Myricitrin (BioDeep_00000230291)

Main id: BioDeep_00000003327

 

natural product PANOMIX_OTCML-2023


代谢物信息卡片


5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one

化学式: C21H20O12 (464.0955)
中文名称: 杨梅甙, 杨梅苷
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(=C3OC(O4)C(O)C(O)C(O)C(C)4)(Oc(c2)c(C3=O)c(cc(O)2)O)c(c1)cc(O)c(O)c(O)1
InChI: InChI=1/C21H20O12/c1-6-14(26)17(29)18(30)21(31-6)33-20-16(28)13-9(23)4-8(22)5-12(13)32-19(20)7-2-10(24)15(27)11(25)3-7/h2-6,14,17-18,21-27,29-30H,1H3/t6-,14-,17+,18+,21-/m0/s1

描述信息

Myricitrin is a glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. It has a role as an anti-allergic agent, an EC 1.14.13.39 (nitric oxide synthase) inhibitor, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a pentahydroxyflavone, a glycosyloxyflavone, an alpha-L-rhamnoside and a monosaccharide derivative. It is functionally related to a myricetin. It is a conjugate acid of a myricitrin(1-).
Myricitrin is a natural product found in Syzygium levinei, Limonium aureum, and other organisms with data available.
A glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity.
Myricitrin is a major antioxidant flavonoid[1].
Myricitrin is a major antioxidant flavonoid[1].

同义名列表

58 个代谢物同义名

5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one; 5,7-Dihydroxy-3-((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydro-pyran-2-yloxy)-2-(3,4,5-trihydroxy-phenyl)-1-benzopyran-4-one; 5,7-dihydroxy-3-((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yloxy)-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one; 5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-2-(3,4,5-trihydroxyphenyl)chromen-4-one; 3-[(2S,3R,4R,5R,6S)-6-methyl-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-5,7-bis(oxidanyl)-2-[3,4,5-tris(oxidanyl)phenyl]chromen-4-one; 5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-oxanyl]oxy]-2-(3,4,5-trihydroxyphenyl)-1-benzopyran-4-one; 5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-2-(3,4,5-trihydroxyphenyl)chromone; 5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2-(3,4,5-trihydroxyphenyl)chromen-4-one; 4H-1-BENZOPYRAN-4-ONE, 3-((6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)OXY)-5,7-DIHYDROXY-2-(3,4,5-TRIHYDROXYPHENYL)-; 4H-1-Benzopyran-4-one, 3-[(6-deoxy-.alpha.-L-mannopyranosyl)oxy]-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-; 3-[(6-deoxy-alpha-L-mannopyranosyl)oxy]-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-1-benzopyran-4-one; 3-((6-Deoxy-alpha-L-mannopyranosyl)oxy)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-benzopyran-4-one; 3-[(6-deoxy-|A-L-mannopyranosyl)oxy]-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-benzopyran-4-one; 3-[(6-deoxy-α-L-mannopyranosyl)oxy]-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-benzopyran-4-one; 5,7-dihydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)-4H-chromen-3-yl 6-deoxy-alpha-L-mannopyranoside; Myricitrin, primary pharmaceutical reference standard; Flavone,3,3,4,5,5,7-hexahydroxy-,3-rhamnoside; 3,3,4,5,5,7-Hexahydroxyflavone, 3-rhamnoside; 3,3,4,5,5,7-hexahydroxyflavone 3-rhamnoside; Myricetin 3-O-.alpha.-L-rhamnopyranoside; (3-PHENYLAMINOCARBONYLPHENYL)BORONICACID; MYRICETIN 3-O-.ALPHA.-L-RHAMNPYRONOSIDE; Myricetin 3-O-alpha-L-rhamnopyranoside; Myricetin 3-O-alpha-L-rhamnoside; Myricitrin, analytical standard; MYRICETIN 3-O-RHAMNOPYRANOSIDE; Myricitrin, >=99.0\\% (HPLC); DCYOADKBABEMIQ-OWMUPTOHSA-N; Myricetin 3-O-rhamnoside; Myricitrin (Myricitrine); Myricetin 3- rhamnoside; Myricetol 3-rhamnoside; myricetin-3-rhamnoside; Myricetin 3-rhamnoside; MYRICITRIN [INCI]; UNII-5Z0ZO61WPJ; Myricitrin (7); Myricitroside; MEGxp0_000257; ACon1_000103; Myricitrine; 5Z0ZO61WPJ; Myricitrin; Myricetrin; 5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-2-(3,4,5-trihydroxyphenyl)-4-chromenone; 5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-oxan-2-yl]oxy-2-(3,4,5-trihydroxyphenyl)chromen-4-one; Myricitrin (8ci); EINECS 241-856-7; NCGC00163596-01; MLS000574998; SMR000232363; AIDS-011946; AIDS011946; 17912-87-7; NSC 19803; C10108; 2- (3,4,5-Trihydroxyphenyl) -3- (alpha-L-rhamnopyranosyloxy) -5,7-dihydroxy-4H-1-benzopyran-4-one; Myricitrin



