Spermidine (BioDeep_00000405429)
Main id: BioDeep_00000002888
natural product PANOMIX_OTCML-2023 Toxin BioNovoGene_Lab2019
代谢物信息卡片
化学式: C7H19N3 (145.1579)
中文名称: 亚精胺 三盐酸盐, 亚精胺
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(CCNCCCN)CN
InChI: InChI=1S/C7H19N3/c8-4-1-2-6-10-7-3-5-9/h10H,1-9H2
描述信息
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
A triamine that is the 1,5,10-triaza derivative of decane.
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Spermidine, also known as N-(3-aminopropyl)-1,4-butane-diamine or 1,5,10-triazadecane, is a member of the class of compounds known as dialkylamines. Dialkylamines are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. Spermidine is soluble (in water) and a very strong basic compound (based on its pKa). Spermidine can be found in radish, which makes spermidine a potential biomarker for the consumption of this food product. Spermidine can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as throughout most human tissues. Spermidine exists in all living organisms, ranging from bacteria to humans. In humans, spermidine is involved in a couple of metabolic pathways, which include methionine metabolism and spermidine and spermine biosynthesis. Spermidine is also involved in several metabolic disorders, some of which include homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, methionine adenosyltransferase deficiency, s-adenosylhomocysteine (SAH) hydrolase deficiency, and hypermethioninemia. Spermidine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Spermidine is a polyamine compound (C 7H 19N 3) found in ribosomes and living tissues, and having various metabolic functions within organisms. It was originally isolated from semen . As a uremic toxin, this compound can cause uremic syndrome. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Heart problems, such as an irregular heartbeat, inflammation in the sac that surrounds the heart (pericarditis), and increased pressure on the heart can be seen in patients with uremic syndrome. Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present (T3DB).
Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1].
Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1].
同义名列表
3 个代谢物同义名
数据库引用编号
49 个数据库交叉引用编号
- ChEBI: CHEBI:16610
- KEGG: C00315
- KEGGdrug: D95527
- PubChem: 1102
- DrugBank: DB03566
- ChEMBL: CHEMBL19612
- MeSH: Spermidine
- foodb: FDB008042
- CAS: 1122077-27-3
- CAS: 133483-05-3
- CAS: 133483-10-0
- CAS: 124-20-9
- MoNA: CCMSLIB00005463951
- MoNA: CCMSLIB00005463985
- MoNA: CCMSLIB00005720428
- MoNA: CCMSLIB00005720484
- MoNA: MoNA037401
- MoNA: MoNA037229
- MoNA: MoNA032835
- MoNA: MoNA032834
- MoNA: MoNA032833
- MoNA: MoNA032282
- MoNA: MoNA032283
- MoNA: MoNA032279
- MoNA: MoNA024035
- MoNA: MoNA016794
- MoNA: MoNA002123
- MoNA: MoNA002122
- MoNA: MoNA002121
- MoNA: MoNA001945
- MoNA: MoNA001942
- MoNA: MoNA001941
- MoNA: HMDB0001257_ms_ms_1490
- MoNA: HMDB0001257_ms_ms_1491
- MoNA: HMDB0001257_ms_ms_1492
- MetaboLights: MTBLC16610
- PubChem: 3609
- KNApSAcK: C00001431
- PDB-CCD: SPD
- PDB-CCD: SR0
- 3DMET: B01214
- NIKKAJI: J10.054D
- RefMet: Spermidine
- medchemexpress: HY-B1776
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-229
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-950
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-341
- KNApSAcK: 16610
- LOTUS: LTS0061428
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
269 个相关的物种来源信息
- 4037 - Apiaceae: LTS0061428
- 7458 - Apidae: LTS0061428
- 7459 - Apis: LTS0061428
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0061428
- 3701 - Arabidopsis: LTS0061428
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1046/J.1365-313X.2001.01100.X
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-1-53
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-5-1
- 3702 - Arabidopsis thaliana: LTS0061428
- 13345 - Ardisia crenata: 10.3389/FMOLB.2021.683671
- 6656 - Arthropoda: LTS0061428
- 4210 - Asteraceae: LTS0061428
- 4496 - Avena: LTS0061428
- 146531 - Avena byzantina:
- 4498 - Avena sativa:
- 4498 - Avena sativa: 10.1007/BF00207599
- 4498 - Avena sativa: 10.1016/S0031-9422(00)82598-4
- 4498 - Avena sativa: LTS0061428
- 2 - Bacteria: LTS0061428
- 2797 - Bangiophyceae: LTS0061428
- 7089 - Bombycidae: LTS0061428
- 7090 - Bombyx: LTS0061428
- 7091 - Bombyx mori: 10.1016/0305-0491(91)90393-R
- 7091 - Bombyx mori: LTS0061428
- 21571 - Boraginaceae: LTS0061428
- 4423 - Brasenia: LTS0061428
- 4424 - Brasenia schreberi: 10.1139/B97-175
- 4424 - Brasenia schreberi: LTS0061428
- 3700 - Brassicaceae: LTS0061428
- 301914 - Brugmansia: LTS0061428
- 41689 - Brugmansia arborea: 10.1016/S0031-9422(01)00127-3
- 41689 - Brugmansia arborea: LTS0061428
- 512269 - Brugmansia × candida: 10.1016/S0031-9422(01)00127-3
- 4422 - Cabombaceae: LTS0061428
- 4441 - Camellia: LTS0061428
- 4442 - Camellia sinensis: 10.1271/BBB.62.532
- 4442 - Camellia sinensis: LTS0061428
- 542762 - Camellia sinensis var. sinensis: 10.1271/BBB.62.532
- 542762 - Camellia sinensis var. sinensis: LTS0061428
- 3822 - Canavalia: LTS0061428
- 192414 - Canavalia bonariensis: 10.1104/PP.82.3.795
- 192414 - Canavalia bonariensis: LTS0061428
- 3823 - Canavalia ensiformis: 10.1104/PP.82.3.795
- 3823 - Canavalia ensiformis: LTS0061428
- 3824 - Canavalia gladiata: 10.1016/0031-9422(90)85449-P
- 3824 - Canavalia gladiata: LTS0061428
- 3166 - Chlorophyceae: LTS0061428
- 3041 - Chlorophyta: LTS0061428
- 7711 - Chordata: LTS0061428
- 1890464 - Chroococcaceae: LTS0061428
- 3826 - Cicer: LTS0061428
- 3827 - Cicer arietinum: 10.1016/0031-9422(92)83265-Z
- 3827 - Cicer arietinum: LTS0061428
- 13426 - Cichorium: LTS0061428
- 13427 - Cichorium intybus: 10.1016/S0031-9422(98)00555-X
- 13427 - Cichorium intybus: LTS0061428
- 3655 - Cucumis: LTS0061428
- 3659 - Cucumis sativus: 10.1016/S0031-9422(00)82597-2
- 3659 - Cucumis sativus: LTS0061428
- 869827 - Cucumis sativus var. sativus: 10.1016/S0031-9422(00)82597-2
- 869827 - Cucumis sativus var. sativus: LTS0061428
