 34740033]
  • Malene J Petersen, Xamuel L Lund, Susan J Semple, Bevan Buirchell, Henrik Franzyk, Michael Gajhede, Kenneth T Kongstad, Jan Stenvang, Dan Staerk. Reversal of ABCG2/BCRP-Mediated Multidrug Resistance by 5,3',5'-Trihydroxy-3,6,7,4'-Tetramethoxyflavone Isolated from the Australian Desert Plant Eremophila galeata Chinnock. Biomolecules. 2021 10; 11(10):. doi: 10.3390/biom11101534. [PMID: 34680166]
  • Fleur van der Sijde, Marjolein Y V Homs, Marlies L van Bekkum, Thierry P P van den Bosch, Koop Bosscha, Marc G Besselink, Bert A Bonsing, Jan Willem B de Groot, Thomas M Karsten, Bas Groot Koerkamp, Brigitte C M Haberkorn, Saskia A C Luelmo, Leonie J M Mekenkamp, Dana A M Mustafa, Johanna W Wilmink, Casper H J van Eijck, Eveline E Vietsch, On Behalf Of The Dutch Pancreatic Cancer Group. Serum miR-373-3p and miR-194-5p Are Associated with Early Tumor Progression during FOLFIRINOX Treatment in Pancreatic Cancer Patients: A Prospective Multicenter Study. International journal of molecular sciences. 2021 Oct; 22(20):. doi: 10.3390/ijms222010902. [PMID: 34681562]
  • Atul Batra, Patricia A Tang, Winson Y Cheung. Prognostic Significance of Disease Control at 12 Weeks in Patients With Advanced Pancreatic Cancer Receiving FOLFIRINOX as First-line Chemotherapy. American journal of clinical oncology. 2021 10; 44(10):519-525. doi: 10.1097/coc.0000000000000856. [PMID: 34366400]
  • Ayako Tsuboya, Yutaro Kubota, Hiroo Ishida, Ryotaro Ohkuma, Tomoyuki Ishiguro, Yuya Hirasawa, Hirotsugu Ariizumi, Takuya Tsunoda, Yasutsuna Sasaki, Natsumi Matsumoto, Yusuke Kondo, Yukana Tomoda, Hiroyuki Kusuhara, Ken-Ichi Fujita. Minimal contribution of the hepatic uptake transporter OATP1B1 to the inter-individual variability in SN-38 pharmacokinetics in cancer patients without severe renal failure. Cancer chemotherapy and pharmacology. 2021 09; 88(3):543-553. doi: 10.1007/s00280-021-04314-1. [PMID: 34117512]
  • Yun Liu, Bo Zhang, Jianping Xu, Xingyuan Wang, Jialin Tang, Jing Huang. Phase I study of liposomal irinotecan (LY01610) in patients with advanced esophageal squamous cell carcinoma. Cancer chemotherapy and pharmacology. 2021 09; 88(3):403-414. doi: 10.1007/s00280-021-04294-2. [PMID: 34031756]
  • Noushin Miralaei, Ahmad Majd, Kamran Ghaedi, Maryam Peymani, Masoomeh Safaei. Integrated pan-cancer of AURKA expression and drug sensitivity analysis reveals increased expression of AURKA is responsible for drug resistance. Cancer medicine. 2021 09; 10(18):6428-6441. doi: 10.1002/cam4.4161. [PMID: 34337875]
  • Tudor Petreus, Elaine Cadogan, Gareth Hughes, Aaron Smith, Venkatesh Pilla Reddy, Alan Lau, Mark James O'Connor, Susan Critchlow, Marianne Ashford, Lenka Oplustil O'Connor. Tumour-on-chip microfluidic platform for assessment of drug pharmacokinetics and treatment response. Communications biology. 2021 08; 4(1):1001. doi: 10.1038/s42003-021-02526-y. [PMID: 34429505]
  • Yan Li, Wendi Luo, Huixia Zhang, Caiyun Wang, Caiyuan Yu, Zhihong Jiang, Wei Zhang. Antitumor Mechanism of Hydroxycamptothecin via the Metabolic Perturbation of Ribonucleotide and Deoxyribonucleotide in Human Colorectal Carcinoma Cells. Molecules (Basel, Switzerland). 2021 Aug; 26(16):. doi: 10.3390/molecules26164902. [PMID: 34443490]