数据库引用编号

50 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

677 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AIMP2, AKT1, BCL2, CASP3, CAT, CCND1, FASN, MAPK8, NFE2L2, PIK3CA, PTGS2, TP53
Peripheral membrane protein 2 GORASP1, PTGS2
Endoplasmic reticulum membrane 2 BCL2, PTGS2
Nucleus 10 AIMP2, AKT1, BCL2, CASP3, CCND1, JUN, MAPK8, MPO, NFE2L2, TP53
cytosol 11 AIMP2, AKT1, BCL2, CASP3, CAT, CCND1, FASN, MAPK8, NFE2L2, PIK3CA, TP53
centrosome 3 CCND1, NFE2L2, TP53
nucleoplasm 8 AKT1, CASP3, CCND1, JUN, MAPK8, MPO, NFE2L2, TP53
RNA polymerase II transcription regulator complex 2 JUN, NFE2L2
Cell membrane 2 AKT1, TNF
Cytoplasmic side 1 GORASP1
lamellipodium 2 AKT1, PIK3CA
Golgi apparatus membrane 1 GORASP1
Synapse 1 MAPK8
cell cortex 1 AKT1
cell surface 1 TNF
glutamatergic synapse 2 AKT1, CASP3
Golgi apparatus 3 FASN, GORASP1, NFE2L2
Golgi membrane 2 GORASP1, INS
lysosomal membrane 1 GAA
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 2 AIMP2, NFE2L2
Lysosome 2 GAA, MPO
plasma membrane 6 AKT1, FASN, GAA, NFE2L2, PIK3CA, TNF
Membrane 7 AIMP2, AKT1, BCL2, CAT, FASN, GAA, TP53
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 4 CAT, FASN, GAA, MPO
Lysosome membrane 1 GAA
endoplasmic reticulum 3 BCL2, PTGS2, TP53
extracellular space 5 CCL2, IL6, INS, MPO, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 1 PIK3CA
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, CAT, TP53
protein-containing complex 5 AKT1, BCL2, CAT, PTGS2, TP53
intracellular membrane-bounded organelle 3 CAT, GAA, MPO
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Secreted 4 CCL2, GAA, IL6, INS
extracellular region 7 CAT, CCL2, GAA, IL6, INS, MPO, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
transcription regulator complex 2 JUN, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CCND1
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
nucleolus 1 TP53
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 1 CAT
spindle 1 AKT1
cis-Golgi network 1 GORASP1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 TP53
PML body 1 TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 MPO
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 3 JUN, NFE2L2, TP53
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
nuclear chromosome 1 JUN
site of double-strand break 1 TP53
endosome lumen 1 INS
tertiary granule membrane 1 GAA
Melanosome 1 FASN
euchromatin 1 JUN
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
azurophil granule 1 MPO
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 2 CCND1, TP53
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
azurophil granule membrane 1 GAA
azurophil granule lumen 1 MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
phagocytic vesicle lumen 1 MPO
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 NFE2L2
ficolin-1-rich granule membrane 1 GAA
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
transcription factor AP-1 complex 1 JUN
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
glycogen granule 1 FASN
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jianliang Li, Jiale Mai, Meng Zhang, Yanhuai Ma, Qi He, Dawei Gong, Jiacong Xiao, Miao Li, Weijian Chen, Zhen Li, Shuai Chen, Zhaofeng Pan, Shaocong Li, Haibin Wang. Myricitrin promotes osteogenesis and prevents ovariectomy bone mass loss via the PI3K/AKT signalling pathway. Journal of cellular biochemistry. 2023 Jun; ?(?):. doi: 10.1002/jcb.30439. [PMID: 37357411]
  • Dina F Sayed, Marwa A Mohamed, Ahmed S Nada, Abeer Temraz, Amal H Ahmed. Hepatoprotective role of myricitrin isolated from Mimusops elengi Linn. leaves extract on γ-radiation-induced liver damage in rats: Phyto-biochemical investigations. Cell biochemistry and function. 2023 Jun; ?(?):. doi: 10.1002/cbf.3820. [PMID: 37342005]