- 3650 - Cucurbitaceae: LTS0061428
- 265316 - Cyanidiaceae: LTS0061428
- 2770 - Cyanidium: LTS0061428
- 2771 - Cyanidium caldarium: 10.1016/0031-9422(90)85082-Q
- 2771 - Cyanidium caldarium: LTS0061428
- 3028117 - Cyanophyceae: LTS0061428
- 4074 - Datura: LTS0061428
- 188787 - Deinococci: LTS0061428
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 543 - Enterobacteriaceae: LTS0061428
- 561 - Escherichia: LTS0061428
- 562 - Escherichia coli: LTS0061428
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 33682 - Euglenozoa: LTS0061428
- 2759 - Eukaryota: LTS0061428
- 13516 - Eupatorium: LTS0061428
- 102770 - Eupatorium cannabinum: 10.1016/S0031-9422(00)95154-9
- 102770 - Eupatorium cannabinum: LTS0061428
- 3803 - Fabaceae: LTS0061428
- 7136 - Galleria: LTS0061428
- 7137 - Galleria mellonella: 10.1016/0305-0491(91)90393-R
- 7137 - Galleria mellonella: LTS0061428
- 1236 - Gammaproteobacteria: LTS0061428
- 3846 - Glycine: LTS0061428
- 3847 - Glycine max: 10.1016/0031-9422(90)85450-T
- 3847 - Glycine max: LTS0061428
- 1561072 - Heliotropiaceae: LTS0061428
- 21621 - Heliotropium: LTS0061428
- 168338 - Heliotropium angiospermum: 10.1016/S0031-9422(00)82598-4
- 168338 - Heliotropium angiospermum: LTS0061428
- 248297 - Heliotropium indicum: 10.1016/S0031-9422(00)82598-4
- 248297 - Heliotropium indicum: LTS0061428
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 51023 - Hydrilla: LTS0061428
- 51024 - Hydrilla verticillata: 10.1139/B97-175
- 51024 - Hydrilla verticillata: LTS0061428
- 55463 - Hydrocharis: LTS0061428
- 55464 - Hydrocharis morsus-ranae: 10.1016/S0031-9422(00)80829-8
- 55464 - Hydrocharis morsus-ranae: LTS0061428
- 26319 - Hydrocharitaceae: LTS0061428
- 50557 - Insecta: LTS0061428
- 405757 - Jacobaea: LTS0061428
- 189240 - Jacobaea carniolica: 10.1016/S0031-9422(00)95154-9
- 189240 - Jacobaea carniolica: LTS0061428
- 98722 - Jacobaea vulgaris: 10.1016/S0031-9422(00)95154-9
- 98722 - Jacobaea vulgaris: LTS0061428
- 5653 - Kinetoplastea: LTS0061428
- 271790 - Lablab: LTS0061428
- 35936 - Lablab purpureus: LTS0061428
- 3853 - Lathyrus: LTS0061428
- 3860 - Lathyrus sativus: 10.1016/0031-9422(74)85020-X
- 3860 - Lathyrus sativus: LTS0061428
- 4196 - Lentibulariaceae: LTS0061428
- 4447 - Liliopsida: LTS0061428
- 3867 - Lotus: LTS0061428
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0061428
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: LTS0061428
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0061428
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: LTS0061428
- 264956 - Lotus filicaulis: 10.1111/J.1365-3040.2010.02266.X
- 34305 - Lotus japonicus:
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0061428
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: LTS0061428
- 442940 - Lyallia: LTS0061428
- 442941 - Lyallia kerguelensis: 10.1016/S0031-9422(99)00191-0
- 442941 - Lyallia kerguelensis: LTS0061428
- 3928 - Lythraceae: LTS0061428
- 3398 - Magnoliopsida: LTS0061428
- 3749 - Malus: LTS0061428
- 3750 - Malus domestica:
- 3750 - Malus domestica: 10.21273/JASHS.119.1.70
- 3750 - Malus domestica: 10.21273/JASHS.119.4.735
- 3750 - Malus domestica: LTS0061428
- 283210 - Malus pumila:
- 283210 - Malus pumila: 10.21273/JASHS.119.1.70
- 283210 - Malus pumila: 10.21273/JASHS.119.4.735
- 283210 - Malus pumila: LTS0061428
- 40674 - Mammalia: LTS0061428
- 33208 - Metazoa: LTS0061428
- 703407 - Montiaceae: LTS0061428
- 10066 - Muridae: LTS0061428
- 10088 - Mus: LTS0061428
- 10090 - Mus musculus: LTS0061428
- 10090 - Mus musculus: NA
- 4085 - Nicotiana: LTS0061428
- 4087 - Nicotiana alata:
- 4087 - Nicotiana alata: 10.1016/0031-9422(84)83018-6
- 4087 - Nicotiana alata: 10.1016/S0031-9422(00)82598-4
- 4087 - Nicotiana alata: LTS0061428
- 4097 - Nicotiana tabacum:
- 4097 - Nicotiana tabacum: 10.1016/0031-9422(81)80099-4
- 4097 - Nicotiana tabacum: 10.1093/OXFORDJOURNALS.PCP.A078111
- 4097 - Nicotiana tabacum: 10.1104/PP.78.2.323
- 4097 - Nicotiana tabacum: LTS0061428
- 4415 - Nuphar: LTS0061428
- 54801 - Nuphar japonica: 10.1139/B97-175
- 4410 - Nymphaeaceae: LTS0061428
- 49562 - Peucedanum: LTS0061428
- 1572681 - Peucedanum palustre: 10.1055/S-2006-958068
- 1572681 - Peucedanum palustre: LTS0061428
- 3328 - Picea: LTS0061428
- 3330 - Picea glauca: 10.1007/BF00232981
- 3330 - Picea glauca: LTS0061428
- 3318 - Pinaceae: LTS0061428
- 58019 - Pinopsida: LTS0061428
- 3887 - Pisum: LTS0061428
- 3888 - Pisum sativum: 10.1016/0031-9422(90)85450-T
- 3888 - Pisum sativum: LTS0061428
- 208194 - Pisum sativum subsp. sativum: 10.1016/0031-9422(90)85450-T
- 208194 - Pisum sativum subsp. sativum: LTS0061428
- 4479 - Poaceae: LTS0061428
- 44947 - Pontederia crassipes: 10.1248/CPB.31.3315
- 16367 - Pontederiaceae: LTS0061428
- 3689 - Populus: LTS0061428
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0061428
- 135621 - Pseudomonadaceae: LTS0061428
- 286 - Pseudomonas: 10.2323/JGAM.37.431
- 286 - Pseudomonas: LTS0061428
- 39439 - Pseudomonas hydrogenovora: 10.2323/JGAM.37.431
- 39439 - Pseudomonas hydrogenovora: LTS0061428
- 3889 - Psophocarpus: LTS0061428
- 3891 - Psophocarpus tetragonolobus: 10.1016/0031-9422(90)85450-T
- 3891 - Psophocarpus tetragonolobus: LTS0061428
- 180039 - Psychotria punctata: 10.3389/FMOLB.2021.683671
- 7135 - Pyralidae: LTS0061428
- 2763 - Rhodophyta: LTS0061428
- 3745 - Rosaceae: LTS0061428
- 3688 - Salicaceae: LTS0061428
- 590 - Salmonella: LTS0061428
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0061428
- 3086 - Scenedesmaceae: LTS0061428
- 3087 - Scenedesmus: LTS0061428
- 104103 - Scenedesmus acutus: LTS0061428
- 18794 - Senecio: LTS0061428
- 2527776 - Senecio congestus: 10.1016/S0031-9422(00)95154-9
- 2527776 - Senecio congestus: LTS0061428
- 121553 - Senecio rupestris: 10.1016/S0031-9422(00)95154-9
- 121553 - Senecio rupestris: LTS0061428
- 121554 - Senecio squalidus: LTS0061428
- 121557 - Senecio sylvaticus: 10.1016/S0031-9422(00)95154-9
- 121557 - Senecio sylvaticus: LTS0061428
- 93496 - Senecio vernalis: 10.1016/S0031-9422(00)95154-9