  • Yihan Wu, Yanfen Cheng, Yuhan Yang, Di Wang, Xiaoqin Yang, Chaomei Fu, Jinming Zhang, Yichen Hu. Mechanisms of Gegen Qinlian Pill to ameliorate irinotecan-induced diarrhea investigated by the combination of serum pharmacochemistry and network pharmacology. Journal of ethnopharmacology. 2021 Aug; 276(?):114200. doi: 10.1016/j.jep.2021.114200. [PMID: 33989737]
  • R De Luca, C Volpe, O Mistretta, R Paci, G Ferrera, V Caputo, G Rosati, G Cicero. NEPA (netupitant/palonosetron) for the antiemetic prophylaxis of nausea and vomiting induced by chemotherapy (CINV) with Folfirinox and Folfoxiri even during the COVID-19 pandemic: a real-life study. European review for medical and pharmacological sciences. 2021 08; 25(16):5310-5317. doi: 10.26355/eurrev_202108_26552. [PMID: 34486707]
  • Wenbing Wu, Jingying Dong, Hui Gou, Ruiman Geng, Xiaolong Yang, Dan Chen, Bin Xiang, Zhengkun Zhang, Sichong Ren, Lihong Chen, Ji Liu. EGCG synergizes the therapeutic effect of irinotecan through enhanced DNA damage in human colorectal cancer cells. Journal of cellular and molecular medicine. 2021 08; 25(16):7913-7921. doi: 10.1111/jcmm.16718. [PMID: 34132471]
  • Mateusz Maszczyk, Zuzanna Rzepka, Jakub Rok, Artur Beberok, Dorota Wrześniok. Neobavaisoflavone May Modulate the Activity of Topoisomerase Inhibitors towards U-87 MG Cells: An In Vitro Study. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154516. [PMID: 34361668]
  • Ali Sabouri Shirazi, Reyhaneh Varshochian, Mahsa Rezaei, Yalda Hosseinzadeh Ardakani, Rassoul Dinarvand. SN38 loaded nanostructured lipid carriers (NLCs); preparation and in vitro evaluations against glioblastoma. Journal of materials science. Materials in medicine. 2021 Jun; 32(7):78. doi: 10.1007/s10856-021-06538-2. [PMID: 34191134]
  • Hiromichi Nakajima, Daisuke Kotani, Hideaki Bando, Takeshi Kato, Eiji Oki, Eiji Shinozaki, Yu Sunakawa, Kentaro Yamazaki, Satoshi Yuki, Yoshiaki Nakamura, Takeharu Yamanaka, Takayuki Yoshino, Takashi Ohta, Hiroya Taniguchi, Yoshinori Kagawa. REMARRY and PURSUIT trials: liquid biopsy-guided rechallenge with anti-epidermal growth factor receptor (EGFR) therapy with panitumumab plus irinotecan for patients with plasma RAS wild-type metastatic colorectal cancer. BMC cancer. 2021 Jun; 21(1):674. doi: 10.1186/s12885-021-08395-2. [PMID: 34098908]
  • Katy Vaillancourt, Amel Ben Lagha, Daniel Grenier. A green tea extract and epigallocatechin-3-gallate attenuate the deleterious effects of irinotecan in an oral epithelial cell model. Archives of oral biology. 2021 Jun; 126(?):105135. doi: 10.1016/j.archoralbio.2021.105135. [PMID: 33930649]
  • Dou-Dou Xu, Xiao-Ying Hou, Ou Wang, Di Wang, Dan-Ting Li, Si-Yuan Qin, Bo Lv, Xiao-Min Dai, Zun-Jian Zhang, Jian-Bo Wan, Feng-Guo Xu. A four-component combination derived from Huang-Qin Decoction significantly enhances anticancer activity of irinotecan. Chinese journal of natural medicines. 2021 May; 19(5):364-375. doi: 10.1016/s1875-5364(21)60034-1. [PMID: 33941341]
  • Femke M de Man, Ruben A G van Eerden, Gerdien M van Doorn, Esther Oomen-de Hoop, Stijn L W Koolen, Joanne F Olieman, Peter de Bruijn, Joris N Veraart, Henk K van Halteren, Yorick Sandberg, Adriaan Moelker, Jan N M IJzermans, Martijn P Lolkema, Teun van Gelder, Martijn E T Dollé, Ron W F de Bruin, Ron H J Mathijssen. Effects of Protein and Calorie Restriction on the Metabolism and Toxicity Profile of Irinotecan in Cancer Patients. Clinical pharmacology and therapeutics. 2021 05; 109(5):1304-1313. doi: 10.1002/cpt.2094. [PMID: 33119892]
