NCBI Taxonomy: 4196

Lentibulariaceae (ncbi_taxid: 4196)

found 96 associated metabolites at family taxonomy rank level.

Ancestor: Lamiales

Child Taxonomies: Pinguicula, Utricularia, Genlisea

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1263762)


Aucubin is found in common verbena. Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety. Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally. Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis. The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1 Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety.; Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally.; Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis.; The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1. Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

Putrescine

1,4-Diaminobutane, puriss., >=99.0\\% (GC)

C4H12N2 (88.1000432)


Putrescine is a four-carbon alkane-alpha,omega-diamine. It is obtained by the breakdown of amino acids and is responsible for the foul odour of putrefying flesh. It has a role as a fundamental metabolite and an antioxidant. It is a conjugate base of a 1,4-butanediammonium. Putrescine is a toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. Putrescine is a solid. This compound belongs to the polyamines. These are compounds containing more than one amine group. Known drug targets of putrescine include putrescine-binding periplasmic protein, ornithine decarboxylase, and S-adenosylmethionine decarboxylase proenzyme. Putrescine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). 1,4-Diaminobutane is a natural product found in Eupatorium cannabinum, Populus tremula, and other organisms with data available. Putrescine is a four carbon diamine produced during tissue decomposition by the decarboxylation of amino acids. Polyamines, including putrescine, may act as growth factors that promote cell division; however, putrescine is toxic at high doses. Putrescine is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. Putrescine apparently has specific role in skin physiology and neuroprotection. Pharmacological interventions have demonstrated convincingly that a steady supply of polyamines is a prerequisite for cell proliferation to occur. Genetic engineering of polyamine metabolism in transgenic rodents has shown that polyamines play a role in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase is not compatible with murine embryogenesis. (A3286, A3287). Putrescine is a metabolite found in or produced by Saccharomyces cerevisiae. A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. Putrescine apparently has specific role in skin physiology and neuroprotection. (PMID:15009201, 16364196). Pharmacological interventions have demonstrated convincingly that a steady supply of polyamines is a prerequisite for cell proliferation to occur. Genetic engineering of polyamine metabolism in transgenic rodents has shown that polyamines play a role in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase is not compatible with murine embryogenesis. Putrescine can be found in Citrobacter, Corynebacterium, Cronobacter and Enterobacter (PMID:27872963) (https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12099). Putrescine is an organic chemical compound related to cadaverine; both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. The two compounds are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. They are also found in semen and some microalgae, together with related molecules like spermine and spermidine. A four-carbon alkane-alpha,omega-diamine. It is obtained by the breakdown of amino acids and is responsible for the foul odour of putrefying flesh. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID B001

   

Gardoside

(1S,4aS,6S,7aS)-6-hydroxy-7-methylidene-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4a,5,6,7a-tetrahydro-1H-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1212912)


Gardoside is a glycoside. Gardoside is a natural product found in Plantago atrata, Gardenia jasminoides, and other organisms with data available.

   

Spermine

(3-aminopropyl)({4-[(3-aminopropyl)amino]butyl})amine

C10H26N4 (202.2157356)


Spermine, also known as gerontine or musculamine, belongs to the class of organic compounds known as dialkylamines. These are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. The resultin N-carbamoylputrescine is acted on by a hydrolase to split off urea group, leaving putrescine. The precursor for synthesis of spermine is the amino acid ornithine. The intermediate is spermidine. Spermine is a drug. Spermine exists in all living species, ranging from bacteria to humans. 5-methylthioadenosine and spermine can be biosynthesized from S-adenosylmethioninamine and spermidine through its interaction with the enzyme spermine synthase. Another pathway in plants starts with decarboxylation of L-arginine to produce agmatine. In humans, spermine is involved in spermidine and spermine biosynthesis. Outside of the human body, spermine is found, on average, in the highest concentration in oats. Spermine has also been detected, but not quantified in several different foods, such as sapodilla, mexican groundcherries, cloves, sourdocks, and sunflowers. This could make spermine a potential biomarker for the consumption of these foods. This decarboxylation gives putrescine. The name spermin was first used by the German chemists Ladenburg and Abel in 1888, and the correct structure of spermine was not finally established until 1926, simultaneously in England (by Dudley, Rosenheim, and Starling) and Germany (by Wrede et al.). In one pathway L-glutamine is the precursor to L-ornithine, after which the synthesis of spermine from L-ornithine follows the same pathway as in animals. Spermine is a potentially toxic compound. [Spectral] Spermine (exact mass = 202.21575) and Spermidine (exact mass = 145.1579) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Occurs as phosphate in ox pancreas, yeast and meat products IPB_RECORD: 270; CONFIDENCE confident structure KEIO_ID S011; [MS2] KO009230 KEIO_ID S011 Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects. Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects.