- 93496 - Senecio vernalis: LTS0061428
- 76276 - Senecio vulgaris:
- 76276 - Senecio vulgaris: 10.1016/S0031-9422(00)95154-9
- 76276 - Senecio vulgaris: 10.1016/S0031-9422(97)00193-3
- 76276 - Senecio vulgaris: LTS0061428
- 4070 - Solanaceae: LTS0061428
- 1883 - Streptomyces: LTS0061428
- 1827580 - Streptomyces nigra: 10.3389/FMICB.2018.01587
- 1827580 - Streptomyces nigra: LTS0061428
- 2062 - Streptomycetaceae: LTS0061428
- 35493 - Streptophyta: LTS0061428
- 1890426 - Synechococcaceae: LTS0061428
- 1129 - Synechococcus: LTS0061428
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 32046 - Synechococcus elongatus: LTS0061428
- 151998 - Tephroseris: LTS0061428
- 152001 - Tephroseris palustris: 10.1016/S0031-9422(00)95154-9
- 152001 - Tephroseris palustris: LTS0061428
- 91192 - Tetradesmus: LTS0061428
- 3088 - Tetradesmus obliquus: LTS0061428
- 27065 - Theaceae: LTS0061428
- 188786 - Thermaceae: LTS0061428
- 270 - Thermus: LTS0061428
- 274 - Thermus thermophilus: 10.1111/J.1574-6968.1990.TB04116.X
- 274 - Thermus thermophilus: LTS0061428
- 63045 - Thysselinum palustre: 10.1055/S-2006-958068
- 58023 - Tracheophyta: LTS0061428
- 22665 - Trapa: LTS0061428
- 22666 - Trapa natans: 10.1139/B97-175
- 22666 - Trapa natans: LTS0061428
- 5690 - Trypanosoma: LTS0061428
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0061428
- 5654 - Trypanosomatidae: LTS0061428
- 13747 - Utricularia: LTS0061428
- 192294 - Utricularia intermedia: 10.1016/S0031-9422(00)80829-8
- 192294 - Utricularia intermedia: LTS0061428
- 3904 - Vicia: LTS0061428
- 3906 - Vicia faba: 10.1016/0031-9422(91)83201-U
- 3908 - Vicia sativa: 10.1016/0031-9422(91)83201-U
- 3908 - Vicia sativa: LTS0061428
- 33090 - Viridiplantae: LTS0061428
- 3602 - Vitaceae: LTS0061428
- 3603 - Vitis: LTS0061428
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1111/J.1365-2621.2000.TB10254.X
- 29760 - Vitis vinifera: LTS0061428
- 203720 - Xanthoselinum: LTS0061428
- 203721 - Xanthoselinum alsaticum: 10.1055/S-2006-958068
- 203721 - Xanthoselinum alsaticum: LTS0061428
- 4575 - Zea: LTS0061428
- 4577 - Zea mays: 10.1016/S0031-9422(00)80066-7
- 4577 - Zea mays: LTS0061428
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jianhua Zhao, Yuhui Xu, Haoxia Li, Wei An, Yue Yin, Bin Wang, Liping Wang, Bi Wang, Linyuan Duan, Xiaoyue Ren, Xiaojie Liang, Yajun Wang, Ru Wan, Ting Huang, Bo Zhang, Yanlong Li, Jie Luo, Youlong Cao. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium).
Plant biotechnology journal.
2024 Jun; 22(6):1435-1452. doi:
10.1111/pbi.14278
. [PMID: 38194521] - Bin Li, Jue Liang, Hamid R Baniasadi, Shin Kurihara, Margaret A Phillips, Anthony J Michael. Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N1-aminopropylagmatine synthases.
The Journal of biological chemistry.
2024 May; 300(5):107281. doi:
10.1016/j.jbc.2024.107281
. [PMID: 38588807] - Ludan Cao, Guo Wang, Xiuxu Ye, Fang Li, Shujun Wang, Huanling Li, Peng Wang, Jiabao Wang. Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi (Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-Arginine Treatment.
International journal of molecular sciences.
2024 Apr; 25(7):. doi:
10.3390/ijms25073965
. [PMID: 38612774] - Jiangtao Qiao, Wenwen Cai, Kai Wang, Eric Haubruge, Jie Dong, Hesham R El-Seedi, Xiang Xu, Hongcheng Zhang. New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives.
Journal of agricultural and food chemistry.
2024 Mar; 72(10):5089-5106. doi:
10.1021/acs.jafc.3c08556
. [PMID: 38416110] - Hong Deng, Qiandong Hou, Zhuang Wen, Runrun Yu, Xuejiao Cao, Chunqiong Shang, Xiaowei Cai, Guang Qiao. Chinese cherry CpMYB44-CpSPDS2 module regulates spermidine content and florescence in tobacco.
Physiologia plantarum.
2024 Mar; 176(2):e14300. doi:
10.1111/ppl.14300
. [PMID: 38629194] - Peng Gao, Jianyou Wang, Huan Tang, Huanhuan Pang, Jiemei Liu, Chen Wang, Fei Xia, Honglin Chen, Liting Xu, Junzhe Zhang, Lixia Yuan, Guang Han, Jigang Wang, Gang Liu. Chemoproteomics-based profiling reveals potential antimalarial mechanism of Celastrol by disrupting spermidine and protein synthesis.
Cell communication and signaling : CCS.
2024 02; 22(1):139. doi:
10.1186/s12964-023-01409-5
. [PMID: 38378659] - Xueni Zhang, Xiaoyan Wen, Di Zhou, Yuhang Liang, Zhengqun Zhou, Gang Chen, Wei Li, Hao Gao, Ning Li. Lycibarbarspermidine L from the fruit of Lycium barbarum L. recovers intestinal barrier damage via regulating miR-195-3p.
Journal of ethnopharmacology.
2024 Feb; 320(?):117419. doi:
10.1016/j.jep.2023.117419
. [PMID: 37977423] - Bizhen Cheng, Muhammad Jawad Hassan, Dandan Peng, Ting Huang, Yan Peng, Zhou Li. Spermidine or spermine pretreatment regulates organic metabolites and ions homeostasis in favor of white clover seed germination against salt toxicity.
Plant physiology and biochemistry : PPB.
2024 Jan; 207(?):108379. doi:
10.1016/j.plaphy.2024.108379
. [PMID: 38266560] - Shoucheng Huang, Ping Huang, Sajid Masood, Muhammad Mazhar Iqbal, Tayyaba Naz, Subhan Danish, Mohammad Javed Ansari, Saleh H Salmen. Enhancing maize growth through the synergistic impact of potassium enrich biochar and spermidine.
BMC plant biology.
2024 Jan; 24(1):36. doi:
10.1186/s12870-024-04722-4
. [PMID: 38191323] - Yinhua Ni, Liujie Zheng, Liqian Zhang, Jiamin Li, Yuxiang Pan, Haimei Du, Zhaorong Wang, Zhengwei Fu. Spermidine activates adipose tissue thermogenesis through autophagy and fibroblast growth factor 21.
The Journal of nutritional biochemistry.
2024 Jan; 125(?):109569. doi:
10.1016/j.jnutbio.2024.109569
. [PMID: 38185346] - Kai Yin, Guobing Cui, Xinping Bi, Meiling Liang, Zhijian Hu, Yi Zhen Deng. Intracellular polyamines regulate redox homeostasis with cAMP-PKA signalling during sexual mating/filamentation and pathogenicity of Sporisorium scitamineum.
Molecular plant pathology.
2024 Jan; 25(1):e13393. doi:
10.1111/mpp.13393
. [PMID: 37814404] - P R Manhone, J C Lopes, R S Alexandre, P A M Lima, S O Lopes, L H G Mengarda, T Mello. Plant growth regulators and mobilization of reserves in imbibition phases of yellow passion fruit.
