Myo-Inositol (BioDeep_00000003231)
Secondary id: BioDeep_00000028174, BioDeep_00000054926, BioDeep_00000169689, BioDeep_00000405218, BioDeep_00000413233
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C6H12O6 (180.0634)
中文名称: 粘质肌醇, 表肌醇, 异肌醇, 肌醇, D-(+)-手性肌醇, 1L-手性纤维醇, 青蟹肌醇
谱图信息:
最多检出来源 Homo sapiens(blood) 24.37%
Last reviewed on 2024-09-13.
Cite this Page
Myo-Inositol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/myo-inositol (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000003231). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1(C(C(C(C(C1O)O)O)O)O)O
InChI: InChI=1/C6H12O6/c7-1-2(8)4(10)6(12)5(11)3(1)9/h1-12H
描述信息
myo-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, of which cis-1,2,3,5-trans-4,6-cyclohexanehexol, or myo-inositol is the most widely occurring form in nature. The other known inositols include scyllo-inositol, muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol and cis-inositol. myo-Inositol is found naturally in many foods (particularly in cereals with high bran content) and can be used as a sweetner as it has half the sweetness of sucrose (table sugar). myo-Inositol was once considered a member of the vitamin B complex and given the name: vitamin B8. However, because it is produced by the human body from glucose, it is not an essential nutrient, and therefore cannot be called a vitamin. myo-Inositol is a precursor molecule for a number of secondary messengers including various inositol phosphates. In addition, inositol/myo-inositol is an important component of the lipids known as phosphatidylinositol (PI) phosphatidylinositol phosphate (PIP). myo-Inositol is synthesized from glucose, via glucose-6-phosphate (G-6-P) in two steps. First, G-6-P is isomerised by an inositol-3-phosphate synthase enzyme to myo-inositol 1-phosphate, which is then dephosphorylated by an inositol monophosphatase enzyme to give free myo-inositol. In humans, myo-inositol is primarily synthesized in the kidneys at a rate of a few grams per day. myo-Inositol can be used in the management of preterm babies who have or are at a risk of infant respiratory distress syndrome. It is also used as a treatment for polycystic ovary syndrome (PCOS). It works by increasing insulin sensitivity, which helps to improve ovarian function and reduce hyperandrogenism. Reduced levels of myo-inositol have been found in the spinal fluid of depressed patients and levels are significantly reduced in brain samples of suicide victims.
Of common occurrence in plants and animals . obtained comly. from phytic acid in corn steep liquor. Dietary supplement
C26170 - Protective Agent > C1509 - Neuroprotective Agent
A - Alimentary tract and metabolism > A11 - Vitamins
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3].
i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges.
i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges.
Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].
Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].
同义名列表
40 个代谢物同义名
1,2,3,4,5,6-Hexahydroxycyclohexane, i-inositol, meso-Inositol; (1R,2R,3S,4S,5R,6S)-Cyclohexane-1,2,3,4,5,6-hexol; (1R,2R,3r,4S,5S,6s)-cyclohexane-1,2,3,4,5,6-hexol; cis-1,2,3,5-trans-4,6-Cyclohexanehexol; 1,2,3,4,5,6-HEXAHYDROXY-cyclohexane; Rat antispectacled eye factor; 1,2,3,5/4,6-cyclohexanehexol; 1,2,3,4,5,6-Cyclohexanehexol; L-(−)-chiro-Inositol; D-(+)-CHIRO-INOSITOL; scyllo-Inositol; 1D-Myo-inositol; 1l-Myo-inositol; D-Myo-inositol; L-Myo-inositol; allo-Inositol; Meso-inositol; Phaseomannite; muco-Inositol; myo-Inositol; Iso-inositol; epi-Inositol; Cyclohexitol; Myo inositol; Myoinositol; Meat sugar; Vitamin b8; L-inositol; Myoinosite; I-inositol; Inosital; inositol; Dambose; Inosite; Bios I; Ins; MI; myo-Inositol; D-chiro-Inositol; myo-Inositol
数据库引用编号
61 个数据库交叉引用编号
- ChEBI: CHEBI:27987
- ChEBI: CHEBI:27372
- ChEBI: CHEBI:10642
- ChEBI: CHEBI:27374
- ChEBI: CHEBI:17268
- ChEBI: CHEBI:23311
- ChEBI: CHEBI:23927
- ChEBI: CHEBI:22357
- ChEBI: CHEBI:24848
- ChEBI: CHEBI:25492
- KEGG: C06153
- KEGG: C06152
- KEGG: C19891
- KEGG: C00137
- KEGG: C06151
- KEGGdrug: D91189
- KEGGdrug: D91187
- KEGGdrug: D08079
- KEGGdrug: D78450
- KEGGdrug: D91188
- PubChem: 892
- HMDB: HMDB0000211
- Metlin: METLIN44877
- Metlin: METLIN144
- DrugBank: DB03106
- DrugBank: DB15350
- DrugBank: DB13178
- ChEMBL: CHEMBL3976780
- ChEMBL: CHEMBL1950780
- ChEMBL: CHEMBL1222251
- ChEMBL: CHEMBL1231671
- ChEMBL: CHEMBL468154
- ChEMBL: CHEMBL278373
- Wikipedia: Inositol
- MetaCyc: MYO-INOSITOL
- KNApSAcK: C00001164
- foodb: FDB010547
- chemspider: 10239179
- CAS: 87-89-8
- MoNA: PS005801
- PMhub: MS000008548
- PubChem: 3437
- PDB-CCD: INS
- 3DMET: B00038
- NIKKAJI: J4.282J
- PubChem: 8407
- NIKKAJI: J9.771C
- PubChem: 8408
- NIKKAJI: J101.892B
- PubChem: 8409
- PDB-CCD: 2H3
- NIKKAJI: J92.778C
- PubChem: 135626357
- PDB-CCD: CBU
- RefMet: Myo-inositol
- medchemexpress: HY-N3021
- medchemexpress: HY-B1411
- medchemexpress: HY-W010041
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-727
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-538
- KNApSAcK: 17268
分类词条
相关代谢途径
Reactome(13)
- Metabolism
- Metabolism of lipids
- Transport of small molecules
- SLC-mediated transmembrane transport
- Transport of bile salts and organic acids, metal ions and amine compounds
- Phospholipid metabolism
- Glycerophospholipid biosynthesis
- Inositol phosphate metabolism
- Synthesis of IP2, IP, and Ins in the cytosol
- Inositol transporters
- Synthesis of PI
- PI Metabolism
- Glycerophospholipid catabolism
BioCyc(36)
- indole-3-acetate activation II
- indole-3-acetate inactivation IX
- superpathway of indole-3-acetate conjugate biosynthesis
- stachyose biosynthesis
- streptomycin biosynthesis
- ajugose biosynthesis I (galactinol-dependent)
- myo-inositol biosynthesis
- 3-phosphoinositide biosynthesis
- B series fagopyritols biosynthesis
- A series fagopyritols biosynthesis
- phosphatidylinositol biosynthesis II (eukaryotes)
- myo-, chiro- and scyllo-inositol degradation
- myo-inositol degradation I
- UDP-α-D-glucuronate biosynthesis (from myo-inositol)
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis
- superpathway of phospholipid biosynthesis
- ester phospholipid biosynthesis
- myo-, chiro- and scillo-inositol degradation
- myo-inositol de novo biosynthesis
- myo-inositol degradation
- PIP metabolism
- 1D-myo-inositol hexakisphosphate biosynthesis IV (Dictyostelium)
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza)
- pinitol biosynthesis I
- pinitol biosynthesis II
- superpathway of inositol phosphate compounds
- lychnose and isolychnose biosynthesis
- stellariose and mediose biosynthesis
- phytate degradation I
- myo-inositol degradation II
- D-myo-inositol (1,4,5)-trisphosphate degradation
- superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism
- galactosylcyclitol biosynthesis
- superpathway of phospholipid biosynthesis II (plants)
- phosphatidylinositol phosphate biosynthesis
- UDP-D-glucuronate biosynthesis (from myo-inositol)
PlantCyc(23)
- indole-3-acetate activation II
- superpathway of indole-3-acetate conjugate biosynthesis
- indole-3-acetate inactivation IX
- stachyose biosynthesis
- ajugose biosynthesis I (galactinol-dependent)
- UDP-α-D-glucuronate biosynthesis (from myo-inositol)
- B series fagopyritols biosynthesis
- superpathway of phospholipid biosynthesis II (plants)
- A series fagopyritols biosynthesis
