NCBI Taxonomy: 63045

Thysselinum palustre (ncbi_taxid: 63045)

found 68 associated metabolites at species taxonomy rank level.

Ancestor: Thysselinum

Child Taxonomies: none taxonomy data.

Isoimperatorin

7,4-[(3-methyl-2-butenyl)oxy]-7H-furo[3,2-g]-1-benzopyran-7-one

C16H14O4 (270.0892044)


Isoimperatorin is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Isoimperatorin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Isoimperatorin can be found in a number of food items such as parsley, lime, wild celery, and parsnip, which makes isoimperatorin a potential biomarker for the consumption of these food products. Isoimperatorin is a non-carcinogenic (not listed by IARC) potentially toxic compound. If the compound has been ingested, rapid gastric lavage should be performed using 5\\\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

Tryptamine

2-(1H-indol-3-yl)ethan-1-amine

C10H12N2 (160.1000432)


Tryptamine, also known as TrpN, is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine. Both Clostridium sp. and Ruminococcus sp. have been found to convert tryptophan into tryptamine (PMID: 30120222). Tryptamine is a monoamine compound that is a common precursor molecule to many hormones and neurotransmitters. Biosynthesis generally proceeds from the amino acid tryptophan, with tryptamine acting as a precursor for other compounds. Substitutions to the tryptamine molecule give rise to a group of compounds collectively known as tryptamines. The most well-known tryptamines are serotonin, an important neurotransmitter, and melatonin, a hormone involved in regulating the sleep-wake cycle. Tryptamine has been detected, but not quantified in, several different foods, such as onion-family vegetables, acerola, Japanese walnuts, custard apples, and green zucchinis. This could make tryptamine a potential biomarker for the consumption of these foods. Tryptamine is an aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an aminoalkylindole, an indole alkaloid, an aralkylamino compound and a member of tryptamines. It is a conjugate base of a tryptaminium. Tryptamine is a natural product found in Mus musculus, Prosopis glandulosa, and other organisms with data available. Occurs widely in plants, especies Lens esculenta (lentil) and the fungi Coprinus micaceus (glistening ink cap) An aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. KEIO_ID T031

   

Imperatorin

InChI=1/C16H14O4/c1-10(2)5-7-19-16-14-12(6-8-18-14)9-11-3-4-13(17)20-15(11)16/h3-6,8-9H,7H2,1-2H

C16H14O4 (270.0892044)


Imperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor and a metabolite. Imperatorin is a natural product found in Allium wallichii, Ammi visnaga, and other organisms with data available. Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative.Imperatorin has been shown to exhibit anti-hypertrophic and anti-convulsant functions (A7784, A7785).Imperatorin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica Dahurica Root (part of); Aegle marmelos fruit (part of); Ammi majus seed (part of) ... View More ... Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip) INTERNAL_ID 2244; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2244 Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.

   

Bergapten

4-methoxyfuro[3,2-g]chromen-7-one

C12H8O4 (216.0422568)