Brazilian journal of biology = Revista brasleira de biologia.
2024; 84(?):e273999. doi:
10.1590/1519-6984.273999
. [PMID: 38451628] - Naouar Ben Ali, Rajae Benkaddour, Safaa Rahmouni, Ouafaa Hamdoun, Ibtissam Boussaoudi, Mustapha Hassoun, Latifa Azaroual, Alain Badoc, Patrick Martin, Ahmed Lamarti. Influence of exogenous polyamines on the secondary somatic embryogenesis of cork oak (Quercus suber L.).
Bioengineered.
2023 12; 14(1):2288354. doi:
10.1080/21655979.2023.2288354
. [PMID: 38031347] - Edward Calabrese, A Wallace Hayes, Peter Pressman, Rachna Kapoor, Gaurav Dhawan, Vittorio Calabrese, Evgenios Agathokleous. Polyamines and hormesis: Making sense of a dose response dichotomy.
Chemico-biological interactions.
2023 Dec; 386(?):110748. doi:
10.1016/j.cbi.2023.110748
. [PMID: 37816449] - Wenjuan Wang, Shangli Shi, Wenjuan Kang, Long He. Enriched endogenous free Spd and Spm in alfalfa (Medicago sativa L.) under drought stress enhance drought tolerance by inhibiting H2O2 production to increase antioxidant enzyme activity.
Journal of plant physiology.
2023 Dec; 291(?):154139. doi:
10.1016/j.jplph.2023.154139
. [PMID: 37988872] - Meng-Hua Ma, Lei-Lei Gao, Chuang-Bo Chen, Fang-Li Gu, Si-Qi Wu, Fang Li, Bang-Xing Han. Dendrobium huoshanense Polysaccharide Improves High-Fat Diet Induced Liver Injury by Regulating the Gut-Liver Axis.
Chemistry & biodiversity.
2023 Nov; 20(11):e202300980. doi:
10.1002/cbdv.202300980
. [PMID: 37831331] - Huachao Xi, Xiaoqun Nie, Fang Gao, Xinxin Liang, Hu Li, Haiyan Zhou, Yujie Cai, Chen Yang. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine.
Science advances.
2023 10; 9(43):eadj9075. doi:
10.1126/sciadv.adj9075
. [PMID: 37878710] - Juan Li, Qi Li, Nian Guo, Qinglin Xian, Bing Lan, Nangia Vinay, Fei Mo, Yang Liu. Polyamines mediate the inhibitory effect of drought stress on nitrogen reallocation and utilization to regulate the grain number in wheat.
Journal of experimental botany.
2023 Oct; ?(?):. doi:
10.1093/jxb/erad393
. [PMID: 37813095] - Zhi-Qiang Yu, Jia-Yuan Hu, Shang-Ke Li, Wei-Lin Shi, Guang-Yu Shi. [Exogenous Spermidine Regulates Ryegrass Root System Response to Cd Stress and Its Transcriptome Analysis].
Huan jing ke xue= Huanjing kexue.
2023 Oct; 44(10):5746-5756. doi:
10.13227/j.hjkx.202210060
. [PMID: 37827790] - Zhennan Zhan, Ning Wang, Zumin Chen, Yanxia Zhang, Kangqi Geng, Dongmei Li, Zhenping Wang. Effects of water stress on endogenous hormones and free polyamines in different tissues of grapevines (Vitis vinifera L. cv. 'Merlot').
Functional plant biology : FPB.
2023 Oct; ?(?):. doi:
10.1071/fp22225
. [PMID: 37788830] - Andleeb Zehra, Harshal V Dhondge, Vitthal T Barvkar, Sanjay K Singh, Altafhusain B Nadaf. Evidence of polyamines mediated 2-acetyl-1-pyrroline biosynthesis in aromatic rice rhizospheric fungal species Aspergillus niger.
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].
2023 Sep; ?(?):. doi:
10.1007/s42770-023-01124-w
. [PMID: 37702923] - Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu. Synergistic antitumor efficacy of gemcitabine and cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via Sp1-SAT1-polyamine metabolism pathway.
Cellular oncology (Dordrecht).
2023 Sep; ?(?):. doi:
10.1007/s13402-023-00870-1
. [PMID: 37684512] - Yonghong He, Nannan Su, Qingzhao Zhao, Jiaer Meng, Zhaojin Chen, Hui Han. Polyamine-producing bacteria inhibit the absorption of Cd by spinach and alter the bacterial community composition of rhizosphere soil.
Ecotoxicology and environmental safety.
2023 Sep; 264(?):115442. doi:
10.1016/j.ecoenv.2023.115442
. [PMID: 37672938] - Kritika Kaushal, Mohd Ali, Puja Ohri. Uncovering the synergistic interplay of melatonin and spermidine in the alleviation of nematode stress in Solanum lycopersicum.
Pesticide biochemistry and physiology.
2023 Sep; 195(?):105574. doi:
10.1016/j.pestbp.2023.105574
. [PMID: 37666625] - Muhammad Asif Shehzad, Israr Hussain, Gulzar Akhtar, Khawaja Shafique Ahmad, Fahim Nawaz, Hafiz Nazar Faried, Ansar Mehmood. Insights into physiological and metabolic modulations instigated by exogenous sodium nitroprusside and spermidine reveals drought tolerance in Helianthus annuus L.
Plant physiology and biochemistry : PPB.
2023 Aug; 202(?):107935. doi:
10.1016/j.plaphy.2023.107935
. [PMID: 37579683] - Elžbieta Jankovska-Bortkevič, Sigita Jurkonienė, Virgilija Gavelienė, Vaidevutis Šveikauskas, Rima Mockevičiūtė, Irina Vaseva, Dessislava Todorova, Marija Žižytė-Eidetienė, Donatas Šneideris, Petras Prakas. Dynamics of Polyamines, Proline, and Ethylene Metabolism under Increasing Cold in Winter Oilseed Rape.
International journal of molecular sciences.
2023 Jul; 24(14):. doi:
10.3390/ijms241411402
. [PMID: 37511158] - Kariyemu Aihaiti, Jun Li, Saimijiang Yaermaimaiti, Qiang Yin, Haji Akber Aisa. A new macrocyclic spermidine alkaloid from the aerial part of Hyssopus cuspidatus Boriss.
Natural product research.
2023 Jul; 37(13):2113-2119. doi:
10.1080/14786419.2022.2027935
. [PMID: 35045780] - Tao Liu, Ning Qiao, Fangjian Ning, Xueyong Huang, Liping Luo. Identification and characterization of plant-derived biomarkers and physicochemical variations in the maturation process of Triadica cochinchinensis honey based on UPLC-QTOF-MS metabolomics analysis.
Food chemistry.
2023 May; 408(?):135197. doi:
10.1016/j.foodchem.2022.135197
. [PMID: 36527917] - Muhammad Zubair Siddiqi, Govindan Rajivgandhi, Soon-Youl Lee, Wan-Taek Im. Characterization of four novel bacterial species of the genus Sphingomonas, Sphingomonas anseongensis, Sphingomonas alba, Sphingomonas brevis and Sphingomonas hankyongi sp.nov., isolated from wet land.
International journal of systematic and evolutionary microbiology.
2023 May; 73(5):. doi:
10.1099/ijsem.0.005884
. [PMID: 37216283] - Bing Yan, Xinjie Mao, Shasha Hu, Shimin Wang, Xiaochen Liu, Jing Sun. Spermidine protects intestinal mucosal barrier function in mice colitis via the AhR/Nrf2 and AhR/STAT3 signaling pathways.
International immunopharmacology.