- 3-phosphoinositide biosynthesis
- glycerophosphodiester degradation
- myo-inositol biosynthesis
- lychnose and isolychnose biosynthesis
- pinitol biosynthesis II
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza)
- D-myo-inositol (1,4,5)-trisphosphate degradation
- pinitol biosynthesis I
- galactosylcyclitol biosynthesis
- phosphatidylinositol biosynthesis II (eukaryotes)
- stellariose and mediose biosynthesis
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis
- phytate degradation I
- L-ascorbate biosynthesis VI (plants, myo-inositol pathway)
代谢反应
2013 个相关的代谢反应过程信息。
Reactome(142)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Inositol phosphate metabolism:
ATP + I(3,4,5,6)P4 ⟶ ADP + I(1,3,4,5,6)P5
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Inositol phosphate metabolism:
ATP + I(1,3,4)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Inositol phosphate metabolism:
H2O + I(1,4,5)P3 ⟶ I(1,4)P2 + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I(1,4,5)P3 ⟶ I(1,4)P2 + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Phospholipid metabolism:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Glycerophospholipid biosynthesis:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Phospholipid metabolism:
1-acyl LPC + H2O ⟶ GPCho + LCFA(-)
- Glycerophospholipid biosynthesis:
1-acyl LPC + H2O ⟶ GPCho + LCFA(-)
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Phospholipid metabolism:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Glycerophospholipid biosynthesis:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Phospholipid metabolism:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Glycerophospholipid biosynthesis:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Phospholipid metabolism:
1-acyl LPC + H2O ⟶ GPCho + LCFA(-)
- Glycerophospholipid biosynthesis:
1-acyl LPC + H2O ⟶ GPCho + LCFA(-)
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
GroPIns + H2O ⟶ G3P + Ins
- Glycerophospholipid catabolism:
GroPIns + H2O ⟶ G3P + Ins
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PI:
CDP-DAG + Ins ⟶ CMP + PI
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
BioCyc(101)
- galactosylcyclitol biosynthesis:
galactinol + galactopinitol A ⟶ myo-inositol + ciceritol
- lychnose and isolychnose biosynthesis:
raffinose ⟶ isolychnose + sucrose
- stellariose and mediose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + raffinose ⟶ myo-inositol + stachyose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
- myo-, chiro- and scyllo-inositol degradation:
scyllo-inosose ⟶ 1-keto-D-chiro-inositol
- myo-, chiro- and scillo-inositol degradation:
scyllo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- myo-, chiro- and scyllo-inositol degradation:
1D-chiro-inositol + NAD+ ⟶ 1-keto-D-chiro-inositol + H+ + NADH
- myo-, chiro- and scyllo-inositol degradation:
scyllo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- myo-, chiro- and scyllo-inositol degradation:
scyllo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- myo-inositol degradation:
myo-inositol + NAD+ ⟶ 2-keto-myo-inositol + H+ + NADH
- streptomycin biosynthesis:
D-1-guanidino-3-amino-1,3-dideoxy-scyllo-inositol + pyruvate ⟶ D-1-guanidino-1-deoxy-3-dehydro-scyllo-inositol + ala
- myo-, chiro- and scillo-inositol degradation:
scyllo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- superpathway of inositol phosphate compounds:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol de novo biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis IV (Dictyostelium):
D-glucopyranose 6-phosphate ⟶ Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
D-glucopyranose 6-phosphate ⟶ Ins(3)P
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- pinitol biosynthesis II:
myo-inositol + SAM ⟶ H+ + SAH + sequoyitol
- superpathway of inositol phosphate compounds:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- B series fagopyritols biosynthesis:
1D-chiro-inositol + UDP-α-D-galactose ⟶ H+ + UDP + fagopyritol B1
- A series fagopyritols biosynthesis:
a galactoside + fagopyritol A2 ⟶ fagopyritol A3
- phosphatidylinositol biosynthesis II (eukaryotes):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- indole-3-acetate activation II:
1D-1-O-(indol-3-yl)acetyl-myo-inositol + H2O ⟶ (indol-3-yl)acetate + myo-inositol + H+
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- streptomycin biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- myo-inositol degradation II:
3-dehydro scyllo-inosose + H2O ⟶ 5-dehydro-L-gluconate + H+
- myo-inositol degradation I:
myo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
D-glucopyranose 6-phosphate ⟶ Ins(3)P
- indole-3-acetate inactivation IX:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- superpathway of indole-3-acetate conjugate biosynthesis:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphatidylinositol phosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphatidylinositol biosynthesis II (eukaryotes):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
D-glucopyranose 6-phosphate ⟶ Ins(3)P
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
D-glucopyranose 6-phosphate ⟶ Ins(3)P
- phosphatidylinositol biosynthesis II (eukaryotes):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
1D-myo-inositol (3)-monophosphate + H2O ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis:
an L-1-phosphatidyl-glycerol ⟶ a cardiolipin + glycerol
- ester phospholipid biosynthesis:
an L-1-phosphatidyl-glycerol ⟶ a cardiolipin + glycerol
- myo-inositol biosynthesis:
1D-myo-inositol (3)-monophosphate + H2O ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
1D-myo-inositol (3)-monophosphate + H2O ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ 1D-myo-inositol (3)-monophosphate + ADP + H+
- myo-inositol biosynthesis:
D-glucopyranose 6-phosphate ⟶ Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
1D-myo-inositol (3)-monophosphate + H2O ⟶ myo-inositol + phosphate
- myo-inositol degradation I:
myo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- myo-inositol degradation I:
myo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- myo-inositol biosynthesis:
D-glucopyranose 6-phosphate ⟶ Ins(3)P
- myo-inositol degradation I:
myo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
1D-myo-inositol (3)-monophosphate + H2O ⟶ myo-inositol + phosphate
- superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism:
1D-myo-inositol (4)-monophosphate + H2O ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + a 1-phosphatidyl-1D-myo-inositol
- PIP metabolism:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
1D-myo-inositol (4)-monophosphate + H2O ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- myo-inositol degradation I:
myo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- myo-inositol degradation I:
myo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
1D-myo-inositol (4)-monophosphate + H2O ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
1D-myo-inositol (3)-monophosphate + H2O ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + a 1-phosphatidyl-1D-myo-inositol
- superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism:
1D-myo-inositol (4)-monophosphate + H2O ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
1D-myo-inositol (3)-monophosphate + H2O ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
1D-myo-inositol (4)-monophosphate + H2O ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ 1D-myo-inositol (3)-monophosphate + ADP + H+