  • Tianmei Niu, Xiaojing Zhu, Dongsheng Zhao, Huifen Li, Peizheng Yan, Lulu Zhao, Wenguang Zhang, Pan Zhao, Beibei Mao. Unveiling interaction mechanisms between myricitrin and human serum albumin: Insights from multi-spectroscopic, molecular docking and molecular dynamic simulation analyses. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2023 Jan; 285(?):121871. doi: 10.1016/j.saa.2022.121871. [PMID: 36155929]
  • Chayan Banerjee, Sumangal Nandy, Joy Chakraborty, Deepak Kumar. Myricitrin - a flavonoid isolated from the Indian olive tree (Elaeocarpus floribundus) - inhibits Monoamine oxidase in the brain and elevates striatal dopamine levels: therapeutic implications against Parkinson's disease. Food & function. 2022 Jun; 13(12):6545-6559. doi: 10.1039/d2fo00734g. [PMID: 35647619]
  • Iva Rukavina, Maria João Rodrigues, Catarina G Pereira, Inês Mansinhos, Anabela Romano, Sylwester Ślusarczyk, Adam Matkowski, Luísa Custódio. Greener Is Better: First Approach for the Use of Natural Deep Eutectic Solvents (NADES) to Extract Antioxidants from the Medicinal Halophyte Polygonum maritimum L. Molecules (Basel, Switzerland). 2021 Oct; 26(20):. doi: 10.3390/molecules26206136. [PMID: 34684717]
  • Akram Ahangarpour, Ali Akbar Oroojan, Layasadat Khorsandi, Maryam Kouchak, Mohammad Badavi. Hyperglycemia-induced oxidative stress in isolated proximal tubules of mouse: the in vitro effects of myricitrin and its solid lipid nanoparticle. Archives of physiology and biochemistry. 2021 Oct; 127(5):422-428. doi: 10.1080/13813455.2019.1647250. [PMID: 31368364]
  • Monaj Kumar Sarkar, Amrita Kar, Adithyan Jayaraman, Karthi Shanmugam, Vellingiri Vadivel, Santanu Kar Mahapatra. Apoptotic mechanisms of myricitrin isolated from Madhuca longifolia leaves in HL-60 leukemia cells. Molecular biology reports. 2021 Jun; 48(6):5327-5334. doi: 10.1007/s11033-021-06500-z. [PMID: 34156605]
  • Sang Koo Park, Yoon Kyung Lee. Antioxidant Activity in Rheum emodi Wall (Himalayan Rhubarb). Molecules (Basel, Switzerland). 2021 Apr; 26(9):. doi: 10.3390/molecules26092555. [PMID: 33925748]
  • Renata Trentin Perdomo, Camila Pineze Defende, Patrick da Silva Mirowski, Talita Vilalva Freire, Simone Schneider Weber, Walmir Silva Garcez, Zaira da Rosa Guterres, Maria de Fátima Cepa Matos, Fernanda Rodrigues Garcez. Myricitrin from Combretum lanceolatum Exhibits Inhibitory Effect on DNA-Topoisomerase Type IIα and Protective Effect Against In Vivo Doxorubicin-Induced Mutagenicity. Journal of medicinal food. 2021 Mar; 24(3):273-281. doi: 10.1089/jmf.2020.0033. [PMID: 32543997]
  • Tarun K Dua, Swarnalata Joardar, Pratik Chakraborty, Shovonlal Bhowmick, Achintya Saha, Vincenzo De Feo, Saikat Dewanjee. Myricitrin, a Glycosyloxyflavone in Myrica esculenta Bark Ameliorates Diabetic Nephropathy via Improving Glycemic Status, Reducing Oxidative Stress, and Suppressing Inflammation. Molecules (Basel, Switzerland). 2021 Jan; 26(2):. doi: 10.3390/molecules26020258. [PMID: 33419120]
  • Yuntai Shen, Xiangrong Shen, Yao Cheng, Yulan Liu. Myricitrin pretreatment ameliorates mouse liver ischemia reperfusion injury. International immunopharmacology. 2020 Dec; 89(Pt A):107005. doi: 10.1016/j.intimp.2020.107005. [PMID: 33045574]
  • Anja Sadžak, Zlatko Brkljača, Ivo Crnolatac, Goran Baranović, Suzana Šegota. Flavonol clustering in model lipid membranes: DSC, AFM, force spectroscopy and MD simulations study. Colloids and surfaces. B, Biointerfaces. 2020 Sep; 193(?):111147. doi: 10.1016/j.colsurfb.2020.111147. [PMID: 32526654]
  • Do Yeon Kim, Sang Ryong Kim, Un Ju Jung. Myricitrin Ameliorates Hyperglycemia, Glucose Intolerance, Hepatic Steatosis, and Inflammation in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. International journal of molecular sciences. 2020 Mar; 21(5):. doi: 10.3390/ijms21051870. [PMID: 32182914]
  • Sofiene Ben Kaab, Laurence Lins, Marwa Hanafi, Iness Bettaieb Rebey, Magali Deleu, Marie-Laure Fauconnier, Riadh Ksouri, M Haissam Jijakli, Caroline De Clerck. Cynara cardunculus Crude Extract as a Powerful Natural Herbicide and Insight into the Mode of Action of Its Bioactive Molecules. Biomolecules. 2020 01; 10(2):. doi: 10.3390/biom10020209. [PMID: 32023949]