2023 Apr; 119(?):110166. doi:
10.1016/j.intimp.2023.110166
. [PMID: 37104918] - Marko Kebert, Saša Kostić, Srđan Stojnić, Eleonora Čapelja, Anđelina Gavranović Markić, Martina Zorić, Lazar Kesić, Victor Flors. A Fine-Tuning of the Plant Hormones, Polyamines and Osmolytes by Ectomycorrhizal Fungi Enhances Drought Tolerance in Pedunculate Oak.
International journal of molecular sciences.
2023 Apr; 24(8):. doi:
10.3390/ijms24087510
. [PMID: 37108671] - Ben-Xue Chen, Yan-Bing Li, Huai-Pan Liu, Ronald Kurtenbach. Putrescine transformation to other forms of polyamines in filling grain embryos functioned in enhancing the resistance of maize plants to drought stress.
Plant physiology and biochemistry : PPB.
2023 Apr; 197(?):107654. doi:
10.1016/j.plaphy.2023.107654
. [PMID: 36989984] - Jiangtao Qiao, Zhouxu Feng, Yong Zhang, Xingying Xiao, Jie Dong, Eric Haubruge, Hongcheng Zhang. Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen.
Food chemistry.
2023 Mar; 405(Pt A):134800. doi:
10.1016/j.foodchem.2022.134800
. [PMID: 36347200] - Hanna Fuchs, Beata P Plitta-Michalak, Arleta Małecka, Liliana Ciszewska, Łukasz Sikorski, Aleksandra M Staszak, Marcin Michalak, Ewelina Ratajczak. The chances in the redox priming of nondormant recalcitrant seeds by spermidine.
Tree physiology.
2023 Mar; ?(?):. doi:
10.1093/treephys/tpad036
. [PMID: 36943301] - Jian Sun, Jiyu Xu, Yong Liu, Yitong Lin, Fengge Wang, Yue Han, Shumin Zhang, Xiaoyan Gao, Changqing Xu, Hui Yuan. Exogenous spermidine alleviates diabetic cardiomyopathy via suppressing ROS, ERS and Pannexin-1-mediated ferroptosis.
Biomolecules and biomedicine.
2023 Mar; ?(?):. doi:
10.17305/bb.2022.8846
. [PMID: 36946337] - Dongmei Jiang, Yongni Guo, Chunyang Niu, Shiyun Long, Yilong Jiang, Zelong Wang, Xin Wang, Qian Sun, Weikang Ling, Xiaoguang An, Chengweng Ji, Hua Zhao, Bo Kang. Exploration of the Antioxidant Effect of Spermidine on the Ovary and Screening and Identification of Differentially Expressed Proteins.
International journal of molecular sciences.
2023 Mar; 24(6):. doi:
10.3390/ijms24065793
. [PMID: 36982867] - Leandro Solmi, Franco R Rossi, Fernando M Romero, Marcel Bach-Pages, Gail M Preston, Oscar A Ruiz, Andrés Gárriz. Polyamine-mediated mechanisms contribute to oxidative stress tolerance in Pseudomonas syringae.
Scientific reports.
2023 Mar; 13(1):4279. doi:
10.1038/s41598-023-31239-x
. [PMID: 36922543] - Boyun Shi, Wei Wang, Mengting Ye, Min Liang, Ziyu Yu, Yingying Zhang, Zhaoyu Liu, Xue Liang, Jian Ao, Fengfeng Xu, Guibin Xu, Xianhan Jiang, Xinke Zhou, Leyuan Liu. Spermidine suppresses the activation of hepatic stellate cells to cure liver fibrosis through autophagy activator MAP1S.
Liver international : official journal of the International Association for the Study of the Liver.
2023 Mar; ?(?):. doi:
10.1111/liv.15558
. [PMID: 36892418] - Yuna Park, Qingzhen Liu, Soohyun Maeng, Hyejin Oh, Chan-Seok Yun, Hanna Choe, Hyang Burm Lee, Wan-Taek Im. Sphingomonas cremea sp. nov., isolated from ginseng soil.
International journal of systematic and evolutionary microbiology.
2023 Mar; 73(3):. doi:
10.1099/ijsem.0.005796
. [PMID: 37000168] - Jakub Bělíček, Eva Ľuptáková, David Kopečný, Jan Frömmel, Armelle Vigouroux, Sanja Ćavar Zeljković, Franjo Jagic, Pierre Briozzo, David Jaroslav Kopečný, Petr Tarkowski, Jaroslav Nisler, Nuria De Diego, Solange Moréra, Martina Kopečná. Biochemical and structural basis of polyamine, lysine and ornithine acetylation catalyzed by spermine/spermidine N-acetyl transferase in moss and maize.
The Plant journal : for cell and molecular biology.
2023 Feb; ?(?):. doi:
10.1111/tpj.16148
. [PMID: 36786691] - Salika Ramazan, Ifra Nazir, Waseem Yousuf, Riffat John. Environmental stress tolerance in maize (Zea mays): role of polyamine metabolism.
Functional plant biology : FPB.
2023 02; 50(2):85-96. doi:
10.1071/fp21324
. [PMID: 35300784] - Riti Thapar Kapoor, Daniel Ingo Hefft, Ajaz Ahmad. Nitric oxide and spermidine alleviate arsenic-incited oxidative damage in Cicer arietinum by modulating glyoxalase and antioxidant defense system.
Functional plant biology : FPB.
2023 02; 50(2):108-120. doi:
10.1071/fp21196
. [PMID: 34794540] - Foziya Altaf, Shazia Parveen, Sumira Farooq, Aehsan Ul Haq, Mohammad Lateef Lone, Inayatullah Tahir, Prashant Kaushik, Hamed A El-Serehy. Polyamines effectively mitigate senescence in persistent leaves of Berginia ciliata - a novel model system.
Functional plant biology : FPB.
2023 02; 50(2):136-145. doi:
10.1071/fp21273
. [PMID: 35144727] - Jayita Saha, Dwaipayan Chaudhuri, Anirban Kundu, Saswati Bhattacharya, Sudipta Roy, Kalyan Giri. Phylogenetic, structural, functional characterisation and effect of exogenous spermidine on rice (Oryza sativa) HAK transporters under salt stress.
Functional plant biology : FPB.
2023 Feb; 50(2):160-182. doi:
10.1071/fp22059
. [PMID: 36031595] - Dongdong Cao, Yutao Huang, Gaofu Mei, Sheng Zhang, Huaping Wu, Tiyuan Zhao. Spermidine enhances chilling tolerance of kale seeds by modulating ROS and phytohormone metabolism.
PloS one.
2023; 18(8):e0289563. doi:
10.1371/journal.pone.0289563
. [PMID: 37535595] - Xu Chao, Tang Yuqing, Liu Xincheng, Yang Huidong, Wang Yuting, Hu Zhongdong, Hu Xinlong, Liu Buchun, Su Jing. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of citrus seedlings under high temperature.
Plant signaling & behavior.
2022 12; 17(1):2086372. doi:
10.1080/15592324.2022.2086372
. [PMID: 35703340] - Qiqi Lin, Jiahui Huang, Zhiqing Liu, Qunyi Chen, Xinbo Wang, Guohui Yu, Ping Cheng, Lian-Hui Zhang, Zeling Xu. tRNA modification enzyme MiaB connects environmental cues to activation of Pseudomonas aeruginosa type III secretion system.
PLoS pathogens.
2022 12; 18(12):e1011027. doi:
10.1371/journal.ppat.1011027
. [PMID: 36469533] - Hemanjali Mude, Aniket Balapure, Anindita Thakur, Ramakrishnan Ganesan, Jayati Ray Dutta. Enhanced antibacterial, antioxidant and anticancer activity of caffeic acid by simple acid-base complexation with spermine/spermidine.