- UDP-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucuronate + H2O + H+
- myo-inositol biosynthesis:
1D-myo-inositol (3)-monophosphate + H2O ⟶ myo-inositol + phosphate
- phytate degradation I:
1D-myo-inositol (2) monophosphate + H2O ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- myo-inositol degradation I:
myo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- myo-inositol degradation I:
myo-inositol + NAD+ ⟶ scyllo-inosose + H+ + NADH
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
WikiPathways(2)
- Glycerophospholipid biosynthetic pathway:
Serine ⟶ Ethanolamine
- Glycerophospholipid biosynthetic pathway:
Glycerol ⟶ sn-glycerol-3-phosphate (glycerol-3-P)
Plant Reactome(536)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Stachyose biosynthesis:
Suc + galactinol ⟶ myo-inositol + raffinose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- IAA conjugation I:
Ins + indole-3-acetyl-beta-1-D-glucose ⟶ beta-D-glucose + indol-3-yl-acetyl-myo-inositol
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Myo-inositol biosynthesis:
H2O + I3P ⟶ Pi + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
INOH(1)
- Inositol phosphate metabolism ( Inositol phosphate metabolism ):
O2 + myo-Inositol ⟶ D-Glucuronic acid + H2O
PlantCyc(1199)
- galactosylcyclitol biosynthesis:
D-pinitol + galactinol ⟶ myo-inositol + galactopinitol A
- galactosylcyclitol biosynthesis:
D-pinitol + galactinol ⟶ myo-inositol + galactopinitol A
- galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ myo-inositol + D-galactosylononitol
- galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ myo-inositol + D-galactosylononitol
- galactosylcyclitol biosynthesis:
galactinol + galactopinitol A ⟶ myo-inositol + ciceritol
- galactosylcyclitol biosynthesis:
D-pinitol + galactinol ⟶ myo-inositol + galactopinitol A
- galactosylcyclitol biosynthesis:
D-pinitol + galactinol ⟶ myo-inositol + galactopinitol A
- galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ myo-inositol + D-galactosylononitol
- galactosylcyclitol biosynthesis:
galactinol + galactopinitol A ⟶ myo-inositol + ciceritol
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + raffinose ⟶ myo-inositol + stachyose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- lychnose and isolychnose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + raffinose ⟶ myo-inositol + stachyose
- lychnose and isolychnose biosynthesis:
raffinose ⟶ isolychnose + sucrose
- stellariose and mediose biosynthesis:
lychnose + raffinose ⟶ stellariose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + raffinose ⟶ myo-inositol + stachyose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
myo-inositol + UDP-α-D-galactose ⟶ H+ + UDP + galactinol
- ajugose biosynthesis I (galactinol-dependent):
galactinol + stachyose ⟶ myo-inositol + verbascose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- glycerophosphodiester degradation:
H2O + a glycerophosphodiester ⟶ sn-glycerol 3-phosphate + H+ + an alcohol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphatidylinositol biosynthesis II (eukaryotes):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- indole-3-acetate inactivation IX:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- superpathway of indole-3-acetate conjugate biosynthesis:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- indole-3-acetate activation II:
4-O-(indol-3-ylacetyl)-β-D-glucose + H2O ⟶ (indol-3-yl)acetate + D-glucopyranose + H+
- indole-3-acetate inactivation IX:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of indole-3-acetate conjugate biosynthesis:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- glycerophosphodiester degradation:
H2O + a glycerophosphodiester ⟶ sn-glycerol 3-phosphate + H+ + an alcohol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- B series fagopyritols biosynthesis:
1D-chiro-inositol + UDP-α-D-galactose ⟶ H+ + UDP + fagopyritol B1
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- pinitol biosynthesis II:
myo-inositol + SAM ⟶ H+ + SAH + sequoyitol
- indole-3-acetate activation II:
1D-1-O-(indol-3-yl)acetyl-myo-inositol + H2O ⟶ (indol-3-yl)acetate + myo-inositol + H+
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- superpathway of indole-3-acetate conjugate biosynthesis:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- indole-3-acetate inactivation IX:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- superpathway of phospholipid biosynthesis II (plants):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- phosphatidylinositol biosynthesis II (eukaryotes):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- A series fagopyritols biosynthesis:
a D-galactoside + fagopyritol A2 ⟶ fagopyritol A3
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- B series fagopyritols biosynthesis:
1D-chiro-inositol + UDP-α-D-galactose ⟶ H+ + UDP + fagopyritol B1
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- B series fagopyritols biosynthesis:
1D-chiro-inositol + UDP-α-D-galactose ⟶ H+ + UDP + fagopyritol B1
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phytate degradation I:
H2O + Ins(2)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phytate degradation I:
H2O + Ins(1)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- superpathway of phospholipid biosynthesis II (plants):
ATP + choline ⟶ ADP + H+ + phosphocholine
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- superpathway of indole-3-acetate conjugate biosynthesis:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- indole-3-acetate inactivation IX:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
ATP + D-glucopyranuronate ⟶ α-D-glucuronate 1-phosphate + ADP + H+
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(4)P ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
H2O + Ins(3)P ⟶ myo-inositol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
myo-inositol + O2 ⟶ D-glucopyranuronate + H+ + H2O
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 3-phosphoinositide biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
myo-inositol + ATP ⟶ ADP + H+ + Ins(3)P
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- indole-3-acetate inactivation IX:
(indol-3-yl)acetate + UDP-α-D-glucose ⟶ 1-O-(indol-3-ylacetyl)-β-D-glucose + UDP
- 3-phosphoinositide biosynthesis:
1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate + H2O ⟶ a 1-phosphatidyl-1D-myo-inositol 3-phosphate + phosphate
- phosphatidylinositol biosynthesis II (eukaryotes):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- D-myo-inositol (1,4,5)-trisphosphate degradation:
H2O + Ins(1,4,5)P3 ⟶ Ins(1,4)P2 + phosphate
- superpathway of indole-3-acetate conjugate biosynthesis:
(indol-3-yl)acetate + ATP + gln ⟶ AMP + H+ + IAA-Gln + diphosphate
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza):
D-glucopyranose 6-phosphate ⟶ Ins(3)P
- phosphate acquisition:
H2O + a phosphate monoester ⟶ an alcohol + phosphate
- UDP-α-D-glucuronate biosynthesis (from myo-inositol):
α-D-glucuronate 1-phosphate + H+ + UTP ⟶ UDP-α-D-glucuronate + diphosphate
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis:
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- L-ascorbate biosynthesis VI (plants, myo-inositol pathway):
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- pinitol biosynthesis I:
D-ononitol + NAD+ ⟶ 4-O-methyl-D-myo-inosose + H+ + NADH