  • Ruiqian Li, Libing Hu, Chen Hu, Qiling Wang, Yonghong Lei, Bin Zhao. Myricitrin protects against cisplatin-induced kidney injury by eliminating excessive reactive oxygen species. International urology and nephrology. 2020 Jan; 52(1):187-196. doi: 10.1007/s11255-019-02334-8. [PMID: 31828476]
  • Wen Weng, Qilong Wang, Chunmei Wei, Na Man, Kangyi Zhang, Qiuyu Wei, Michael Adu-Frimpong, Elmurat Toreniyazov, Hao Ji, Jiangnan Yu, Ximing Xu. Preparation, characterization, pharmacokinetics and anti-hyperuricemia activity studies of myricitrin-loaded proliposomes. International journal of pharmaceutics. 2019 Dec; 572(?):118735. doi: 10.1016/j.ijpharm.2019.118735. [PMID: 31705971]
  • Adrielli Tenfen, Luísa Nathália Bolda Mariano, Thaise Boeing, Camile Cecconi Cechinel-Zanchett, Luisa Mota da Silva, Sérgio Faloni de Andrade, Priscila de Souza, Valdir Cechinel-Filho. Effects of myricetin-3-O-α-rhamnoside (myricitrin) treatment on urinary parameters of Wistar rats. The Journal of pharmacy and pharmacology. 2019 Dec; 71(12):1832-1838. doi: 10.1111/jphp.13172. [PMID: 31588559]
  • Young-Je Kim, Sang Ryong Kim, Do Yeon Kim, Je Tae Woo, Eun-Young Kwon, Youngji Han, Myung-Sook Choi, Un Ju Jung. Supplementation of the Flavonoid Myricitrin Attenuates the Adverse Metabolic Effects of Long-Term Consumption of a High-Fat Diet in Mice. Journal of medicinal food. 2019 Nov; 22(11):1151-1158. doi: 10.1089/jmf.2018.4341. [PMID: 31549892]
  • Navneet Kishore, Pradeep Kumar, Karuna Shanker, Akhilesh Kumar Verma. Human disorders associated with inflammation and the evolving role of natural products to overcome. European journal of medicinal chemistry. 2019 Oct; 179(?):272-309. doi: 10.1016/j.ejmech.2019.06.034. [PMID: 31255927]
  • Andrezza S Ramos, Josiana M Mar, Laiane S da Silva, Leonard D R Acho, Bárbara Janaína P Silva, Emerson S Lima, Pedro H Campelo, Edgar A Sanches, Jaqueline A Bezerra, Francisco Célio M Chaves, Francinete R Campos, Marcos B Machado. Pedra-ume caá fruit: An Amazon cherry rich in phenolic compounds with antiglycant and antioxidant properties. Food research international (Ottawa, Ont.). 2019 09; 123(?):674-683. doi: 10.1016/j.foodres.2019.05.042. [PMID: 31285017]
  • Shengnan Shen, Mengjun Zhao, Chenchen Li, Qi Chang, Xinmin Liu, Yonghong Liao, Ruile Pan. Study on the Material Basis of Neuroprotection of Myrica rubra Bark. Molecules (Basel, Switzerland). 2019 Aug; 24(16):. doi: 10.3390/molecules24162993. [PMID: 31426594]
  • Mansour Sobeh, Ganna Petruk, Samir Osman, Mohamed A El Raey, Paola Imbimbo, Daria Maria Monti, Michael Wink. Isolation of Myricitrin and 3,5-di-O-Methyl Gossypetin from Syzygium samarangense and Evaluation of their Involvement in Protecting Keratinocytes against Oxidative Stress via Activation of the Nrf-2 Pathway. Molecules (Basel, Switzerland). 2019 May; 24(9):. doi: 10.3390/molecules24091839. [PMID: 31086086]
  • Chunmei Wei, Qilong Wang, Wen Weng, Qiuyu Wei, Yujiao Xie, Michael Adu-Frimpong, Elmurat Toreniyazov, Hao Ji, Ximing Xu, Jiangnan Yu. The characterisation, pharmacokinetic and tissue distribution studies of TPGS modified myricetrin mixed micelles in rats. Journal of microencapsulation. 2019 May; 36(3):278-290. doi: 10.1080/02652048.2019.1622606. [PMID: 31117852]
  • Michael Afolayan, Radhakrishnan Srivedavyasasri, Olayinka T Asekun, Oluwole B Familoni, Samir A Ross. Chemical and biological studies on Bridelia ferruginea grown in Nigeria. Natural product research. 2019 Jan; 33(2):287-291. doi: 10.1080/14786419.2018.1440225. [PMID: 29457749]
  • Bavani Arumugam, Uma Devi Palanisamy, Kek Heng Chua, Umah Rani Kuppusamy. Protective effect of myricetin derivatives from Syzygium malaccense against hydrogen peroxide-induced stress in ARPE-19 cells. Molecular vision. 2019; 25(?):47-59. doi: . [PMID: 30820141]