Natural product research.
2022 Dec; 36(24):6453-6458. doi:
10.1080/14786419.2022.2038597
. [PMID: 35142575] - Zerun Yin, Jinpeng Yu, Xinran Han, Hui Wang, Quangang Yang, Hong Pan, Yanhong Lou, Yuping Zhuge. A novel phytoremediation technology for polluted cadmium soil: Salix integra treated with spermidine and activated carbon.
Chemosphere.
2022 Nov; 306(?):135582. doi:
10.1016/j.chemosphere.2022.135582
. [PMID: 35803376] - Xu Pan, Junlong Meng, Lijing Xu, Mingchang Chang, Cuiping Feng, Xueran Geng, Yanfen Cheng, Dongdong Guo, Rongzhu Liu, Zhichao Wang, Dongjie Li, Lirui Tan. In-depth investigation of the hypoglycemic mechanism of Morchella importuna polysaccharide via metabonomics combined with 16S rRNA sequencing.
International journal of biological macromolecules.
2022 Nov; 220(?):659-670. doi:
10.1016/j.ijbiomac.2022.08.117
. [PMID: 35995180] - Heba Talat Ebeed. Genome-wide analysis of polyamine biosynthesis genes in wheat reveals gene expression specificity and involvement of STRE and MYB-elements in regulating polyamines under drought.
BMC genomics.
2022 Oct; 23(1):734. doi:
10.1186/s12864-022-08946-2
. [PMID: 36309637] - Ken Keefover-Ring, Craig H Carlson, Brennan Hyden, Muhammad Azeem, Lawrence B Smart. Genetic mapping of sexually dimorphic volatile and non-volatile floral secondary chemistry of a dioecious willow.
Journal of experimental botany.
2022 10; 73(18):6352-6366. doi:
10.1093/jxb/erac260
. [PMID: 35710312] - Jinyu Gu, Chunmei Hu, Xiangwei Jia, Yanfang Ren, Dongming Su, Junyu He. Physiological and biochemical bases of spermidine-induced alleviation of cadmium and lead combined stress in rice.
Plant physiology and biochemistry : PPB.
2022 Oct; 189(?):104-114. doi:
10.1016/j.plaphy.2022.08.010
. [PMID: 36081232] - Sophia Pankoke, Christiane Pfarrer, Silke Glage, Christian Mühlfeld, Julia Schipke. Oral Supplementation with the Polyamine Spermidine Affects Hepatic but Not Pulmonary Lipid Metabolism in Lean but Not Obese Mice.
Nutrients.
2022 Oct; 14(20):. doi:
10.3390/nu14204318
. [PMID: 36297003] - Sachie Nakatani, Yasuhiro Horimoto, Natsumi Nakabayashi, Mayumi Karasawa, Masahiro Wada, Kenji Kobata. Spermine Suppresses Adipocyte Differentiation and Exerts Anti-Obesity Effects In Vitro and In Vivo.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231911818
. [PMID: 36233120] - Maria Piirsalu, Egon Taalberg, Mohan Jayaram, Kersti Lilleväli, Mihkel Zilmer, Eero Vasar. Impact of a High-Fat Diet on the Metabolomics Profile of 129S6 and C57BL6 Mouse Strains.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231911682
. [PMID: 36232982] - Zoltán Takács, Zalán Czékus, Irma Tari, Péter Poór. The role of ethylene signalling in the regulation of salt stress response in mature tomato fruits: Metabolism of antioxidants and polyamines.
Journal of plant physiology.
2022 Oct; 277(?):153793. doi:
10.1016/j.jplph.2022.153793
. [PMID: 35995003] - Marina Urra, Javier Buezo, Beatriz Royo, Alfonso Cornejo, Pedro López-Gómez, Daniel Cerdán, Raquel Esteban, Víctor Martínez-Merino, Yolanda Gogorcena, Paraskevi Tavladoraki, Jose Fernando Moran. The importance of the urea cycle and its relationships to polyamine metabolism during ammonium stress in Medicago truncatula.
Journal of experimental botany.
2022 09; 73(16):5581-5595. doi:
10.1093/jxb/erac235
. [PMID: 35608836] - Valentina Buffagni, Leilei Zhang, Biancamaria Senizza, Gabriele Rocchetti, Andrea Ferrarini, Begoña Miras-Moreno, Luigi Lucini. Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions.
Plant science : an international journal of experimental plant biology.
2022 Sep; 322(?):111346. doi:
10.1016/j.plantsci.2022.111346
. [PMID: 35697150] - Jianshuang Gao, Zhuangzhuang Qian, Yuhe Zhang, Shunyao Zhuang. Exogenous spermidine regulates the anaerobic enzyme system through hormone concentrations and related-gene expression in Phyllostachys praecox roots under flooding stress.
Plant physiology and biochemistry : PPB.
2022 Sep; 186(?):182-196. doi:
10.1016/j.plaphy.2022.07.002
. [PMID: 35868108] - Surabhi Bangarbale, Blythe D Shepard, Shivani Bansal, Meth M Jayatilake, Ryan Kurtz, Moshe Levi, Carolyn M Ecelbarger. Renal Metabolome in Obese Mice Treated with Empagliflozin Suggests a Reduction in Cellular Respiration.
Biomolecules.
2022 08; 12(9):. doi:
10.3390/biom12091176
. [PMID: 36139016] - Fatemeh Gholizadeh, Tibor Janda, Orsolya Kinga Gondor, Magda Pál, Gabriella Szalai, Amirali Sadeghi, Aras Turkoglu. Improvement of Drought Tolerance by Exogenous Spermidine in Germinating Wheat (Triticum aestivum L.) Plants Is Accompanied with Changes in Metabolite Composition.
International journal of molecular sciences.
2022 Aug; 23(16):. doi:
10.3390/ijms23169047
. [PMID: 36012316] - Guillaume Bernard, Julie Buges, Marianne Delporte, Roland Molinié, Sébastien Besseau, Alain Bouchereau, Amandine Watrin, Jean-Xavier Fontaine, David Mathiron, Solenne Berardocco, Solène Bassard, Anthony Quéro, Jean-Louis Hilbert, Caroline Rambaud, David Gagneul. Consecutive action of two BAHD acyltransferases promotes tetracoumaroyl spermine accumulation in chicory.
Plant physiology.
2022 Aug; 189(4):2029-2043. doi:
10.1093/plphys/kiac234
. [PMID: 35604091] - Magda Pál, Kamirán Áron Hamow, Altafur Rahman, Imre Majláth, Judit Tajti, Orsolya Kinga Gondor, Mohamed Ahres, Fatemeh Gholizadeh, Gabriella Szalai, Tibor Janda. Light Spectral Composition Modifies Polyamine Metabolism in Young Wheat Plants.
International journal of molecular sciences.
2022 Jul; 23(15):. doi:
10.3390/ijms23158394
. [PMID: 35955528] - Na Zhang, Shenzhi Zhou, Zhengyu Zhang, Wei Li, Ying Peng, Jiang Zheng. Evidence for adduction of biologic amines with reactive metabolite of 8-epidiosbulbin E acetate in vitro and in vivo.
Toxicology letters.
2022 Jul; 365(?):1-10. doi:
10.1016/j.toxlet.2022.05.008
. [PMID: 35680040] - Vahid Tavallali, Nasrin Alhavi, Hossein Gholami, Faezeh Mirazimi Abarghuei. Developmental and phytochemical changes in pot marigold (Calendula officinalis L.) using exogenous application of polyamines.
Plant physiology and biochemistry : PPB.