Bergapten, also known as O-methylbergaptol or heraclin, belongs to the class of organic compounds known as 5-methoxypsoralens. These are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Bergapten is found, on average, in the highest concentration within a few different foods, such as anises, figs, and parsnips and in a lower concentration in carrots, fennels, and celery stalks. Bergapten has also been detected, but not quantified, in several different foods, such as coconuts, pepper (c. frutescens), corianders, sesbania flowers, and cardamoms. This could make bergapten a potential biomarker for the consumption of these foods. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. Bergapten is a potentially toxic compound. Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, especially the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Bergapten was under investigation in clinical trial NCT00533195 "Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis". Grayish-white microcrystalline powder or yellow fluffy solid. (NTP, 1992) 5-methoxypsoralen is a 5-methoxyfurocoumarin that is psoralen substituted by a methoxy group at position 5. It has a role as a hepatoprotective agent and a plant metabolite. It is a member of psoralens, a 5-methoxyfurocoumarin and an organic heterotricyclic compound. It is functionally related to a psoralen. Bergapten is under investigation in clinical trial NCT00533195 (Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis). Bergapten is a natural product found in Ficus auriculata, Ficus virens, and other organisms with data available. A linear furanocoumarin that has phototoxic and anti-inflammatory properties, with effects similar to METHOXSALEN. It is used in PUVA THERAPY for the treatment of PSORIASIS. See also: Parsley (part of); Anise (part of); Angelica archangelica root (part of) ... View More ... Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, esp. the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8020; ORIGINAL_PRECURSOR_SCAN_NO 8017 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8000 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7968; ORIGINAL_PRECURSOR_SCAN_NO 7967 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8005; ORIGINAL_PRECURSOR_SCAN_NO 8002 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8376; ORIGINAL_PRECURSOR_SCAN_NO 8372 [Raw Data] CBA84_Bergapten_pos_20eV.txt [Raw Data] CBA84_Bergapten_pos_10eV.txt [Raw Data] CBA84_Bergapten_pos_30eV.txt [Raw Data] CBA84_Bergapten_pos_40eV.txt [Raw Data] CBA84_Bergapten_pos_50eV.txt Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.

   

Putrescine

1,4-Diaminobutane, puriss., >=99.0\\% (GC)

C4H12N2 (88.1000432)


Putrescine is a four-carbon alkane-alpha,omega-diamine. It is obtained by the breakdown of amino acids and is responsible for the foul odour of putrefying flesh. It has a role as a fundamental metabolite and an antioxidant. It is a conjugate base of a 1,4-butanediammonium. Putrescine is a toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. Putrescine is a solid. This compound belongs to the polyamines. These are compounds containing more than one amine group. Known drug targets of putrescine include putrescine-binding periplasmic protein, ornithine decarboxylase, and S-adenosylmethionine decarboxylase proenzyme. Putrescine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). 1,4-Diaminobutane is a natural product found in Eupatorium cannabinum, Populus tremula, and other organisms with data available. Putrescine is a four carbon diamine produced during tissue decomposition by the decarboxylation of amino acids. Polyamines, including putrescine, may act as growth factors that promote cell division; however, putrescine is toxic at high doses. Putrescine is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. Putrescine apparently has specific role in skin physiology and neuroprotection. Pharmacological interventions have demonstrated convincingly that a steady supply of polyamines is a prerequisite for cell proliferation to occur. Genetic engineering of polyamine metabolism in transgenic rodents has shown that polyamines play a role in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase is not compatible with murine embryogenesis. (A3286, A3287). Putrescine is a metabolite found in or produced by Saccharomyces cerevisiae. A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. Putrescine apparently has specific role in skin physiology and neuroprotection. (PMID:15009201, 16364196). Pharmacological interventions have demonstrated convincingly that a steady supply of polyamines is a prerequisite for cell proliferation to occur. Genetic engineering of polyamine metabolism in transgenic rodents has shown that polyamines play a role in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase is not compatible with murine embryogenesis. Putrescine can be found in Citrobacter, Corynebacterium, Cronobacter and Enterobacter (PMID:27872963) (https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12099). Putrescine is an organic chemical compound related to cadaverine; both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. The two compounds are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. They are also found in semen and some microalgae, together with related molecules like spermine and spermidine. A four-carbon alkane-alpha,omega-diamine. It is obtained by the breakdown of amino acids and is responsible for the foul odour of putrefying flesh. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID B001

   

2-Hydroxyphenethylamine

2-amino-1-phenylethan-1-ol

C8H11NO (137.0840596)


2-Hydroxyphenethylamine, also known as beta-phenethanolamine or 2-amino-1-phenylethanol, belongs to the class of organic compounds known as aralkylamines. These are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group. It is the simplest member of the class of phenylethanolamines that is 2-aminoethanol bearing a phenyl substituent at the 1-position. 2-Hydroxyphenethylamine exists in all living organisms, ranging from bacteria to humans. 2-Hydroxyphenethylamine ia an amine found in the brain. It may be modulator of sympathetic functions. Its derivatives are adrenergic agonists and antagonists. Simple amine found in the brain. It may be modulator of sympathetic functions. Its derivatives are adrenergic agonists and antagonists. It is also used in chemical industry. [HMDB] 2-Amino-1-phenylethanol is an analogue of noradrenaline.