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(31)
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Inositol Phosphate Metabolism:
1D-myo-Inositol 3-phosphate + Water ⟶ Phosphate + myo-Inositol
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Joubert Syndrome:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- D-myo-Inositol (1,4,5)-Trisphosphate Biosynthesis:
a CDP-diacylglycerol + myo-Inositol ⟶ Cytidine monophosphate + Hydrogen Ion + L-1-phosphatidyl-inositol
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Joubert Syndrome:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Joubert Syndrome:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
PharmGKB(0)
88 个相关的物种来源信息
- 1478108 - Aconitum japonicum: 10.1248/YAKUSHI1947.85.5_469
- 112594 - Aconitum variegatum: 10.1248/YAKUSHI1947.85.5_469
- 3625 - Actinidia chinensis:
- 124972 - Aegialitis annulata: 10.1016/S0044-328X(84)80097-5
- 130426 - Allium chinense: 10.1016/J.CARBPOL.2014.10.019
- 117272 - Amaranthus cruentus: 10.1111/J.1365-2621.1981.TB03018.X
- 481985 - Anaphalis lactea: 10.1002/CHIN.200505221
- 55605 - Angelica acutiloba: 10.1248/CPB.35.3918
- 301693 - Annona squamosa: 10.1006/JFCA.2000.0968
- 13339 - Apocynum cannabinum: 10.1007/S10600-011-9801-Z
- 377125 - Apocynum venetum: 10.1007/S10600-011-9801-Z
- 3702 - Arabidopsis thaliana: 10.1104/PP.104.053793
- 85549 - Artemia salina: 10.1021/JF60200A008
- 3821 - Cajanus cajan: 10.1002/JSFA.2740500106
- 539205 - Callicarpa pedunculata: 10.1007/S10600-009-9176-6
- 4442 - Camellia sinensis: 10.1080/00021369.1987.10868263
- 2604736 - Campanula oblongifolia: 10.1007/BF00568427
- 239416 - Campanula persicifolia: 10.1007/BF00598548
- 428196 - Campanula rapunculus: 10.1007/BF00564463
- 2604738 - Campanula taurica: 10.1007/BF00564463
- 16922 - Camptotheca acuminata: 10.1002/JCCS.198500029
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 48106 - Centella asiatica: 10.1016/S0031-9422(00)85884-7
- 48106 - Centella Asiatica (L.) Urban[Hydro-Cotyle Asiatica L.]: -
- 20340 - Ceratonia siliqua: 10.1021/JF00071A015
- 99037 - Chamaemelum nobile: 10.1039/CT9140501829
- 3827 - Cicer arietinum: 10.1016/S0031-9422(00)80263-0
- 54229 - Clerodendrum Trichotomum Thunb: -
- 578542 - Combretum micranthum: 10.1007/BF00579081
- 5326 - Coriolus: -
- 4283 - Cornus florida: 10.1016/S0016-0032(26)91134-4
- 1238147 - Corydalis bungeana Turcz.: -
- 518845 - Croton celtidifolius: 10.1016/S0031-9422(00)84129-1
- 1475389 - Croton cortesianus: 10.1016/0031-9422(92)80479-X
- 136217 - Curcuma longa: 10.1002/BMC.1207
- 117167 - Cyclocarya paliurus: 10.1271/BBB1924.21.202
- 35525 - Daphnia magna: 10.1016/J.ENVINT.2009.12.006
- 327901 - Detarium microcarpum: 10.1016/S0008-6215(02)00025-3
- 313931 - Duhaldea cappa: 10.1016/J.FITOTE.2007.11.031
- 142181 - Edgeworthia chrysantha: 10.1007/S10600-009-9230-4
- 212301 - Euphorbia humifusa: 10.1016/J.BMCL.2014.03.014
- 252459 - Eysenhardtia platycarpa: 10.1021/NP060166Z
- 3617 - Fagopyrum esculentum: 10.1021/JF990709T
- 202327 - Geranium Wilfordii Maxim.: -
- 3847 - Glycine max:
- 106681 - Helinus integrifolius: 10.1039/CT9201700140
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 39324 - Hyssopus officinalis: 10.1006/BBRC.1995.1639
- 2116407 - Kali collina: 10.1007/BF00630328
- 2116407 - Kali collinum: 10.1007/BF00630328
- 3864 - Lens culinaris: 10.1016/S0031-9422(00)80263-0
- 1503365 - Lonicera bournei: 10.1055/S-2001-14337
- 3870 - Lupinus albus: 10.1016/S0031-9422(00)80263-0
- 3496 - Maclura pomifera: 10.1016/S0031-9422(00)90379-0
- 276779 - Marsdenia tomentosa: 10.1016/S0031-9422(97)00766-8
- 1874238 - Mosla dianthera: 10.1248/CPB.47.1152
- 41608 - Mutisia acuminata: 10.1055/S-2006-962334
- 4432 - Nelumbo nucifera: 10.1002/PTR.1847
- 4146 - Olea europaea: 10.1016/S0308-8146(00)00268-5
- 1815962 - Petasites formosanus: 10.1248/CPB.47.375
- 49563 - Peucedanum japonicum: 10.1007/BF02975882
- 3885 - Phaseolus vulgaris:
- 71647 - Pinus pinaster: 10.1016/0031-9422(88)80742-8
- 3888 - Pisum sativum:
- 346594 - Planchonella vitiensis: 10.1016/S0305-1978(97)00063-X
- 28511 - Pogostemon cablin: 10.1021/JF304466T
- 3760 - Prunus persica: 10.1016/S0031-9422(00)85491-6
- 280718 - Pycnandra acuminata: 10.1016/J.PHYTOCHEM.2007.07.001
- 103488 - Quercus salicina: 10.1248/YAKUSHI1947.89.9_1302
- 1378005 - Rhynchosia beddomei: 10.1016/0031-9422(80)83211-0
- 1009589 - Salacia chinensis:
- 525237 - Salsola collina: 10.1007/BF00630328
- 459147 - Samadera indica: 10.1002/ARDP.19012390204
- 2077122 - Sandoricum indicum: 10.1016/S0031-9422(00)86404-3
- 356285 - Sandoricum koetjape: 10.1016/S0031-9422(00)86404-3
- 190515 - Siraitia grosvenorii: 10.1016/0378-8741(90)90067-4
- 51976 - Stereocaulon ramulosum: 10.1016/0008-6215(88)85057-2
- 1886 - Streptomyces albidoflavus:
- 1902 - Streptomyces coelicolor:
- 69904 - Tecoma stans: 10.5586/ASBP.1977.015
- 354521 - Tetradium daniellii: 10.1007/BF02976999
- 354522 - Tetradium glabrifolium: 10.1002/JCCS.199500128
- 60916 - Trifolium incarnatum: 10.1016/S0031-9422(00)81730-6
- 23278 - Vahlia capensis: 10.1055/S-2006-957671
- 3906 - Vicia faba: 10.1016/S0031-9422(00)80263-0
- 3972 - Viscum album: 10.1111/J.1469-8137.1992.TB02943.X
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Bhoomika Sherkhane, Anil Kumar Kalvala, Vijay Kumar Arruri, Dharmendra Kumar Khatri, Shashi Bala Singh. Renoprotective potential of myo-inositol on diabetic kidney disease: Focus on the role of the PINK1/Parkin pathway and mitophagy receptors.
Journal of biochemical and molecular toxicology.
2022 Jun; 36(6):e23032. doi:
10.1002/jbt.23032
. [PMID: 35243728] - Yingying Zhang, Yinan Jiang, Ziying Wang, Jiayu Wang, Mingzhen Zhu, Hui Yang. Effects of Dietary Resveratrol, Bile Acids, Allicin, Betaine, and Inositol on Recovering the Lipid Metabolism Disorder in the Liver of Rare Minnow Gobiocypris rarus Caused by Bisphenol A.
Aquaculture nutrition.
2022; 2022(?):6082343. doi:
10.1155/2022/6082343
. [PMID: 36860429] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Shadae R Foster, Lowell L Dilworth, Rory K Thompson, Ruby L Alexander-Lindo, Felix O Omoruyi. Effects of combined inositol hexakisphosphate and inositol supplement on antioxidant activity and metabolic enzymes in the liver of streptozotocin-induced type 2 diabetic rats.
Chemico-biological interactions.
2017 Sep; 275(?):108-115. doi:
10.1016/j.cbi.2017.07.024
. [PMID: 28757134] - Dale L Phelps, Robert M Ward, Rick L Williams, Tracy L Nolen, Kristi L Watterberg, William Oh, Michael Goedecke, Richard A Ehrenkranz, Timothy Fennell, Brenda B Poindexter, C Michael Cotten, Mikko Hallman, Ivan D Frantz, Roger G Faix, Kristin M Zaterka-Baxter, Abhik Das, M Bethany Ball, Conra Backstrom Lacy, Michele C Walsh, Waldemar A Carlo, Pablo J Sánchez, Edward F Bell, Seetha Shankaran, David P Carlton, Patricia R Chess, Rosemary D Higgins. Safety and pharmacokinetics of multiple dose myo-inositol in preterm infants.
Pediatric research.
2016 08; 80(2):209-17. doi:
10.1038/pr.2016.97
. [PMID: 27074126] - Lei Yin, Kevin Shengyang Yu, Kun Lu, Xiaozhong Yu. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis.
Toxicology in vitro : an international journal published in association with BIBRA.
2016 Apr; 32(?):297-309. doi:
10.1016/j.tiv.2016.01.010
. [PMID: 26820058] - Wei-Dan Jiang, Yang Liu, Jun Jiang, Pei Wu, Lin Feng, Xiao-Qiu Zhou. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: amelioration by myo-inositol.