2022 Jul; 183(?):128-137. doi:
10.1016/j.plaphy.2022.05.011
. [PMID: 35588560] - Qiqi Lin, Huishan Wang, Jiahui Huang, Zhiqing Liu, Qunyi Chen, Guohui Yu, Zeling Xu, Ping Cheng, Zhibin Liang, Lian-Hui Zhang. Spermidine Is an Intercellular Signal Modulating T3SS Expression in Pseudomonas aeruginosa.
Microbiology spectrum.
2022 06; 10(3):e0064422. doi:
10.1128/spectrum.00644-22
. [PMID: 35435755] - Hanshu Gao, Qianlong Zhang, Jiahui Xu, Wei Yuan, Ruixue Li, Hui Guo, Cuiying Gu, Wenjing Feng, Yanan Ma, Zhaoqing Sun, Liqiang Zheng. Elevation of Serum Spermidine in Obese Patients: Results from a Cross-Sectional and Follow-Up Study.
Nutrients.
2022 Jun; 14(13):. doi:
10.3390/nu14132613
. [PMID: 35807793] - Yinhua Ni, Yating Hu, Xiaoyi Lou, Nianke Rong, Fang Liu, Congrong Yang, Aqian Zheng, Song Yang, Jianfeng Bao, Zhengwei Fu. Spermidine Ameliorates Nonalcoholic Steatohepatitis through Thyroid Hormone-Responsive Protein Signaling and the Gut Microbiota-Mediated Metabolism of Bile Acids.
Journal of agricultural and food chemistry.
2022 Jun; 70(21):6478-6492. doi:
10.1021/acs.jafc.2c02729
. [PMID: 35583480] - Zohara Sternberg, Rebecca Podolsky, Adam Nir, Jihnhee Yu, Raphael Nir, Stanley W Halvorsen, Joseph F Quinn, Jeffrey Kaye, Channa Kolb. Elevated spermidine serum levels in mild cognitive impairment, a potential biomarker of progression to Alzheimer dementia, a pilot study.
Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia.
2022 Jun; 100(?):169-174. doi:
10.1016/j.jocn.2022.04.028
. [PMID: 35487023] - Francesca Truzzi, Anne Whittaker, Eros D'Amen, Camilla Tibaldi, Antonella Abate, Maria Chiara Valerii, Enzo Spisni, Giovanni Dinelli. Wheat Germ Spermidine and Clove Eugenol in Combination Stimulate Autophagy In Vitro Showing Potential in Supporting the Immune System against Viral Infections.
Molecules (Basel, Switzerland).
2022 May; 27(11):. doi:
10.3390/molecules27113425
. [PMID: 35684363] - Thorsten R Doeppner, Cristin Coman, Daiana Burdusel, Diana-Larisa Ancuta, Ulf Brockmeier, Daniel Nicolae Pirici, Kuang Yaoyun, Dirk M Hermann, Aurel Popa-Wagner. Long-term treatment with chloroquine increases lifespan in middle-aged male mice possibly via autophagy modulation, proteasome inhibition and glycogen metabolism.
Aging.
2022 05; 14(10):4195-4210. doi:
10.18632/aging.204069
. [PMID: 35609021] - Dimitrios Tsikas, Björn Redfors. Pilot Study on Acute Effects of Pharmacological Intraperitoneal L-Homoarginine on Homeostasis of Lysine and Other Amino Acids in a Rat Model of Isoprenaline-Induced Takotsubo Cardiomyopathy.
International journal of molecular sciences.
2022 Apr; 23(9):. doi:
10.3390/ijms23094734
. [PMID: 35563125] - Jianshuang Gao, Shunyao Zhuang, Yuhe Zhang, Zhuangzhuang Qian. Exogenously applied spermidine alleviates hypoxia stress in Phyllostachys praecox seedlings via changes in endogenous hormones and gene expression.
BMC plant biology.
2022 Apr; 22(1):200. doi:
10.1186/s12870-022-03568-y
. [PMID: 35439921] - Zhecong Yu, Yundi Jiao, Jin Zhang, Qianyi Xu, Jiahui Xu, Ruixue Li, Wei Yuan, Hui Guo, Zhaoqing Sun, Liqiang Zheng. Effect of Serum Spermidine on the Prognosis in Patients with Acute Myocardial Infarction: A Cohort Study.
Nutrients.
2022 Mar; 14(7):. doi:
10.3390/nu14071394
. [PMID: 35406007] - Jin-Yuan Wang, Duo Ma, Min Luo, Yong-Peng Tan, Ou Zhong, Ge Tian, Yong-Ting Lv, Mei-Xiang Li, Xi Chen, Zhi-Han Tang, Lin-Lin Hu, Xiao-Can Lei. Effect of spermidine on ameliorating spermatogenic disorders in diabetic mice via regulating glycolysis pathway.
Reproductive biology and endocrinology : RB&E.
2022 Mar; 20(1):45. doi:
10.1186/s12958-022-00890-w
. [PMID: 35255928] - Ghassen Abid, Rim Nefissi Ouertani, Emna Ghouili, Yordan Muhovski, Salwa Harzalli Jebara, Souhir Abdelkarim, Oumaima Chaieb, Yosr Ben Redjem, Mohamed El Ayed, Fathi Barhoumi, Fatma Souissi, Moez Jebara. Exogenous application of spermidine mitigates the adverse effects of drought stress in faba bean (Vicia faba L.).
Functional plant biology : FPB.
2022 03; 49(4):405-420. doi:
10.1071/fp21125
. [PMID: 35209990] - Mariya B Borgoyakova, Larisa I Karpenko, Andrey P Rudometov, Ekaterina A Volosnikova, Iuliia A Merkuleva, Ekaterina V Starostina, Alexey M Zadorozhny, Anastasiya A Isaeva, Valentina S Nesmeyanova, Daniil V Shanshin, Konstantin O Baranov, Natalya V Volkova, Boris N Zaitsev, Lyubov A Orlova, Anna V Zaykovskaya, Oleg V Pyankov, Elena D Danilenko, Sergei I Bazhan, Dmitry N Shcherbakov, Alexander V Taranin, Alexander A Ilyichev. Self-Assembled Particles Combining SARS-CoV-2 RBD Protein and RBD DNA Vaccine Induce Synergistic Enhancement of the Humoral Response in Mice.
International journal of molecular sciences.
2022 Feb; 23(4):. doi:
10.3390/ijms23042188
. [PMID: 35216301] - Jianyu Yang, Pengju Wang, Suzhi Li, Tao Liu, Xiaohui Hu. Polyamine Oxidase Triggers H2O2-Mediated Spermidine Improved Oxidative Stress Tolerance of Tomato Seedlings Subjected to Saline-Alkaline Stress.
International journal of molecular sciences.
2022 Jan; 23(3):. doi:
10.3390/ijms23031625
. [PMID: 35163549] - Qiyu Luo, Shu Chen, Jiazheng Zhu, Laihua Ye, Nathan Daniel Hall, Suma Basak, Joseph Scott McElroy, Yong Chen. Overexpression of EiKCS confers paraquat-resistance in rice (Oryza sativa L.) by promoting the polyamine pathway.
Pest management science.
2022 Jan; 78(1):246-262. doi:
10.1002/ps.6628
. [PMID: 34476895] - Sebastian J Hofer, Guido Kroemer, Oliver Kepp. Autophagy-inducing nutritional interventions in experimental and clinical oncology.
International review of cell and molecular biology.
2022; 373(?):125-158. doi:
10.1016/bs.ircmb.2022.08.003
. [PMID: 36283765] - Chang Na, Zhou Ziwen, Li Yeyun, Zhang Xianchen. Exogenously applied Spd and Spm enhance drought tolerance in tea plants by increasing fatty acid desaturation and plasma membrane H+-ATPase activity.