  • Aditya Kumar Gupta, Mohanraj Ramachandran, Jagdish Prasad Meena, Tanima Dwivedi, Urvashi Singh, Ritu Gupta, Rachna Seth. Robust and sustained antibody response to SARS-CoV-2 in a child pre and post autologous hematopoietic stem cell transplant. Pediatric blood & cancer. 2021 05; 68(5):e28848. doi: 10.1002/pbc.28848. [PMID: 33351985]
  • Olivia Jones, Xiaoqian Cheng, Saravana R K Murthy, Lawan Ly, Taisen Zhuang, Giacomo Basadonna, Michael Keidar, Jerome Canady. The synergistic effect of Canady Helios cold atmospheric plasma and a FOLFIRINOX regimen for the treatment of cholangiocarcinoma in vitro. Scientific reports. 2021 04; 11(1):8967. doi: 10.1038/s41598-021-88451-w. [PMID: 33903679]
  • Wei-Che Tseng, Chi-Yuan Chen, Ching-Yuh Chern, Chu-An Wang, Wen-Chih Lee, Ying-Chih Chi, Shu-Fang Cheng, Yi-Tsen Kuo, Ya-Chen Chiu, Shih-Ting Tseng, Pei-Ya Lin, Shou-Jhen Liou, Yi-Chen Li, Chin-Chuan Chen. Targeting HR Repair as a Synthetic Lethal Approach to Increase DNA Damage Sensitivity by a RAD52 Inhibitor in BRCA2-Deficient Cancer Cells. International journal of molecular sciences. 2021 Apr; 22(9):. doi: 10.3390/ijms22094422. [PMID: 33922657]
  • Paul Cressey, Maral Amrahli, Po-Wah So, Wladyslaw Gedroyc, Michael Wright, Maya Thanou. Image-guided thermosensitive liposomes for focused ultrasound enhanced co-delivery of carboplatin and SN-38 against triple negative breast cancer in mice. Biomaterials. 2021 04; 271(?):120758. doi: 10.1016/j.biomaterials.2021.120758. [PMID: 33774525]
  • Ning Ding, Shengjun Xu, Sheng Zheng, Qianwei Ye, Li Xu, Sunbin Ling, Shanshan Xie, Wenwen Chen, Zizhen Zhang, Meng Xue, Zhenghua Lin, Xiao Xu, Liangjing Wang. "Sweet tooth"-oriented SN38 prodrug delivery nanoplatform for targeted gastric cancer therapy. Journal of materials chemistry. B. 2021 03; 9(12):2816-2830. doi: 10.1039/d0tb02787a. [PMID: 33690741]
  • Young Hoon Choi, Sang Hyub Lee, Min Su You, Bang Sup Shin, Woo Hyun Paik, Ji Kon Ryu, Yong-Tae Kim, Wooil Kwon, Jin-Young Jang, Sun-Whe Kim. Prognostic Factors for Patients with Borderline Resectable or Locally Advanced Pancreatic Cancer Receiving Neoadjuvant FOLFIRINOX. Gut and liver. 2021 Mar; 15(2):315-323. doi: 10.5009/gnl19182. [PMID: 32235008]
  • Tamás Nagy, Ágota Tóth, Ágnes Telbisz, Balázs Sarkadi, Hedvig Tordai, Attila Tordai, Tamás Hegedűs. The transport pathway in the ABCG2 protein and its regulation revealed by molecular dynamics simulations. Cellular and molecular life sciences : CMLS. 2021 Mar; 78(5):2329-2339. doi: 10.1007/s00018-020-03651-3. [PMID: 32979053]
  • Akitomo Yokokawa, Shun Kaneko, Sayuri Endo, Yuki Minowa, Hideaki Ayukawa, Ryohei Hirano, Fumio Nagashima, Daisuke Naruge, Naohiro Okano, Takaaki Kobayashi, Kirio Kawai, Junji Furuse, Takashi Furuta, Hiromi Shibasaki. Effect of UGT1A1, CYP3A and CES Activities on the Pharmacokinetics of Irinotecan and its Metabolites in Patients with UGT1A1 Gene Polymorphisms. European journal of drug metabolism and pharmacokinetics. 2021 Mar; 46(2):317-324. doi: 10.1007/s13318-021-00675-3. [PMID: 33619631]