Aquatic toxicology (Amsterdam, Netherlands).
2015 Feb; 159(?):245-55. doi:
10.1016/j.aquatox.2014.12.020
. [PMID: 25562835] - Wei-Dan Jiang, Yang Liu, Kai Hu, Jun Jiang, Shu-Hong Li, Lin Feng, Xiao-Qiu Zhou. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: protective effects of myo-inositol.
Aquatic toxicology (Amsterdam, Netherlands).
2014 Oct; 155(?):301-13. doi:
10.1016/j.aquatox.2014.07.003
. [PMID: 25087001] - Bo Zhai, Julie Clark, Taotao Ling, Michele Connelly, Fabricio Medina-Bolivar, Fatima Rivas. Antimalarial evaluation of the chemical constituents of hairy root culture of Bixa orellana L.
Molecules (Basel, Switzerland).
2014 Jan; 19(1):756-66. doi:
10.3390/molecules19010756
. [PMID: 24406786] - Yoko Yamashita, Masaru Yamaoka, Tomohisa Hasunuma, Hitoshi Ashida, Ken-ichi Yoshida. Detection of orally administered inositol stereoisomers in mouse blood plasma and their effects on translocation of glucose transporter 4 in skeletal muscle cells.
Journal of agricultural and food chemistry.
2013 May; 61(20):4850-4. doi:
10.1021/jf305322t
. [PMID: 23641877] - Wei-Dan Jiang, Yang Liu, Jun Jiang, Kai Hu, Shu-Hong Li, Lin Feng, Xiao-Qiu Zhou. In vitro interceptive and reparative effects of myo-inositol against copper-induced oxidative damage and antioxidant system disturbance in primary cultured fish enterocytes.
Aquatic toxicology (Amsterdam, Netherlands).
2013 May; 132-133(?):100-10. doi:
10.1016/j.aquatox.2013.02.005
. [PMID: 23474319] - Hiromi Yoshida, Naoko Yoshida, Isoko Kuriyama, Yuka Tomiyama-Sakamoto, Yoshiyuki Mizushina. Profiles of lipid components, fatty acid distributions of triacylglycerols and phospholipids in Jack beans (Canavalia gladiata DC.).
Food chemistry.
2013 Jan; 136(2):807-12. doi:
10.1016/j.foodchem.2012.08.087
. [PMID: 23122131] - Takahiro Fujimoto, Senji Shirasawa. Identification of KRAP-expressing cells and the functional relevance of KRAP to the subcellular localization of IP3R in the stomach and kidney.
International journal of molecular medicine.
2012 Dec; 30(6):1287-93. doi:
10.3892/ijmm.2012.1126
. [PMID: 22992961] - Yingjun Lv, Lei Dai, Huili Han, Shuxia Zhang. PCV2 induces apoptosis and modulates calcium homeostasis in piglet lymphocytes in vitro.
Research in veterinary science.
2012 Dec; 93(3):1525-30. doi:
10.1016/j.rvsc.2012.04.003
. [PMID: 22542803] - Ying Wang, Hsien-yu Wang. Dvl3 translocates IPMK to the cell membrane in response to Wnt.
Cellular signalling.
2012 Dec; 24(12):2389-95. doi:
10.1016/j.cellsig.2012.08.009
. [PMID: 22940627] - Julieta Caballero, Gilles Frenette, Olivier D'Amours, Clémence Belleannée, Nicolas Lacroix-Pepin, Claude Robert, Robert Sullivan. Bovine sperm raft membrane associated Glioma Pathogenesis-Related 1-like protein 1 (GliPr1L1) is modified during the epididymal transit and is potentially involved in sperm binding to the zona pellucida.
Journal of cellular physiology.
2012 Dec; 227(12):3876-86. doi:
10.1002/jcp.24099
. [PMID: 22552861] - Daniel Bosch, Adolfo Saiardi. Arginine transcriptional response does not require inositol phosphate synthesis.
The Journal of biological chemistry.
2012 Nov; 287(45):38347-55. doi:
10.1074/jbc.m112.384255
. [PMID: 22992733] - Giacomo Zara, Paola Goffrini, Tiziana Lodi, Severino Zara, Ilaria Mannazzu, Marilena Budroni. FLO11 expression and lipid biosynthesis are required for air-liquid biofilm formation in a Saccharomyces cerevisiae flor strain.
FEMS yeast research.
2012 Nov; 12(7):864-6. doi:
10.1111/j.1567-1364.2012.00831.x
. [PMID: 22805178] - Michael Hanscho, David E Ruckerbauer, Neha Chauhan, Harald F Hofbauer, Stefan Krahulec, Bernd Nidetzky, Sepp D Kohlwein, Juergen Zanghellini, Klaus Natter. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth.
FEMS yeast research.
2012 Nov; 12(7):796-808. doi:
10.1111/j.1567-1364.2012.00830.x
. [PMID: 22780918] - Feng-Jie Yuan, Dan-Hua Zhu, Yuan-Yuan Tan, De-Kun Dong, Xu-Jun Fu, Shen-Long Zhu, Bai-Quan Li, Qing-Yao Shu. Identification and characterization of the soybean IPK1 ortholog of a low phytic acid mutant reveals an exon-excluding splice-site mutation.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2012 Nov; 125(7):1413-23. doi:
10.1007/s00122-012-1922-7
. [PMID: 22733447] - Adebowale Adebiyi, Candice M Thomas-Gatewood, M Dennis Leo, Michael W Kidd, Zachary P Neeb, Jonathan H Jaggar. An elevation in physical coupling of type 1 inositol 1,4,5-trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension.
Hypertension (Dallas, Tex. : 1979).
2012 Nov; 60(5):1213-9. doi:
10.1161/hypertensionaha.112.198820
. [PMID: 23045459] - Helena Brauer, Julia Strauss, Wiebke Wegner, Carsten Müller-Tidow, Martin Horstmann, Manfred Jücker. Leukemia-associated mutations in SHIP1 inhibit its enzymatic activity, interaction with the GM-CSF receptor and Grb2, and its ability to inactivate PI3K/AKT signaling.
Cellular signalling.
2012 Nov; 24(11):2095-101. doi:
10.1016/j.cellsig.2012.07.017
. [PMID: 22820502] - Junzhi Duan, Minghui Zhang, Hongliang Zhang, Haiyan Xiong, Pengli Liu, Jauhar Ali, Jinjie Li, Zichao Li. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.).
Plant science : an international journal of experimental plant biology.
2012 Nov; 196(?):143-51. doi:
10.1016/j.plantsci.2012.08.003
. [PMID: 23017909] - Soumita Ghosh, Arjun Sengupta, Shobhona Sharma, Haripalsingh M Sonawat. Metabolic fingerprints of serum, brain, and liver are distinct for mice with cerebral and noncerebral malaria: a ¹H NMR spectroscopy-based metabonomic study.
Journal of proteome research.
2012 Oct; 11(10):4992-5004. doi:
10.1021/pr300562m
. [PMID: 22838963] - A Santamaria, D Giordano, F Corrado, B Pintaudi, M L Interdonato, G Di Vieste, A Di Benedetto, R D'Anna. One-year effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome.
Climacteric : the journal of the International Menopause Society.
2012 Oct; 15(5):490-5. doi:
10.3109/13697137.2011.631063
. [PMID: 22192068] - M A Anwar, J Shalhoub, P A Vorkas, C S Lim, E J Want, J K Nicholson, E Holmes, A H Davies. In-vitro identification of distinctive metabolic signatures of intact varicose vein tissue via magic angle spinning nuclear magnetic resonance spectroscopy.
European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.