   

Spermine

(3-aminopropyl)({4-[(3-aminopropyl)amino]butyl})amine

C10H26N4 (202.2157356)


Spermine, also known as gerontine or musculamine, belongs to the class of organic compounds known as dialkylamines. These are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. The resultin N-carbamoylputrescine is acted on by a hydrolase to split off urea group, leaving putrescine. The precursor for synthesis of spermine is the amino acid ornithine. The intermediate is spermidine. Spermine is a drug. Spermine exists in all living species, ranging from bacteria to humans. 5-methylthioadenosine and spermine can be biosynthesized from S-adenosylmethioninamine and spermidine through its interaction with the enzyme spermine synthase. Another pathway in plants starts with decarboxylation of L-arginine to produce agmatine. In humans, spermine is involved in spermidine and spermine biosynthesis. Outside of the human body, spermine is found, on average, in the highest concentration in oats. Spermine has also been detected, but not quantified in several different foods, such as sapodilla, mexican groundcherries, cloves, sourdocks, and sunflowers. This could make spermine a potential biomarker for the consumption of these foods. This decarboxylation gives putrescine. The name spermin was first used by the German chemists Ladenburg and Abel in 1888, and the correct structure of spermine was not finally established until 1926, simultaneously in England (by Dudley, Rosenheim, and Starling) and Germany (by Wrede et al.). In one pathway L-glutamine is the precursor to L-ornithine, after which the synthesis of spermine from L-ornithine follows the same pathway as in animals. Spermine is a potentially toxic compound. [Spectral] Spermine (exact mass = 202.21575) and Spermidine (exact mass = 145.1579) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Occurs as phosphate in ox pancreas, yeast and meat products IPB_RECORD: 270; CONFIDENCE confident structure KEIO_ID S011; [MS2] KO009230 KEIO_ID S011 Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects. Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects.

   

Spermidine

N-(gamma-Aminopropyl)tetramethylenediamine

C7H19N3 (145.1578894)


Spermidine, also known as SPD, belongs to the class of organic compounds known as dialkylamines. These are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Spermidine exists in all living species, ranging from bacteria to humans. Within humans, spermidine participates in a number of enzymatic reactions. In particular, 5-methylthioadenosine and spermidine can be biosynthesized from S-adenosylmethioninamine and putrescine by the enzyme spermidine synthase. In addition, S-adenosylmethioninamine and spermidine can be converted into 5-methylthioadenosine and spermine through the action of the enzyme spermine synthase. In humans, spermidine is involved in spermidine and spermine biosynthesis. Outside of the human body, spermidine is found, on average, in the highest concentration within cow milk and oats. Spermidine has also been detected, but not quantified in several different foods, such as common chokecherries, watercress, agars, strawberry guava, and bog bilberries. This could make spermidine a potential biomarker for the consumption of these foods. Spermidine is consideres as an uremic toxine. Increased levels of uremic toxins can stimulate the production of reactive oxygen species. Chronic exposure to uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. As a uremic toxin, this compound can cause uremic syndrome. Uremic toxins such as spermidine are actively transported into the kidneys via organic ion transporters (especially OAT3). Constituent of meat products. Isol from the edible shaggy ink cap mushroom (Coprinus comatus) and from commercial/household prepared sauerkraut COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials IPB_RECORD: 269; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 220 KEIO_ID S003 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1]. Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1].