  • Monaj Kumar Sarkar, Vellingiri Vadivel, Mamilla R Charan Raja, Santanu Kar Mahapatra. Potential anti-proliferative activity of AgNPs synthesized using M. longifolia in 4T1 cell line through ROS generation and cell membrane damage. Journal of photochemistry and photobiology. B, Biology. 2018 Sep; 186(?):160-168. doi: 10.1016/j.jphotobiol.2018.07.014. [PMID: 30064062]
  • Akram Ahangarpour, Ali Akbar Oroojan, Layasadat Khorsandi, Maryam Kouchak, Mohammad Badavi. Antioxidant effect of myricitrin on hyperglycemia-induced oxidative stress in C2C12 cell. Cell stress & chaperones. 2018 07; 23(4):773-781. doi: 10.1007/s12192-018-0888-z. [PMID: 29516429]
  • Jing Gao, Si Chen, Zikai Qiu, Liping Fang, Lishan Zhang, Chang Guo, Tong Chen, Longxin Qiu. Myricitrin ameliorates ethanol-induced steatosis in mouse AML12 liver cells by activating AMPK, and reducing oxidative stress and expression of inflammatory cytokines. Molecular medicine reports. 2018 05; 17(5):7381-7387. doi: 10.3892/mmr.2018.8740. [PMID: 29568905]
  • Sun Haeng Park, Seol Jang, Eunjung Son, Si Woo Lee, Sun Dong Park, Yoon-Young Sung, Ho Kyoung Kim. Polygonum aviculare L. extract reduces fatigue by inhibiting neuroinflammation in restraint-stressed mice. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 Mar; 42(?):180-189. doi: 10.1016/j.phymed.2018.03.042. [PMID: 29655685]
  • Navneet Kishore, Danielle Twilley, Analike Blom van Staden, Praveen Verma, Bikram Singh, Giorgia Cardinali, Daniela Kovacs, Mauro Picardo, Vivek Kumar, Namrita Lall. Isolation of Flavonoids and Flavonoid Glycosides from Myrsine africana and Their Inhibitory Activities against Mushroom Tyrosinase. Journal of natural products. 2018 01; 81(1):49-56. doi: 10.1021/acs.jnatprod.7b00564. [PMID: 29300477]
  • Akram Ahangarpour, Ali Akbar Oroojan, Layasadat Khorsandi, Maryam Kouchak, Mohammad Badavi. Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin-Nicotinamide-Induced Diabetic Model and Myotube Cell of Male Mouse. Oxidative medicine and cellular longevity. 2018; 2018(?):7496936. doi: 10.1155/2018/7496936. [PMID: 30116491]
  • Anna O Conrad, Brice A McPherson, David L Wood, Laurence V Madden, Pierluigi Bonello. Constitutive phenolic biomarkers identify naïve Quercus agrifolia resistant to Phytophthora ramorum, the causal agent of sudden oak death. Tree physiology. 2017 12; 37(12):1686-1696. doi: 10.1093/treephys/tpx116. [PMID: 29036534]
  • Yu-Xi Wang, Qiang Ren, Zhi-Yang Yan, Wei Wang, Lu Zhao, Ming Bai, Xiao-Bo Wang, Xiao-Xiao Huang, Shao-Jiang Song. Flavonoids and their derivatives with β-amyloid aggregation inhibitory activity from the leaves and twigs of Pithecellobium clypearia Benth. Bioorganic & medicinal chemistry letters. 2017 11; 27(21):4823-4827. doi: 10.1016/j.bmcl.2017.09.051. [PMID: 28988761]
  • Antonietta Cerulli, Gianluigi Lauro, Milena Masullo, Vincenza Cantone, Beata Olas, Bogdan Kontek, Filomena Nazzaro, Giuseppe Bifulco, Sonia Piacente. Cyclic Diarylheptanoids from Corylus avellana Green Leafy Covers: Determination of Their Absolute Configurations and Evaluation of Their Antioxidant and Antimicrobial Activities. Journal of natural products. 2017 06; 80(6):1703-1713. doi: 10.1021/acs.jnatprod.6b00703. [PMID: 28520428]
  • Ioannis Erkekoglou, Nikolaos Nenadis, Efrosini Samara, Fani Th Mantzouridou. Functional Teas from the Leaves of Arbutus unedo: Phenolic Content, Antioxidant Activity, and Detection of Efficient Radical Scavengers. Plant foods for human nutrition (Dordrecht, Netherlands). 2017 Jun; 72(2):176-183. doi: 10.1007/s11130-017-0607-4. [PMID: 28421300]
  • Bin Zhang, Qiang Shen, Yaping Chen, Ruile Pan, Shihuan Kuang, Guiyan Liu, Guibo Sun, Xiaobo Sun. Myricitrin Alleviates Oxidative Stress-induced Inflammation and Apoptosis and Protects Mice against Diabetic Cardiomyopathy. Scientific reports. 2017 03; 7(?):44239. doi: 10.1038/srep44239. [PMID: 28287141]