2012 Oct; 44(4):442-50. doi:
10.1016/j.ejvs.2012.05.020
. [PMID: 22819098] - Nisha Singh, Amy C Halliday, Matthew Knight, Nathan A Lack, Edward Lowe, Grant C Churchill. Cloning, expression, purification, crystallization and X-ray analysis of inositol monophosphatase from Mus musculus and Homo sapiens.
Acta crystallographica. Section F, Structural biology and crystallization communications.
2012 Oct; 68(Pt 10):1149-52. doi:
10.1107/s1744309112035191
. [PMID: 23027737] - Elisabeth A Willer, Roland Malli, Alexander I Bondarenko, Stefan Zahler, Angelika M Vollmar, Wolfgang F Graier, Robert Fürst. The vascular barrier-protecting hawthorn extract WS® 1442 raises endothelial calcium levels by inhibition of SERCA and activation of the IP3 pathway.
Journal of molecular and cellular cardiology.
2012 Oct; 53(4):567-77. doi:
10.1016/j.yjmcc.2012.07.002
. [PMID: 22814436] - Suwen Qi, Xin Ouyang, Linqian Wang, Wujian Peng, Jinli Wen, Yong Dai. A pilot metabolic profiling study in serum of patients with chronic kidney disease based on (1) H-NMR-spectroscopy.
Clinical and translational science.
2012 Oct; 5(5):379-85. doi:
10.1111/j.1752-8062.2012.00437.x
. [PMID: 23067349] - Sarah J Adams, Iraz T Aydin, Julide T Celebi. GAB2--a scaffolding protein in cancer.
Molecular cancer research : MCR.
2012 Oct; 10(10):1265-70. doi:
10.1158/1541-7786.mcr-12-0352
. [PMID: 22871571] - Laurence Carroll, Meg Perumal, Neil Vasdev, Edward Robins, Eric O Aboagye. Radiosynthesis and in vivo tumor uptake of 2-deoxy-2-[(18)F]fluoro-myo-inositol.
Bioorganic & medicinal chemistry letters.
2012 Oct; 22(19):6148-50. doi:
10.1016/j.bmcl.2012.08.022
. [PMID: 22944120] - Isabel Garcia-Perez, Alma Villaseñor, Anisha Wijeyesekera, Joram M Posma, Zhirong Jiang, Jeremiah Stamler, Peter Aronson, Robert Unwin, Coral Barbas, Paul Elliott, Jeremy Nicholson, Elaine Holmes. Urinary metabolic phenotyping the slc26a6 (chloride-oxalate exchanger) null mouse model.
Journal of proteome research.
2012 Sep; 11(9):4425-35. doi:
10.1021/pr2012544
. [PMID: 22594923] - Jamie L Willems, Nicholas H Low. Major carbohydrate, polyol, and oligosaccharide profiles of agave syrup. Application of this data to authenticity analysis.
Journal of agricultural and food chemistry.
2012 Sep; 60(35):8745-54. doi:
10.1021/jf3027342
. [PMID: 22909406] - Sarah Gheuens, Long Ngo, Xiaoen Wang, David C Alsop, Robert E Lenkinski, Igor J Koralnik. Metabolic profile of PML lesions in patients with and without IRIS: an observational study.
Neurology.
2012 Sep; 79(10):1041-8. doi:
10.1212/wnl.0b013e318268465b
. [PMID: 22914832] - Mitzi M Gonzales, Takashi Tarumi, Danielle E Eagan, Hirofumi Tanaka, Miral Vaghasia, Andreana P Haley. Indirect effects of elevated body mass index on memory performance through altered cerebral metabolite concentrations.
Psychosomatic medicine.
2012 Sep; 74(7):691-8. doi:
10.1097/psy.0b013e31825ff1de
. [PMID: 22822230] - Joan M Boggs, Godha Rangaraj, Awa Dicko. Effect of phosphorylation of phosphatidylinositol on myelin basic protein-mediated binding of actin filaments to lipid bilayers in vitro.
Biochimica et biophysica acta.
2012 Sep; 1818(9):2217-27. doi:
10.1016/j.bbamem.2012.04.006
. [PMID: 22538354] - Sara De Grazia, Gianfranco Carlomagno, Vittorio Unfer, Pietro Cavalli. Myo-inositol soft gel capsules may prevent the risk of coffee-induced neural tube defects.
Expert opinion on drug delivery.
2012 Sep; 9(9):1033-9. doi:
10.1517/17425247.2012.701616
. [PMID: 22724555] - Mohamed Trebak. STIM/Orai signalling complexes in vascular smooth muscle.
The Journal of physiology.
2012 Sep; 590(17):4201-8. doi:
10.1113/jphysiol.2012.233353
. [PMID: 22641780] - K J Grim, A J Abcejo, A Barnes, V Sathish, D F Smelter, G C Ford, M A Thompson, Y S Prakash, C M Pabelick. Caveolae and propofol effects on airway smooth muscle.
British journal of anaesthesia.
2012 Sep; 109(3):444-53. doi:
10.1093/bja/aes130
. [PMID: 22542538] - Emily P Thi, Neil E Reiner. Phosphatidylinositol 3-kinases and their roles in phagosome maturation.
Journal of leukocyte biology.
2012 Sep; 92(3):553-66. doi:
10.1189/jlb.0212053
. [PMID: 22569897] - Gregory M Rankin, Benjamin J Compton, Karen A Johnston, Colin M Hayman, Gavin F Painter, David S Larsen. Synthesis and mass spectral characterization of mycobacterial phosphatidylinositol and its dimannosides.
The Journal of organic chemistry.
2012 Aug; 77(16):6743-59. doi:
10.1021/jo301189y
. [PMID: 22845613] - K Zyla, M Mika, R Duliński, S Swiatkiewicz, J Koreleski, H Pustkowiak, J Piironen. Effects of inositol, inositol-generating phytase B applied alone, and in combination with 6-phytase A to phosphorus-deficient diets on laying performance, eggshell quality, yolk cholesterol, and fatty acid deposition in laying hens.
Poultry science.
2012 Aug; 91(8):1915-27. doi:
10.3382/ps.2012-02198
. [PMID: 22802186] - Anita Aperia. 2011 Homer Smith Award: To serve and protect: classic and novel roles for Na+, K+ -adenosine triphosphatase.
Journal of the American Society of Nephrology : JASN.
2012 Aug; 23(8):1283-90. doi:
10.1681/asn.2012010102
. [PMID: 22745476] - Robyn D Moir, David A Gross, David L Silver, Ian M Willis. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR.
PLoS genetics.
2012 Aug; 8(8):e1002890. doi:
10.1371/journal.pgen.1002890
. [PMID: 22927826] - Alisa Boutin, Michael D Allen, Susanne Neumann, Marvin C Gershengorn. Persistent signaling by thyrotropin-releasing hormone receptors correlates with G-protein and receptor levels.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2012 Aug; 26(8):3473-82. doi:
10.1096/fj.12-207860
. [PMID: 22593547] - Shatakshi Srivastava, Hema Bisht, O P Sidhu, Ashish Srivastava, P C Singh, R M Pandey, S K Raj, Raja Roy, C S Nautiyal. Changes in the metabolome and histopathology of Amaranthus hypochondriacus L. in response to Ageratum enation virus infection.
Phytochemistry.
2012 Aug; 80(?):8-16. doi:
10.1016/j.phytochem.2012.05.007
. [PMID: 22683210] - J Navarro-Fernández, H Pérez-Sánchez, I Martínez-Martínez, I Meliciani, J A Guerrero, V Vicente, J Corral, W Wenzel. In silico discovery of a compound with nanomolar affinity to antithrombin causing partial activation and increased heparin affinity.
Journal of medicinal chemistry.
2012 Jul; 55(14):6403-12. doi:
10.1021/jm300621j
. [PMID: 22742452] - Pramote Chumnanpuen, Jie Zhang, Intawat Nookaew, Jens Nielsen. Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast.