  • Kena Zhao, Tao Guo, Xian Sun, Ting Xiong, Xiaohong Ren, Li Wu, Rui Yang, Huimin Sun, Senlin Shi, Jiwen Zhang. Mechanism and optimization of supramolecular complexation-enhanced fluorescence spectroscopy for the determination of SN-38 in plasma and cells. Luminescence : the journal of biological and chemical luminescence. 2021 Mar; 36(2):531-542. doi: 10.1002/bio.3973. [PMID: 33125824]
  • Jia-Wen Shi, Zhuang-Zhuang Li, Jia-Shuo Wu, Wei-Yi Jin, Xiao-Yan Chang, Hong Sun, Li Dong, Zhi-Ping Jiang, Yue Shi. Identification of the bioactive components of Banxia Xiexin Decoction that protect against CPT-11-induced intestinal toxicity via UPLC-based spectrum-effect relationship analyses. Journal of ethnopharmacology. 2021 Feb; 266(?):113421. doi: 10.1016/j.jep.2020.113421. [PMID: 33022337]
  • Yanfei Chen, Zhaoliang Hu, Wenzhu Qi, Shuxiao Gao, Jing Jiang, Shixiao Wang, Lei Xu, Xin Xu, Min Song, Taijun Hang. Pharmacovigilance of herb-drug interactions: A pharmacokinetic study on the combination administration of herbal Kang'ai injection and chemotherapy irinotecan hydrochloride injection by LC-MS/MS. Journal of pharmaceutical and biomedical analysis. 2021 Feb; 194(?):113784. doi: 10.1016/j.jpba.2020.113784. [PMID: 33280996]
  • Adelina Puscasu, Martina Zanchetta, Bianca Posocco, David Bunka, Stefano Tartaggia, Giuseppe Toffoli. Development and validation of a selective SPR aptasensor for the detection of anticancer drug irinotecan in human plasma samples. Analytical and bioanalytical chemistry. 2021 Feb; 413(4):1225-1236. doi: 10.1007/s00216-020-03087-5. [PMID: 33404749]
  • Georgia Eleni Tsotsou, Panagiota Gkotzamani, Victoria Petro, Ariadne Argyropoulou, Petros Karkalousos. A simple, rapid and low-cost spectrophotometric method for irinotecan quantification in human plasma and in pharmaceutical dosage forms. Analytical methods : advancing methods and applications. 2021 01; 13(2):258-266. doi: 10.1039/d0ay02201b. [PMID: 33367449]
  • Lin Wang, Rui Wang, Guang-Yi Wei, Rui-Ping Zhang, Ying Zhu, Zhe Wang, Shu-Mei Wang, Guan-Hua Du. Cryptotanshinone alleviates chemotherapy-induced colitis in mice with colon cancer via regulating fecal-bacteria-related lipid metabolism. Pharmacological research. 2021 01; 163(?):105232. doi: 10.1016/j.phrs.2020.105232. [PMID: 33027716]
  • Guilherme Machado Xavier, André Luiz Sena Guimarães, Carlos Alberto de Carvalho Fraga, Talita Antunes Guimarães, Marcela Gonçalves de Souza, Kimberly Marie Jones, Lucyana Conceição Farias. Pathways Related to the Anti-Cancer Effects of Metabolites Derived from Cerrado Biome Native Plants: An Update and Bioinformatics Analysis on Oral Squamous Cell Carcinoma. Protein and peptide letters. 2021; 28(7):735-749. doi: 10.2174/0929866527999201209221012. [PMID: 33302827]
  • Shi-Jun Yue, Yi-Feng Qin, An Kang, Hui-Juan Tao, Gui-Sheng Zhou, Yan-Yan Chen, Jian-Qin Jiang, Yu-Ping Tang, Jin-Ao Duan. Total Flavonoids of Glycyrrhiza uralensis Alleviates Irinotecan-Induced Colitis via Modification of Gut Microbiota and Fecal Metabolism. Frontiers in immunology. 2021; 12(?):628358. doi: 10.3389/fimmu.2021.628358. [PMID: 34025639]
  • Bei Yue, Ruiyang Gao, Zhengtao Wang, Wei Dou. Microbiota-Host-Irinotecan Axis: A New Insight Toward Irinotecan Chemotherapy. Frontiers in cellular and infection microbiology. 2021; 11(?):710945. doi: 10.3389/fcimb.2021.710945. [PMID: 34722328]