   

Benzylamine

Poly(styrene-divinylbenzene), aminomethylated

C7H9N (107.0734954)


Benzylamine, also known as a-aminotoluene or moringine, belongs to the class of organic compounds known as phenylmethylamines. Phenylmethylamines are compounds containing a phenylmethtylamine moiety, which consists of a phenyl group substituted by an methanamine. Benzylamine is found, on average, in the highest concentration within a few different foods, such as corns, white cabbages, and cabbages and in a lower concentration in wild carrots, carrots, and apples. Benzylamine has also been detected, but not quantified, in several different foods, such as common chokecherries, black cabbages, macadamia nut (m. tetraphylla), ginsengs, and lettuces. This could make benzylamine a potential biomarker for the consumption of these foods. Alkaloid from Moringa oleifera (horseradish tree) CONFIDENCE standard compound; INTERNAL_ID 8084

   

Ethanolamine

Envision conditioner PDD 9020

C2H7NO (61.0527612)


Ethanolamine (MEA), also known as monoethanolamine, aminoethanol or glycinol, belongs to the class of organic compounds known as 1,2-aminoalcohols (or simply aminoalcohols). These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Ethanolamine is a colorless, viscous liquid with an odor reminiscent of ammonia. In pharmaceutical formulations, ethanolamine is used primarily for buffering or preparation of emulsions. Ethanolamine can also be used as pH regulator in cosmetics. Biologically, ethanolamine is an initial precursor for the biosynthesis of two primary phospholipid classes, phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In this regard, ethanolamine is the second-most-abundant head group for phospholipids. Ethanolamine serves as a precursor for a variety of N-acylethanolamines (NAEs). These are molecules that modulate several animal and plant physiological processes such as seed germination, plant–pathogen interactions, chloroplast development and flowering (PMID: 30190434). Ethanolamine, when combined with arachidonic acid (C20H32O2; 20:4, ω-6), can also form the endocannabinoid anandamide. Ethanolamine can be converted to phosphoethanolamine via the enzyme known as ethanolamine kinase. the two substrates of this enzyme are ATP and ethanolamine, whereas its two products are ADP and O-phosphoethanolamine. In most plants ethanolamine is biosynthesized by decarboxylation of serine via a pyridoxal 5-phosphate-dependent l-serine decarboxylase (SDC). Ethanolamine exists in all living species, ranging from bacteria to plants to humans. Ethanolamine has been detected, but not quantified in, several different foods, such as narrowleaf cattails, mung beans, blackcurrants, white cabbages, and bilberries. Ethanolamine, also known as aminoethanol or beta-aminoethyl alcohol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Ethanolamine is soluble (in water) and an extremely weak acidic compound (based on its pKa). Ethanolamine can be found in a number of food items such as daikon radish, caraway, muscadine grape, and lemon grass, which makes ethanolamine a potential biomarker for the consumption of these food products. Ethanolamine can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), feces, and saliva, as well as throughout most human tissues. Ethanolamine exists in all living species, ranging from bacteria to humans. In humans, ethanolamine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)), phosphatidylcholine biosynthesis PC(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)), phosphatidylcholine biosynthesis PC(20:4(5Z,8Z,11Z,14Z)/20:0), and phosphatidylethanolamine biosynthesis PE(11D5/9M5). Moreover, ethanolamine is found to be associated with maple syrup urine disease and propionic acidemia. Ethanolamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ethanolamine, also called 2-aminoethanol or monoethanolamine (often abbreviated as ETA or MEA), is an organic chemical compound with the formula HOCH2CH2NH2. The molecule is both a primary amine and a primary alcohol (due to a hydroxyl group). Ethanolamine is a colorless, viscous liquid with an odor reminiscent to that of ammonia. Its derivatives are widespread in nature; e.g., lipids . C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist KEIO_ID E023

   

Dimethylamine

N-Methylmethanamine (acd/name 4.0)

C2H7N (45.0578462)