Molecular genetics and genomics : MGG.
2012 Jul; 287(7):541-54. doi:
10.1007/s00438-012-0697-5
. [PMID: 22622761] - Francesco Cerino Badone, Marco Amelotti, Elena Cassani, Roberto Pilu. Study of low phytic acid1-7 (lpa1-7), a new ZmMRP4 mutation in maize.
The Journal of heredity.
2012 Jul; 103(4):598-605. doi:
10.1093/jhered/ess014
. [PMID: 22563127] - Hui Fu, Baoman Li, Leif Hertz, Liang Peng. Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH.
Neurochemistry international.
2012 Jul; 61(2):187-94. doi:
10.1016/j.neuint.2012.04.010
. [PMID: 22564531] - Sridevi Nagaraja, Adam Kapela, Nikolaos M Tsoukias. Intercellular communication in the vascular wall: a modeling perspective.
Microcirculation (New York, N.Y. : 1994).
2012 Jul; 19(5):391-402. doi:
10.1111/j.1549-8719.2012.00171.x
. [PMID: 22340204] - Zhijin Zhang, Juan Wang, Rongxue Zhang, Rongfeng Huang. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis.
The Plant journal : for cell and molecular biology.
2012 Jul; 71(2):273-87. doi:
10.1111/j.1365-313x.2012.04996.x
. [PMID: 22417285] - Eugénie Goupil, Veronica Wisehart, Etienne Khoury, Brandon Zimmerman, Sahar Jaffal, Terence E Hébert, Stéphane A Laporte. Biasing the prostaglandin F2α receptor responses toward EGFR-dependent transactivation of MAPK.
Molecular endocrinology (Baltimore, Md.).
2012 Jul; 26(7):1189-202. doi:
10.1210/me.2011-1245
. [PMID: 22638073] - Stella Blasel, Ulrich Pilatus, Joerg Magerkurth, Maya von Stauffenberg, Dmitri Vronski, Manuel Mueller, Lars Woeckel, Elke Hattingen. Metabolic gray matter changes of adolescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy.
Neuroradiology.
2012 Jul; 54(7):753-64. doi:
10.1007/s00234-011-1001-9
. [PMID: 22210349] - Jaime H Vera, Lucy J Garvey, Joanna M Allsop, Steve Kaye, Myra O McClure, David Back, Simon D Taylor-Robinson, Alan Winston. Alterations in cerebrospinal fluid chemokines are associated with maraviroc exposure and in vivo metabolites measurable by magnetic resonance spectroscopy.
HIV clinical trials.
2012 Jul; 13(4):222-7. doi:
10.1310/hct1304-222
. [PMID: 22849963] - Zulfiya Orynbayeva, Riju Singhal, Elina A Vitol, Michael G Schrlau, Elizabeth Papazoglou, Gary Friedman, Yury Gogotsi. Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation.
Nanomedicine : nanotechnology, biology, and medicine.
2012 Jul; 8(5):590-8. doi:
10.1016/j.nano.2011.08.008
. [PMID: 21889477] - Rasmi Rekha Mishra, Jitendra Kumar Chaudhary, Pramod C Rath. Cell cycle arrest and apoptosis by expression of a novel TPIP (TPIP-C2) cDNA encoding a C2-domain in HEK-293 cells.
Molecular biology reports.
2012 Jul; 39(7):7389-402. doi:
10.1007/s11033-012-1571-6
. [PMID: 22311048] - Prashant Kapoor, Vijay Ramakrishnan, S Vincent Rajkumar. Bortezomib combination therapy in multiple myeloma.
Seminars in hematology.
2012 Jul; 49(3):228-42. doi:
10.1053/j.seminhematol.2012.04.010
. [PMID: 22726546] - Franziska Kaplan, Louise A Lewis, Johann Wastian, Andreas Holzinger. Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta).
Protoplasma.
2012 Jul; 249(3):789-804. doi:
10.1007/s00709-011-0324-z
. [PMID: 21979310] - Marjan Bemani, Hamzeh Izadi, Kamran Mahdian, Abbas Khani, Mohammad Amin Samih. Study on the physiology of diapause, cold hardiness and supercooling point of overwintering pupae of the pistachio fruit hull borer, Arimania comaroffi.
Journal of insect physiology.
2012 Jul; 58(7):897-902. doi:
10.1016/j.jinsphys.2012.04.003
. [PMID: 22542495] - Raymond D Blind, Miyuki Suzawa, Holly A Ingraham. Direct modification and activation of a nuclear receptor-PIP₂ complex by the inositol lipid kinase IPMK.
Science signaling.
2012 Jun; 5(229):ra44. doi:
10.1126/scisignal.2003111
. [PMID: 22715467] - David E Hanke, Paroo N Parmar, Samuel E K Caddick, Porntip Green, Charles A Brearley. Synthesis of inositol phosphate ligands of plant hormone-receptor complexes: pathways of inositol hexakisphosphate turnover.
The Biochemical journal.
2012 Jun; 444(3):601-9. doi:
10.1042/bj20111811
. [PMID: 22429240] - Xiaoqun Catherine Zhang, Antonella Piccini, Michael P Myers, Linda Van Aelst, Nicholas K Tonks. Functional analysis of the protein phosphatase activity of PTEN.
The Biochemical journal.
2012 Jun; 444(3):457-64. doi:
10.1042/bj20120098
. [PMID: 22413754] - Mohamed Koubaa, Sarra Mghaieth, Brigitte Thomasset, Albrecht Roscher. Gas chromatography-mass spectrometry analysis of 13C labeling in sugars for metabolic flux analysis.
Analytical biochemistry.
2012 Jun; 425(2):183-8. doi:
10.1016/j.ab.2012.03.020
. [PMID: 22475504] - Carlos Munoz, Mentor Sopjani, Miribane Dërmaku-Sopjani, Ahmad Almilaji, Michael Föller, Florian Lang. Downregulation of the osmolyte transporters SMIT and BGT1 by AMP-activated protein kinase.
Biochemical and biophysical research communications.
2012 Jun; 422(3):358-62. doi:
10.1016/j.bbrc.2012.04.092
. [PMID: 22554511] - Damodaran Narayanan, Adebowale Adebiyi, Jonathan H Jaggar. Inositol trisphosphate receptors in smooth muscle cells.
American journal of physiology. Heart and circulatory physiology.
2012 Jun; 302(11):H2190-210. doi:
10.1152/ajpheart.01146.2011
. [PMID: 22447942] - Yan Wang, Ana P Alonso, Curtis G Wilkerson, Kenneth Keegstra. Deep EST profiling of developing fenugreek endosperm to investigate galactomannan biosynthesis and its regulation.
Plant molecular biology.
2012 Jun; 79(3):243-58. doi:
10.1007/s11103-012-9909-y
. [PMID: 22527750] - Yoshiki Nishimura, Toshiharu Shikanai, Soichi Nakamura, Maki Kawai-Yamada, Hirofumi Uchimiya. Gsp1 triggers the sexual developmental program including inheritance of chloroplast DNA and mitochondrial DNA in Chlamydomonas reinhardtii.
The Plant cell.
2012 Jun; 24(6):2401-14. doi:
10.1105/tpc.112.097865
. [PMID: 22715041] - Hesham A Tawfeek, Abdul B Abou-Samra. Disruption of parathyroid hormone and parathyroid hormone-related peptide receptor phosphorylation prolongs ERK1/2 MAPK activation and enhances c-fos expression.
American journal of physiology. Endocrinology and metabolism.
2012 Jun; 302(11):E1363-72. doi:
10.1152/ajpendo.00034.2012
. [PMID: 22414806] - D Mekahli, E Sammels, T Luyten, K Welkenhuyzen, L P van den Heuvel, E N Levtchenko, R Gijsbers, G Bultynck, J B Parys, H De Smedt, L Missiaen. Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release.