  • Maheboob Basade, Akshata Mane. Optimum patient selection for irinotecan-containing regimens in metastatic colorectal cancer: Literature review and lessons from clinical practice. Indian journal of cancer. 2021 Jan; 58(1):5-16. doi: 10.4103/ijc.ijc_507_19. [PMID: 33402591]
  • Hongmei Liu, Minghao Yuan, Yushi Liu, Yiping Guo, Haijun Xiao, Li Guo, Fei Liu. Self-Monitoring and Self-Delivery of Self-Assembled Fluorescent Nanoparticles in Cancer Therapy. International journal of nanomedicine. 2021; 16(?):2487-2499. doi: 10.2147/ijn.s294279. [PMID: 33824587]
  • H Benoist, C Breuil, B Le Neindre, R Delépée, G Saint-Lorant. Does equipment change impact blood contamination with irinotecan and its two major metabolites in a centralized cytotoxic pharmacy unit?. Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners. 2020 Dec; 26(8):1823-1828. doi: 10.1177/1078155220905013. [PMID: 32075506]
  • Bragi Lovetrue. The AI-discovered aetiology of COVID-19 and rationale of the irinotecan+ etoposide combination therapy for critically ill COVID-19 patients. Medical hypotheses. 2020 Nov; 144(?):110180. doi: 10.1016/j.mehy.2020.110180. [PMID: 33254502]
  • Geert Maleux, Hans Prenen, Thomas Helmberger, Isabelle Spriet, Tatjana V Isailovic, Philippe Pereira. LifePearl microspheres loaded with irinotecan in the treatment of Liver-dominant metastatic colorectal carcinoma: feasibility, safety and pharmacokinetic study. Anti-cancer drugs. 2020 11; 31(10):1084-1090. doi: 10.1097/cad.0000000000000980. [PMID: 32932279]
  • Nikolaos Tsakiris, Frédérique Fauvet, Samia Ruby, Alain Puisieux, Adrien Paquot, Giulio G Muccioli, Arnaud M Vigneron, Véronique Préat. Combined nanomedicines targeting colorectal cancer stem cells and cancer cells. Journal of controlled release : official journal of the Controlled Release Society. 2020 10; 326(?):387-395. doi: 10.1016/j.jconrel.2020.07.025. [PMID: 32702392]
  • Andrew L Lewis, Marcus Caine, Pedro Garcia, Koorosh Ashrafi, Yiqing Tang, Lorcan Hinchcliffe, Wei Guo, Zainab Bascal, Hugh Kilpatrick, Sean L Willis. Handling and performance characteristics of a new small caliber radiopaque embolic microsphere. Journal of biomedical materials research. Part B, Applied biomaterials. 2020 10; 108(7):2878-2888. doi: 10.1002/jbm.b.34619. [PMID: 32578348]
  • Shuqin Xing, Yafei Wang, Kaiwen Hu, Fen Wang, Tao Sun, Quanwang Li. WGCNA reveals key gene modules regulated by the combined treatment of colon cancer with PHY906 and CPT11. Bioscience reports. 2020 09; 40(9):. doi: 10.1042/bsr20200935. [PMID: 32812032]
  • Hossieny Ibrahim, Yassien Temerk. Gold nanoparticles anchored graphitized carbon nanofibers ionic liquid electrode for ultrasensitive and selective electrochemical sensing of anticancer drug irinotecan. Mikrochimica acta. 2020 09; 187(10):579. doi: 10.1007/s00604-020-04560-9. [PMID: 32979090]
  • Katja Silbermann, Jiyang Li, Vigneshwaran Namasivayam, Fabian Baltes, Gerd Bendas, Sven Marcel Stefan, Michael Wiese. Superior Pyrimidine Derivatives as Selective ABCG2 Inhibitors and Broad-Spectrum ABCB1, ABCC1, and ABCG2 Antagonists. Journal of medicinal chemistry. 2020 09; 63(18):10412-10432. doi: 10.1021/acs.jmedchem.0c00961. [PMID: 32787102]