Dimethylamine (DMA) is an organic secondary amine. It is a colorless, liquefied and flammable gas with an ammonia and fish-like odor. Dimethylamine is abundantly present in human urine. Main sources of urinary DMA have been reported to include trimethylamine N-oxide, a common food component, and asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis. ADMA is excreted in the urine in part unmetabolized and in part after hydrolysis to DMA by dimethylarginine dimethylaminohydrolase (DDAH). Statistically significant increases in urinary DMA have been found in individuals after the consumption of fish and seafoods. The highest values were obtained for individuals that consumed coley, squid and whiting with cod, haddock, sardine, skate and swordfish (PMID: 18282650). It has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). As a pure chemical substance Dimethylamine is used as dehairing agent in tanning, in dyes, in rubber accelerators, in soaps and cleaning compounds and as an agricultural fungicide. In the body, DMA also undergoes nitrosation under weak acid conditions to give dimethlynitrosamine. Study has shown that DMA is a metabolite of Arthrobacter and Micrococcus (PMID: 11422368 ; PMID: 7191). Aminating agent in the manuf. of ion-exchange resins for food processing KEIO_ID D103

   

Ethylamine

Ethylamine Hydrochloride

C2H7N (45.0578462)


Ethylamine, also known as 1-aminoethane or ethanamine, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group. Ethylamine exists in all living organisms, ranging from bacteria to humans. Ethylamine is an ammonia and fishy tasting compound. Ethylamine can be found found in a few different foods, such as barley, apples, and corns and in a lower concentration in white cabbages, wild carrots, and cabbages. Ethylamine has also been detected, but not quantified, in several different foods, such as black elderberries, common grapes, french plantains, soy beans, and spinachs. Ethylamine is a uremic toxin. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Ethylamine is component of normal human urine it has been suggested that this short aliphatic chain may play a significant role in the central nervous system disturbances observe during hepatic and renal disease especially when the blood brain barrier is compromised. Found in foods and drinks KEIO_ID E025

   

Cnidin

4-[(3-Methyl-2-buten-1-yl)oxy]-7H-Furo[3,2-g][1]benzopyran-7-one; 7H-Furo[3,2-g][1]benzopyran-7-one, 4-[(3-methyl-2-butenyl)oxy]- (8CI,9CI); Isoimperatorin (6CI); 4-[(3-Methyl-2-buten-1-yl)oxy]-7H-furo[3,2-g][1]benzopyran-7-one

C16H14O4 (270.0892044)


Isoimperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as a metabolite and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. Isoimperatorin is a natural product found in Ferulago sylvatica, Prangos trifida, and other organisms with data available. Isoimperatorin is a tumor necrosis factor antagonist isolated from Glehniae root or from Poncirus trifoliate Raf (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. See also: Angelica archangelica root (part of). A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

1-Propylamine

1-Propanamine, 3-(C12-18-alkyloxy) derivs.

C3H9N (59.0734954)


1-Propylamine, also known as 1-aminopropane or 3-aminopropyl, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group. 1-Propylamine is an ammoniacal tasting compound. It is a colorless volatile liquid. 1-Propylamine is found, on average, in the highest concentration within a few different foods, such as yellow bell peppers, red bell peppers, and pepper (c. annuum) and in a lower concentration in orange bell peppers and green bell peppers. 1-Propylamine has also been detected, but not quantified, in common grapes and wild celeries. Propylamine is a weak base. Propyl amine hydrochloride can be prepared by reacting 1-propanol with ammonium chloride at high temperature and pressure using a Lewis acid catalyst such as ferric chloride. Isolated from vegetable sources. 1-Propylamine is found in many foods, some of which are green bell pepper, orange bell pepper, pepper (c. annuum), and wild celery.

   

dimethylamine

dimethylamine

C2H7N (45.0578462)


A secondary aliphatic amine where both N-substituents are methyl.

   

Bergapten

Bergapten

C12H8O4 (216.0422568)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.998 D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.995 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2841; CONFIDENCE confident structure Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.