  • Batsukh Odonbayar, Toshihiro Murata, Javzan Batkhuu, Kosho Yasunaga, Rina Goto, Kenroh Sasaki. Antioxidant Flavonols and Phenolic Compounds from Atraphaxis frutescens and Their Inhibitory Activities against Insect Phenoloxidase and Mushroom Tyrosinase. Journal of natural products. 2016 Dec; 79(12):3065-3071. doi: 10.1021/acs.jnatprod.6b00720. [PMID: 28006914]
  • Mona El Said Kassem, Lamya Fawzy Ibrahim, Sameh Reda Hussein, Reham El-Sharawy, Mohamed Amin El-Ansari, Mahrousa Mohamed Hassanane, Hoda Fahime Booles. Myricitrin and bioactive extract of Albizia amara leaves: DNA protection and modulation of fertility and antioxidant-related genes expression. Pharmaceutical biology. 2016 Nov; 54(11):2404-2409. doi: 10.3109/13880209.2016.1158285. [PMID: 27049656]
  • Ning Li, Ying Wang, Xuezheng Li, Hong Zhang, Di Zhou, Wenli Wang, Wei Li, Xiangrong Zhang, Xinyu Li, Yue Hou, Dali Meng. Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge. Bioorganic & medicinal chemistry letters. 2016 10; 26(20):5018-5023. doi: 10.1016/j.bmcl.2016.08.094. [PMID: 27623545]
  • Hongbing Zhang, Guoyong Xie, Mei Tian, Qian Pu, Minjian Qin. Optimization of the Ultrasonic-Assisted Extraction of Bioactive Flavonoids from Ampelopsis grossedentata and Subsequent Separation and Purification of Two Flavonoid Aglycones by High-Speed Counter-Current Chromatography. Molecules (Basel, Switzerland). 2016 Aug; 21(8):. doi: 10.3390/molecules21081096. [PMID: 27556431]
  • Bin Zhang, Yaping Chen, Qiang Shen, Guiyan Liu, Jingxue Ye, Guibo Sun, Xiaobo Sun. Myricitrin Attenuates High Glucose-Induced Apoptosis through Activating Akt-Nrf2 Signaling in H9c2 Cardiomyocytes. Molecules (Basel, Switzerland). 2016 Jul; 21(7):. doi: 10.3390/molecules21070880. [PMID: 27399653]
  • Yu Zhang, Shiguo Chen, Chaoyang Wei, Hui Gong, Lanqi Li, Xingqian Ye. Chemical and Cellular Assays Combined with In Vitro Digestion to Determine the Antioxidant Activity of Flavonoids from Chinese Bayberry (Myrica rubra Sieb. et Zucc.) Leaves. PloS one. 2016; 11(12):e0167484. doi: 10.1371/journal.pone.0167484. [PMID: 27911932]
  • Cheryl A Hobbs, Carol Swartz, Robert Maronpot, Jeffrey Davis, Leslie Recio, Mihoko Koyanagi, Shim-mo Hayashi. Genotoxicity evaluation of the flavonoid, myricitrin, and its aglycone, myricetin. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2015 Sep; 83(?):283-92. doi: 10.1016/j.fct.2015.06.016. [PMID: 26142838]
  • Meng Qin, Yun Luo, Xiang-bao Meng, Min Wang, Hong-wei Wang, Shi-yu Song, Jing-xue Ye, Rui-le Pan, Fan Yao, Ping Wu, Gui-bo Sun, Xiao-bo Sun. Myricitrin attenuates endothelial cell apoptosis to prevent atherosclerosis: An insight into PI3K/Akt activation and STAT3 signaling pathways. Vascular pharmacology. 2015 Jul; 70(?):23-34. doi: 10.1016/j.vph.2015.03.002. [PMID: 25849952]
  • Yearam Jung, Soon Young Shin, Yeonjoong Yong, Hyeryoung Jung, Seunghyun Ahn, Young Han Lee, Yoongho Lim. Plant-derived flavones as inhibitors of aurora B kinase and their quantitative structure-activity relationships. Chemical biology & drug design. 2015 May; 85(5):574-85. doi: 10.1111/cbdd.12445. [PMID: 25298094]
  • Robert Domitrović, Khaled Rashed, Olga Cvijanović, Sanda Vladimir-Knežević, Marko Škoda, Alenka Višnić. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chemico-biological interactions. 2015 Mar; 230(?):21-9. doi: 10.1016/j.cbi.2015.01.030. [PMID: 25656916]
  • Robert R Maronpot, Mihoko Koyanagi, Jeffrey Davis, Leslie Recio, Dean Marbury, Molly Boyle, Shim-mo Hayashi. Safety assessment and single-dose toxicokinetics of the flavouring agent myricitrin in Sprague-Dawley rats. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2015; 32(11):1799-809. doi: 10.1080/19440049.2015.1084653. [PMID: 26365525]
  • Daniel Winekenstädde, Apostolis Angelis, Birgit Waltenberger, Stefan Schwaiger, Job Tchoumtchoua, Stefanie König, Oliver Werz, Nektarios Aligiannis, Alexios-Leandros Skaltsounis, Hermann Stuppner. Phytochemical profile of the aerial parts of Sedum sediforme and anti-inflammatory activity of myricitrin. Natural product communications. 2015 Jan; 10(1):83-8. doi: . [PMID: 25920226]