   

Spermidine

N-(gamma-Aminopropyl)tetramethylenediamine

C7H19N3 (145.1578894)


Spermidine, also known as SPD, belongs to the class of organic compounds known as dialkylamines. These are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Spermidine exists in all living species, ranging from bacteria to humans. Within humans, spermidine participates in a number of enzymatic reactions. In particular, 5-methylthioadenosine and spermidine can be biosynthesized from S-adenosylmethioninamine and putrescine by the enzyme spermidine synthase. In addition, S-adenosylmethioninamine and spermidine can be converted into 5-methylthioadenosine and spermine through the action of the enzyme spermine synthase. In humans, spermidine is involved in spermidine and spermine biosynthesis. Outside of the human body, spermidine is found, on average, in the highest concentration within cow milk and oats. Spermidine has also been detected, but not quantified in several different foods, such as common chokecherries, watercress, agars, strawberry guava, and bog bilberries. This could make spermidine a potential biomarker for the consumption of these foods. Spermidine is consideres as an uremic toxine. Increased levels of uremic toxins can stimulate the production of reactive oxygen species. Chronic exposure to uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. As a uremic toxin, this compound can cause uremic syndrome. Uremic toxins such as spermidine are actively transported into the kidneys via organic ion transporters (especially OAT3). Constituent of meat products. Isol from the edible shaggy ink cap mushroom (Coprinus comatus) and from commercial/household prepared sauerkraut COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials IPB_RECORD: 269; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 220 KEIO_ID S003 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1]. Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1].

   

Norspermidine

Initiating explosive iminobispropylamine (dot)

C6H17N3 (131.1422402)


Norspermidine, also known as caldine or dipropylentriamin, belongs to the class of organic compounds known as dialkylamines. These are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. Norspermidine exists in all living organisms, ranging from bacteria to humans. Norspermidine has been detected, but not quantified, in several different foods, such as narrowleaf cattails, agaves, hickory nuts, sour cherries, and european chestnuts. Norspermidine is a polyamine of similar structure to the more common spermidine. While norspermidine has been found to occur naturally in some species of plants, bacteria, and algae, it is not known to be a natural product in humans as spermidine is. [HMDB]. Norspermidine is found in many foods, some of which are lentils, sweet bay, sea-buckthornberry, and lemon thyme. KEIO_ID B040

   

Catalpol

(2S,3R,4S,5S,6R)-2-(((1aS,1bS,2S,5aR,6S,6aS)-6-hydroxy-1a-(hydroxymethyl)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O10 (362.1212912)


Catalpol is an organic molecular entity. It has a role as a metabolite. Catalpol is a natural product found in Verbascum lychnitis, Plantago atrata, and other organisms with data available. See also: Rehmannia glutinosa Root (part of). Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3]. Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3].

   

Isoscutellarein

5,7,8-Trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.047736)


   

Verbascoside

6-[2-(3,4-Dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C29H36O15 (624.2054106)


   

Verbascoside

[(2R,3R,4R,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054106)


Acteoside is a glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. It has a role as a neuroprotective agent, an antileishmanial agent, an anti-inflammatory agent, a plant metabolite and an antibacterial agent. It is a cinnamate ester, a disaccharide derivative, a member of catechols, a polyphenol and a glycoside. It is functionally related to a hydroxytyrosol and a trans-caffeic acid. Acteoside is under investigation in clinical trial NCT02662283 (Validity and Security of Reh-acteoside Therapy for Patients of IgA Nephropathy). Acteoside is a natural product found in Orobanche amethystea, Barleria lupulina, and other organisms with data available. See also: Harpagophytum zeyheri root (part of). A glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.

   

Isoscutellarein

5,7,8-Trihydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H10O6 (286.047736)


A tetrahydroxyflavone that is apigenin with an extra hydroxy group at position 8.

   

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1263762)


Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids; Origin: Plant Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

putrescine

1,4-Diaminobutane

C4H12N2 (88.1000432)


   

Spermine

4,6-Decadiene

C10H26N4 (202.2157356)


A polyazaalkane that is tetradecane in which the carbons at positions 1, 5, 10 and 14 are replaced by nitrogens. Spermine has broad actions on cellular metabolism. Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects. Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects.

   

Spermidine

Sperminidine

C7H19N3 (145.1578894)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials A triamine that is the 1,5,10-triaza derivative of decane. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Spermidine, also known as N-(3-aminopropyl)-1,4-butane-diamine or 1,5,10-triazadecane, is a member of the class of compounds known as dialkylamines. Dialkylamines are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. Spermidine is soluble (in water) and a very strong basic compound (based on its pKa). Spermidine can be found in radish, which makes spermidine a potential biomarker for the consumption of this food product. Spermidine can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as throughout most human tissues. Spermidine exists in all living organisms, ranging from bacteria to humans. In humans, spermidine is involved in a couple of metabolic pathways, which include methionine metabolism and spermidine and spermine biosynthesis. Spermidine is also involved in several metabolic disorders, some of which include homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, methionine adenosyltransferase deficiency, s-adenosylhomocysteine (SAH) hydrolase deficiency, and hypermethioninemia. Spermidine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Spermidine is a polyamine compound (C 7H 19N 3) found in ribosomes and living tissues, and having various metabolic functions within organisms. It was originally isolated from semen . As a uremic toxin, this compound can cause uremic syndrome. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Heart problems, such as an irregular heartbeat, inflammation in the sac that surrounds the heart (pericarditis), and increased pressure on the heart can be seen in patients with uremic syndrome. Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present (T3DB). Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1]. Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1].