   

Tryptamine

5-22-10-00045 (Beilstein Handbook Reference)

C10H12N2 (160.1000432)


   

Ethanolamine

MONOETHANOLAMINE

C2H7NO (61.0527612)


A member of the class of ethanolamines that is ethane with an amino substituent at C-1 and a hydroxy substituent at C-2, making it both a primary amine and a primary alcohol. C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

phenylethanolamine

2-Amino-1-phenylethanol

C8H11NO (137.0840596)


The simplest member of the class of phenylethanolamines that is 2-aminoethanol bearing a phenyl substituent at the 1-position. The parent of the phenylethanolamine class. 2-Amino-1-phenylethanol is an analogue of noradrenaline.

   

Spermine

4,6-Decadiene

C10H26N4 (202.2157356)


A polyazaalkane that is tetradecane in which the carbons at positions 1, 5, 10 and 14 are replaced by nitrogens. Spermine has broad actions on cellular metabolism. Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects. Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects.

   

Spermidine

Sperminidine

C7H19N3 (145.1578894)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials A triamine that is the 1,5,10-triaza derivative of decane. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Spermidine, also known as N-(3-aminopropyl)-1,4-butane-diamine or 1,5,10-triazadecane, is a member of the class of compounds known as dialkylamines. Dialkylamines are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. Spermidine is soluble (in water) and a very strong basic compound (based on its pKa). Spermidine can be found in radish, which makes spermidine a potential biomarker for the consumption of this food product. Spermidine can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as throughout most human tissues. Spermidine exists in all living organisms, ranging from bacteria to humans. In humans, spermidine is involved in a couple of metabolic pathways, which include methionine metabolism and spermidine and spermine biosynthesis. Spermidine is also involved in several metabolic disorders, some of which include homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, methionine adenosyltransferase deficiency, s-adenosylhomocysteine (SAH) hydrolase deficiency, and hypermethioninemia. Spermidine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Spermidine is a polyamine compound (C 7H 19N 3) found in ribosomes and living tissues, and having various metabolic functions within organisms. It was originally isolated from semen . As a uremic toxin, this compound can cause uremic syndrome. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Heart problems, such as an irregular heartbeat, inflammation in the sac that surrounds the heart (pericarditis), and increased pressure on the heart can be seen in patients with uremic syndrome. Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present (T3DB). Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1]. Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1].

   

Isoimperatorin

Isoimperatorin

C16H14O4 (270.0892044)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Origin: Plant, Coumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

Benzenemethanamine

Poly(styrene-divinylbenzene), aminomethylated

C7H9N (107.0734954)


A primary amine compound having benzyl as the N-substituent. It has been isolated from Moringa oleifera (horseradish tree).

   

Propanamine

1-Propanamine, 3-(C12-18-alkyloxy) derivs.

C3H9N (59.0734954)


   

Ammidin

InChI=1\C16H14O4\c1-10(2)5-7-19-16-14-12(6-8-18-14)9-11-3-4-13(17)20-15(11)16\h3-6,8-9H,7H2,1-2H

C16H14O4 (270.0892044)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.

   

482-45-1

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-((3-methyl-2-butenyl)oxy)-

C16H14O4 (270.0892044)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

5-Mop

InChI=1\C12H8O4\c1-14-12-7-2-3-11(13)16-10(7)6-9-8(12)4-5-15-9\h2-6H,1H

C12H8O4 (216.0422568)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.

   

Spermin

3-aminopropyl-[4-(3-aminopropylamino)butyl]amine

C10H26N4 (202.2157356)


Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects. Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects.

   

Spermidin

Additive Screening Solution 30\Fluka kit no 78374

C7H19N3 (145.1578894)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1]. Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1].

   

Ethanamine

Ethylamine, aqueous solution with not 50\\% but not >70\\% ethylamine [UN2270] [Flammable liquid]

C2H7N (45.0578462)


   

Olamine

Ethanolamine or ethanolamine solutions [UN2491] [Corrosive]

C2H7NO (61.0527612)


C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

Putreszin

4-04-00-01283 (Beilstein Handbook Reference)

C4H12N2 (88.1000432)


   

Ethylamine

Ethylamine

C2H7N (45.0578462)


A two-carbon primary aliphatic amine.

   

Propylamine

Propylamine

C3H9N (59.0734954)