  • Qiang Huang, Bo Gao, Long Wang, Ya-Qian Hu, Wei-Guang Lu, Liu Yang, Zhuo-Jing Luo, Jian Liu. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines. Toxicology and applied pharmacology. 2014 Nov; 280(3):550-60. doi: 10.1016/j.taap.2014.08.004. [PMID: 25130202]
  • Le-Yue Du, Min Zhao, Jun Xu, Da-Wei Qian, Shu Jiang, Er-Xin Shang, Jian-Ming Guo, Pei Liu, Shu-Lan Su, Jin-Ao Duan, Xue-Jiao Leng. Identification of the metabolites of myricitrin produced by human intestinal bacteria in vitro using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Expert opinion on drug metabolism & toxicology. 2014 Jul; 10(7):921-31. doi: 10.1517/17425255.2014.918954. [PMID: 24882500]
  • Gui-Bo Sun, Meng Qin, Jing-xue Ye, Rui-le Pan, Xiang-bao Meng, Min Wang, Yun Luo, Zong-yang Li, Hong-wei Wang, Xiao-bo Sun. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE-/- mice. Toxicology and applied pharmacology. 2013 Aug; 271(1):114-26. doi: 10.1016/j.taap.2013.04.015. [PMID: 23639522]
  • Gui-Bo Sun, Meng Qin, Yun Luo, Rui-Le Pan, Xiang-Bao Meng, Min Wang, Yan-Hui Zou, Xiao-Bo Sun. [Protect effects and the underlying mechanisms of myricitrin against vascular endothelial cells apoptosis induced by oxidative stress]. Yao xue xue bao = Acta pharmaceutica Sinica. 2013 Apr; 48(4):615-20. doi: . [PMID: 23833954]
  • Morina Adfa, Yosuke Hattori, Masayuki Ninomiya, Yasuhiro Funahashi, Tsuyoshi Yoshimura, Mamoru Koketsu. Chemical constituents of Indonesian plant Protium javanicum Burm. f. and their antifeedant activities against Coptotermes formosanus Shiraki. Natural product research. 2013; 27(3):270-3. doi: 10.1080/14786419.2012.665917. [PMID: 22379948]
  • Morio Yoshimura, Saori Yamakami, Yoshiaki Amakura, Takashi Yoshida. Diarylheptanoid sulfates and related compounds from Myrica rubra bark. Journal of natural products. 2012 Oct; 75(10):1798-802. doi: 10.1021/np300212c. [PMID: 23066712]
  • Nesrin M Fayek, Azza R Abdel Monem, Mohamed Y Mossa, Meselhy R Meselhy, Amani H Shazly. Chemical and biological study of Manilkara zapota (L.) Van Royen leaves (Sapotaceae) cultivated in Egypt. Pharmacognosy research. 2012 Apr; 4(2):85-91. doi: 10.4103/0974-8490.94723. [PMID: 22518080]
  • S Vargas, K Ndjoko Ioset, A-E Hay, J-R Ioset, S Wittlin, K Hostettmann. Screening medicinal plants for the detection of novel antimalarial products applying the inhibition of β-hematin formation. Journal of pharmaceutical and biomedical analysis. 2011 Dec; 56(5):880-6. doi: 10.1016/j.jpba.2011.06.026. [PMID: 21872416]
  • Dawood Hattas, Joakim Hjältén, Riitta Julkunen-Tiitto, Peter F Scogings, Tuulikki Rooke. Differential phenolic profiles in six African savanna woody species in relation to antiherbivore defense. Phytochemistry. 2011 Oct; 72(14-15):1796-803. doi: 10.1016/j.phytochem.2011.05.007. [PMID: 21621803]
  • M Pereira, I P Siba, L R Chioca, D Correia, M A B F Vital, M G Pizzolatti, A R S Santos, R Andreatini. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Progress in neuro-psychopharmacology & biological psychiatry. 2011 Aug; 35(7):1636-44. doi: 10.1016/j.pnpbp.2011.06.002. [PMID: 21689712]
  • Shunsuke Shimosaki, Yoko Tsurunaga, Hiroyuki Itamura, Morihiko Nakamura. Anti-allergic effect of the flavonoid myricitrin from Myrica rubra leaf extracts in vitro and in vivo. Natural product research. 2011 Feb; 25(4):374-80. doi: 10.1080/14786411003774320. [PMID: 21328132]
  • Jeffrey R Jones, Matthew D Lebar, Umesh K Jinwal, Jose F Abisambra, John Koren, Laura Blair, John C O'Leary, Zachary Davey, Justin Trotter, Amelia G Johnson, Edwin Weeber, Christopher B Eckman, Bill J Baker, Chad A Dickey. The diarylheptanoid (+)-aR,11S-myricanol and two flavones from bayberry (Myrica cerifera) destabilize the microtubule-associated protein tau. Journal of natural products. 2011 Jan; 74(1):38-44. doi: 10.1021/np100572z. [PMID: 21141876]
  • Xin-Ping Cheng, Sheng Chen, Di Tian, Lu Ren, Fang Dou, Jun-Xian Wang. [Studies on the chemical constituents of the root tube from Pteroxygonum giraldii]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2010 Nov; 33(11):1727-30. doi: ". [PMID: 21434433]