Plant physiology and biochemistry : PPB.
2022 Jan; 170(?):225-233. doi:
10.1016/j.plaphy.2021.12.008
. [PMID: 34915283] - Cristina P S Martins, Denise Fernandes, Valéria M Guimarães, Dongliang Du, Delmira C Silva, Alex-Alan F Almeida, Frederick G Gmitter, Wagner C Otoni, Marcio G C Costa. Comprehensive analysis of the GALACTINOL SYNTHASE (GolS) gene family in citrus and the function of CsGolS6 in stress tolerance.
PloS one.
2022; 17(9):e0274791. doi:
10.1371/journal.pone.0274791
. [PMID: 36112700] - Hongyang Du, Qiyao Dong, Huaipan Liu, Wei Wang, Ronald Kurtenbach. Polyamines conjugated to plasma membrane functioned in enhancing the tolerance of cucumber seedlings to osmotic stress via elevating H+-ATPase activity.
Plant physiology and biochemistry : PPB.
2022 Jan; 170(?):64-74. doi:
10.1016/j.plaphy.2021.11.040
. [PMID: 34856458] - Shih-Yao Lin, Asif Hameed, Chia-Fang Tsai, Chiu-Chung Young. Vineibacter terrae gen. nov., sp. nov., an ammonium-assimilating and nitrate-reducing bacterium isolated from vineyard soil.
International journal of systematic and evolutionary microbiology.
2021 Dec; 71(12):. doi:
10.1099/ijsem.0.005111
. [PMID: 34878378] - Jingtong Zhao, Meng Liu, Tongfei Shi, Mohan Gao, Yuqian Lv, Yawei Zhao, Jing Li, Ming Zhang, Hansi Zhang, Fengying Guan, Kan He, Li Chen. Analysis of Serum Metabolomics in Rats with Osteoarthritis by Mass Spectrometry.
Molecules (Basel, Switzerland).
2021 Nov; 26(23):. doi:
10.3390/molecules26237181
. [PMID: 34885759] - Orsolya Kinga Gondor, Judit Tajti, Kamirán Áron Hamow, Imre Majláth, Gabriella Szalai, Tibor Janda, Magda Pál. Polyamine Metabolism under Different Light Regimes in Wheat.
International journal of molecular sciences.
2021 Oct; 22(21):. doi:
10.3390/ijms222111717
. [PMID: 34769148] - Rakesh K Upadhyay, Jonathan Shao, Autar K Mattoo. Genomic analysis of the polyamine biosynthesis pathway in duckweed Spirodela polyrhiza L.: presence of the arginine decarboxylase pathway, absence of the ornithine decarboxylase pathway, and response to abiotic stresses.
Planta.
2021 Oct; 254(5):108. doi:
10.1007/s00425-021-03755-5
. [PMID: 34694486] - Yuemei Zhang, Yu Wang, Wenxu Wen, Zhengrong Shi, Qinsheng Gu, Golam Jalal Ahammed, Kai Cao, Mohammad Shah Jahan, Sheng Shu, Jian Wang, Jin Sun, Shirong Guo. Hydrogen peroxide mediates spermidine-induced autophagy to alleviate salt stress in cucumber.
Autophagy.
2021 10; 17(10):2876-2890. doi:
10.1080/15548627.2020.1847797
. [PMID: 33172324] - Geeta Chhetri, Minchung Kang, Jiyoun Kim, Inhyup Kim, Yoonseop So, Taegun Seo. Sphingosinicella flava sp. nov., indole acetic acid producing bacteria isolated from maize field soil.
International journal of systematic and evolutionary microbiology.
2021 Oct; 71(10):. doi:
10.1099/ijsem.0.005038
. [PMID: 34605389] - Xinxin Tang, Lan Wu, Fanlong Wang, Wengang Tian, Xiaoming Hu, Shuangxia Jin, Huaguo Zhu. Ectopic Expression of GhSAMDC3 Enhanced Salt Tolerance Due to Accumulated Spd Content and Activation of Salt Tolerance-Related Genes in Arabidopsis thaliana.
DNA and cell biology.
2021 Sep; 40(9):1144-1157. doi:
10.1089/dna.2020.6064
. [PMID: 34165351] - Yanee Choksomngam, Sintip Pattanakuhar, Nipon Chattipakorn, Siriporn C Chattipakorn. The metabolic role of spermidine in obesity: Evidence from cells to community.
Obesity research & clinical practice.
2021 Jul; 15(4):315-326. doi:
10.1016/j.orcp.2021.06.009
. [PMID: 34217652] - Nils C Gassen, Jan Papies, Thomas Bajaj, Jackson Emanuel, Frederik Dethloff, Robert Lorenz Chua, Jakob Trimpert, Nicolas Heinemann, Christine Niemeyer, Friderike Weege, Katja Hönzke, Tom Aschman, Daniel E Heinz, Katja Weckmann, Tim Ebert, Andreas Zellner, Martina Lennarz, Emanuel Wyler, Simon Schroeder, Anja Richter, Daniela Niemeyer, Karen Hoffmann, Thomas F Meyer, Frank L Heppner, Victor M Corman, Markus Landthaler, Andreas C Hocke, Markus Morkel, Nikolaus Osterrieder, Christian Conrad, Roland Eils, Helena Radbruch, Patrick Giavalisco, Christian Drosten, Marcel A Müller. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals.
Nature communications.
2021 06; 12(1):3818. doi:
10.1038/s41467-021-24007-w
. [PMID: 34155207] - Siyu Qin, Zhengqin Wu, Jiayao Tang, Guoqing Zhu, Gang Chen, Lianghua Chen, Hao Lei, Xuegui Wang, Tianhui Zhu, Tiantian Lin. Effects of exogenous spermidine on poplar resistance to leaf and root herbivory as affected by soil cadmium stress.
Journal of environmental management.
2021 Jun; 288(?):112467. doi:
10.1016/j.jenvman.2021.112467
. [PMID: 33823455] - Kemal Tuna Olğaç, Ergun Akçay. Effects of Spermine and Spermidine supplemented extenders on post-thaw Spermatological Parameters in Stallion Semen Cryopreservation.
Cryobiology.
2021 06; 100(?):72-76. doi:
10.1016/j.cryobiol.2021.03.008
. [PMID: 33794189] - Xiaoyu Liu, An Chen, Qingchun Liang, Xiulin Yang, Qianqian Dong, Mingwei Fu, Siyi Wang, Yining Li, Yuanzhi Ye, Zirong Lan, Yanting Chen, Jing-Song Ou, Pingzhen Yang, Lihe Lu, Jianyun Yan. Spermidine inhibits vascular calcification in chronic kidney disease through modulation of SIRT1 signaling pathway.
Aging cell.
2021 06; 20(6):e13377. doi:
10.1111/acel.13377
. [PMID: 33969611] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - M V Ploskonos. Polyamines of biological fluids of the body and the diagnostic value of their determination in clinical and laboratory researches (review of literature).
Klinicheskaia laboratornaia diagnostika.
2021 Apr; 66(4):197-204. doi:
10.51620/0869-2084-2021-66-4-197-204
. [PMID: 33878239] - Alexander Wirth, Bettina Wolf, Cheng-Kai Huang, Silke Glage, Sebastian J Hofer, Marion Bankstahl, Christian Bär, Thomas Thum, Kai G Kahl, Stephan J Sigrist, Frank Madeo, Jens P Bankstahl, Evgeni Ponimaskin. Novel aspects of age-protection by spermidine supplementation are associated with preserved telomere length.
GeroScience.
2021 04; 43(2):673-690. doi:
10.1007/s11357-020-00310-0
. [PMID: 33517527]