   

Norspermidine

bis(3-aminopropyl)amine

C6H17N3 (131.1422402)


   

bis(3-aminopropyl)amine

bis(3-aminopropyl)amine

C6H17N3 (131.1422402)


   

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{[(1s,2s,4s,6r,10s)-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}oxane-3,4,5-triol

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{[(1s,2s,4s,6r,10s)-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}oxane-3,4,5-triol

C15H22O9 (346.1263762)


   

[(2s,4s,5s,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl benzoate

[(2s,4s,5s,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl benzoate

C22H26O11 (466.14750460000005)


   

[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C24H28O12 (508.1580688)


   

2-(hydroxymethyl)-6-{[2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}oxane-3,4,5-triol

2-(hydroxymethyl)-6-{[2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}oxane-3,4,5-triol

C15H22O9 (346.1263762)


   

(1s,4as,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.13694039999996)


   

(2r,3s,4s,5s,6s)-2-(hydroxymethyl)-6-{[(1s,2s,4s,6s,10s)-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}oxane-3,4,5-triol

(2r,3s,4s,5s,6s)-2-(hydroxymethyl)-6-{[(1s,2s,4s,6s,10s)-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}oxane-3,4,5-triol

C15H22O9 (346.1263762)


   

[(1s,2r,4r,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl benzoate

[(1s,2r,4r,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl benzoate

C22H26O11 (466.14750460000005)


   

6-hydroxy-7-methylidene-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

6-hydroxy-7-methylidene-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1212912)


   

(1s,4ar,5s,7as)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-5-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(1s,4ar,5s,7as)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-5-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C24H28O11 (492.16315380000003)


   

(5-hydroxy-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl)methyl 3-phenylprop-2-enoate

(5-hydroxy-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl)methyl 3-phenylprop-2-enoate

C24H28O11 (492.16315380000003)


   

(5-hydroxy-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl)methyl benzoate

(5-hydroxy-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl)methyl benzoate

C22H26O11 (466.14750460000005)


   

(5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl)methyl 3-(3,4-dihydroxyphenyl)prop-2-enoate

(5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl)methyl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O12 (508.1580688)


   

[(1s,4ar,5s,7as)-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

[(1s,4ar,5s,7as)-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C24H28O11 (492.16315380000003)


   

[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2z)-3-phenylprop-2-enoate

[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2z)-3-phenylprop-2-enoate

C24H28O11 (492.16315380000003)


   

(1r,4ar,7r,7ar)-7-hydroxy-7-methyl-1-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1r,4ar,7r,7ar)-7-hydroxy-7-methyl-1-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.13694039999996)


   

[(1s,4ar,5s,7as)-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

[(1s,4ar,5s,7as)-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O12 (508.1580688)


   

[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2e)-3-phenylprop-2-enoate

[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2e)-3-phenylprop-2-enoate

C24H28O11 (492.16315380000003)


   

(5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl)methyl 3-(4-hydroxyphenyl)prop-2-enoate

(5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl)methyl 3-(4-hydroxyphenyl)prop-2-enoate

C24H28O11 (492.16315380000003)


   

[(1s,2s,4s,5s,6s,10s)-5-hydroxy-10-{[(2s,3s,4r,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2z)-3-phenylprop-2-enoate

[(1s,2s,4s,5s,6s,10s)-5-hydroxy-10-{[(2s,3s,4r,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2z)-3-phenylprop-2-enoate

C24H28O11 (492.16315380000003)


   

(2s,3r,4s,5s,6r)-2-{[(1s,2r,4r,5s,6r,10s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(1s,2r,4r,5s,6r,10s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H22O10 (362.1212912)


   

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-5-yl 3-(4-hydroxyphenyl)prop-2-enoate

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-5-yl 3-(4-hydroxyphenyl)prop-2-enoate

C24H28O11 (492.16315380000003)


   

(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-{[(1s,2s,4s,6r,10r)-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}oxane-3,4,5-triol

(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-{[(1s,2s,4s,6r,10r)-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}oxane-3,4,5-triol

C15H22O9 (346.1263762)


   

7-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

7-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.13694039999996)


   

6-hydroxy-7-methylidene-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

6-hydroxy-7-methylidene-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1212912)


   

(4a,5-dihydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,7ah-cyclopenta[c]pyran-7-yl)methyl 3-(4-hydroxyphenyl)prop-2-enoate

(4a,5-dihydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,7ah-cyclopenta[c]pyran-7-yl)methyl 3-(4-hydroxyphenyl)prop-2-enoate

C24H28O12 (508.1580688)


   

(3r,4r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3s,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(3r,4r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3s,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054106)


   

[(1s,2s,4s,5s,6s,10s)-5-hydroxy-10-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2e)-3-phenylprop-2-enoate

[(1s,2s,4s,5s,6s,10s)-5-hydroxy-10-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2e)-3-phenylprop-2-enoate

C24H28O11 (492.16315380000003)


   

(2r)-2-{[(1r,2s,6s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r)-2-{[(1r,2s,6s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H22O10 (362.1212912)