  • Fabiana Izilda Biso, Clenilson Martins Rodrigues, Daniel Rinaldo, Mariana Bisarro dos Reis, Caroline Cristiane Bernardi, José Carlos Pelielo de Mattos, Adriano Caldeira-de-Araújo, Wagner Vilegas, Ilce Mara de Syllos Cólus, Eliana Aparecida Varanda. Assessment of DNA damage induced by extracts, fractions and isolated compounds of Davilla nitida and Davilla elliptica (Dilleniaceae). Mutation research. 2010 Sep; 702(1):92-9. doi: 10.1016/j.mrgentox.2010.07.011. [PMID: 20692361]
  • Zhanar A Kozhamkulova, Mohamed M Radwan, Galiya E Zhusupova, Zharilkasin Zh Abilov, Saniya N Rahadilova, Samir A Ross. Gmelinoside I, a new flavonol glycoside from Limonium gmelinii. Natural product communications. 2010 Jul; 5(7):1061-2. doi: ". [PMID: 20734940]
  • Jianbo Yang, Aiguo Wang, Tengfei Ji, Yalun Su. [Chemical constituents from Parthenocissus quinquefolia]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Jun; 35(12):1573-6. doi: 10.4268/cjcmm20101215. [PMID: 20815210]
  • Wen-jie Lu, Qi-kang Ya, Jia-yuan Chen, Bu-ming Liu. [A new flavonol glycoside from Baeckea Frutescens L]. Yao xue xue bao = Acta pharmaceutica Sinica. 2008 Oct; 43(10):1032-5. doi: . [PMID: 19127867]
  • Dan Li, Ming-Sheng Liu, Zhan-Lin Li, Sheng-Li Kang, Hui-Ming Hua. [Studies on chemical constituents of Heliciopsis lobata II]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Feb; 33(4):409-11. doi: . [PMID: 18533498]
  • Simone Quintyne-Walcott, Anderson R Maxwell, William F Reynolds. Crotogossamide, a cyclic nonapeptide from the latex of Croton gossypifolius. Journal of natural products. 2007 Aug; 70(8):1374-6. doi: 10.1021/np078007i. [PMID: 17676801]
  • Xin Zhong Zhang, Yong Bo Zhao, Chun Min Li, Dong Mei Chen, Guang Peng Wang, Rui Feng Chang, Huai Rui Shu. Potential polyphenol markers of phase change in apple (Malus domestica). Journal of plant physiology. 2007 May; 164(5):574-80. doi: 10.1016/j.jplph.2006.03.011. [PMID: 16647787]
  • Tamara Regina Calvo, Zeila Pinheiro Lima, Janaina Scaramelo Silva, Kátia Vero Nica Rodrigues Ballesteros, Cláudia Helena Pellizzon, Clélia Akiko Hiruma-Lima, Jorge Tamashiro, Alba Regina Monteiro Souza Brito, Regina Kiomi Takahira, Wagner Vilegas. Constituents and antiulcer effect of Alchornea glandulosa: activation of cell proliferation in gastric mucosa during the healing process. Biological & pharmaceutical bulletin. 2007 Mar; 30(3):451-9. doi: 10.1248/bpb.30.451. [PMID: 17329837]
  • Ryosuke Shimizu, Hiroshi Shimabayashi, Masamitsu Moriwaki. Enzymatic production of highly soluble myricitrin glycosides using beta-galactosidase. Bioscience, biotechnology, and biochemistry. 2006 Apr; 70(4):940-8. doi: 10.1271/bbb.70.940. [PMID: 16636462]
  • Yao-lan Li, Ke-ming Li, Miao-xian Su, Kan-tong Leung, Yu-wu Chen, Yong-wen Zhang. [Studies on antiviral constituents in stems and leaves of Pithecellibium clypearia]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Mar; 31(5):397-400. doi: ". [PMID: 16711425]
  • Byung Sun Min, Hyeong Kyu Lee, Sang Myung Lee, Young Ho Kim, Ki Hwan Bae, Toru Otake, Norio Nakamura, Masao Hattori. Anti-human immunodeficiency virus-type 1 activity of constituents from Juglans mandshurica. Archives of pharmacal research. 2002 Aug; 25(4):441-5. doi: 10.1007/bf02976598. [PMID: 12214852]
  • Yan Wang, Liling Zhou, Rui Li, Ying Wang. [Studies on the chemical constituents from Ampelopsis grossedentata]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2002 Apr; 25(4):254-6. doi: ". [PMID: 12583176]
  • Xiao-Dong Luo, Margaret J Basile, Edward J Kennelly. Polyphenolic antioxidants from the fruits of Chrysophyllum cainito L. (Star Apple). Journal of agricultural and food chemistry. 2002 Mar; 50(6):1379-82. doi: 10.1021/jf011178n. [PMID: 11879006]
  • A Yuan, X Huang, J Chen. [Chemical constituents in aerial part of Ampelopsis grossedentata(Hand.-Mazz.) W.T. Wang]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1998 Jun; 23(6):359-60, 383. doi: ". [PMID: 11601299]