Cell calcium.
2012 Jun; 51(6):452-8. doi:
10.1016/j.ceca.2012.03.002
. [PMID: 22456092] - R Venturella, R Mocciaro, E De Trana, P D'Alessandro, M Morelli, F Zullo. [Assessment of the modification of the clinical, endocrinal and metabolical profile of patients with PCOS syndrome treated with myo-inositol].
Minerva ginecologica.
2012 Jun; 64(3):239-43. doi:
"
. [PMID: 22635019] - Roberto Ciarcia, Maria Teresa Vitiello, Massimiliano Galdiero, Carmen Pacilio, Valentina Iovane, Danila d'Angelo, David Pagnini, Giuseppe Caparrotti, Daniele Conti, Valentina Tomei, Salvatore Florio, Antonio Giordano. Imatinib treatment inhibit IL-6, IL-8, NF-KB and AP-1 production and modulate intracellular calcium in CML patients.
Journal of cellular physiology.
2012 Jun; 227(6):2798-803. doi:
10.1002/jcp.23029
. [PMID: 21938724] - Douglas MacKay, John Hathcock, Erminia Guarneri. Niacin: chemical forms, bioavailability, and health effects.
Nutrition reviews.
2012 Jun; 70(6):357-66. doi:
10.1111/j.1753-4887.2012.00479.x
. [PMID: 22646128] - Adelaide Del Viscovo, Agnese Secondo, Alba Esposito, Fernando Goglia, Maria Moreno, Lorella M T Canzoniero. Intracellular and plasma membrane-initiated pathways involved in the [Ca2+]i elevations induced by iodothyronines (T3 and T2) in pituitary GH3 cells.
American journal of physiology. Endocrinology and metabolism.
2012 Jun; 302(11):E1419-30. doi:
10.1152/ajpendo.00389.2011
. [PMID: 22414808] - Yuan Wang, Yu-Jia Chu, Hong-Wei Xue. Inositol polyphosphate 5-phosphatase-controlled Ins(1,4,5)P3/Ca2+ is crucial for maintaining pollen dormancy and regulating early germination of pollen.
Development (Cambridge, England).
2012 Jun; 139(12):2221-33. doi:
10.1242/dev.081224
. [PMID: 22573619] - Jasmohan S Bajaj, Patrick M Gillevet, Neeral R Patel, Vishwadeep Ahluwalia, Jason M Ridlon, Birgit Kettenmann, Christine M Schubert, Masoumeh Sikaroodi, Douglas M Heuman, Mary M E Crossey, Debulon E Bell, Philip B Hylemon, Panos P Fatouros, Simon D Taylor-Robinson. A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy.
Metabolic brain disease.
2012 Jun; 27(2):205-15. doi:
10.1007/s11011-012-9303-0
. [PMID: 22527995] - W Bogner, S Gruber, S Trattnig, M Chmelik. High-resolution mapping of human brain metabolites by free induction decay (1)H MRSI at 7 T.
NMR in biomedicine.
2012 Jun; 25(6):873-82. doi:
10.1002/nbm.1805
. [PMID: 22190245] - Mihály Kondrák, Ferenc Marincs, Ferenc Antal, Zsófia Juhász, Zsófia Bánfalvi. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions.
BMC plant biology.
2012 May; 12(?):74. doi:
10.1186/1471-2229-12-74
. [PMID: 22646706] - Guillaume Blanc, Irina Agarkova, Jane Grimwood, Alan Kuo, Andrew Brueggeman, David D Dunigan, James Gurnon, Istvan Ladunga, Erika Lindquist, Susan Lucas, Jasmyn Pangilinan, Thomas Pröschold, Asaf Salamov, Jeremy Schmutz, Donald Weeks, Takashi Yamada, Alexandre Lomsadze, Mark Borodovsky, Jean-Michel Claverie, Igor V Grigoriev, James L Van Etten. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation.
Genome biology.
2012 May; 13(5):R39. doi:
10.1186/gb-2012-13-5-r39
. [PMID: 22630137] - Sonali Sengupta, Sritama Mukherjee, Sabiha Parween, Arun Lahiri Majumder. Galactinol synthase across evolutionary diverse taxa: functional preference for higher plants?.
FEBS letters.
2012 May; 586(10):1488-96. doi:
10.1016/j.febslet.2012.04.003
. [PMID: 22673515] - Sunny D Rupwate, Preeti S Rupwate, Ram Rajasekharan. Regulation of lipid biosynthesis by phosphatidylinositol-specific phospholipase C through the transcriptional repression of upstream activating sequence inositol containing genes.
FEBS letters.
2012 May; 586(10):1555-60. doi:
10.1016/j.febslet.2012.04.022
. [PMID: 22673525] - Guojin Wu, Wei Zhang, Tao Na, Haiyan Jing, Hongju Wu, Ji-Bin Peng. Suppression of intestinal calcium entry channel TRPV6 by OCRL, a lipid phosphatase associated with Lowe syndrome and Dent disease.
American journal of physiology. Cell physiology.
2012 May; 302(10):C1479-91. doi:
10.1152/ajpcell.00277.2011
. [PMID: 22378746] - Tao Sun, Stephanie J Wetzel, Mitchell E Johnson, Beth A Surlow, Jana Patton-Vogt. Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the quantification of lipid-related extracellular metabolites in Saccharomyces cerevisiae.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2012 May; 897(?):1-9. doi:
10.1016/j.jchromb.2012.03.034
. [PMID: 22541168] - Khadija Ben-Aissa, Genaro Patino-Lopez, Natalya V Belkina, Ofelia Maniti, Tilman Rosales, Jian-Jiang Hao, Michael J Kruhlak, Jay R Knutson, Catherine Picart, Stephen Shaw. Activation of moesin, a protein that links actin cytoskeleton to the plasma membrane, occurs by phosphatidylinositol 4,5-bisphosphate (PIP2) binding sequentially to two sites and releasing an autoinhibitory linker.
The Journal of biological chemistry.
2012 May; 287(20):16311-23. doi:
10.1074/jbc.m111.304881
. [PMID: 22433855] - Margaret R Cunningham, Kathryn A McIntosh, John D Pediani, Joris Robben, Alexandra E Cooke, Mary Nilsson, Gwyn W Gould, Stuart Mundell, Graeme Milligan, Robin Plevin. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4).
The Journal of biological chemistry.
2012 May; 287(20):16656-69. doi:
10.1074/jbc.m111.315911
. [PMID: 22411985] - Christopher K Glass, Jerrold M Olefsky. Inflammation and lipid signaling in the etiology of insulin resistance.
Cell metabolism.
2012 May; 15(5):635-45. doi:
10.1016/j.cmet.2012.04.001
. [PMID: 22560216] - S Gheuens, D R Smith, X Wang, D C Alsop, R E Lenkinski, I J Koralnik. Simultaneous PML-IRIS after discontinuation of natalizumab in a patient with MS.
Neurology.
2012 May; 78(18):1390-3. doi:
10.1212/wnl.0b013e318253d61e
. [PMID: 22517104] - April S Y Wong, Emmie N M Ho, Terence S M Wan. Detection of myo-inositol trispyrophosphate in equine urine and plasma by hydrophillic interaction chromatography-tandem mass spectrometry.
Drug testing and analysis.
2012 May; 4(5):355-61. doi:
10.1002/dta.397
. [PMID: 22359395] - Nguyen Trong Hung, Hironori Yamamoto, Yuichiro Takei, Masashi Masuda, Ayako Otani, Mina Kozai, Shoko Ikeda, Otoki Nakahashi, Sarasa Tanaka, Yutaka Taketani, Eiji Takeda. Up-regulation of stanniocalcin 1 expression by 1,25-dihydroxy vitamin D(3) and parathyroid hormone in renal proximal tubular cells.
Journal of clinical biochemistry and nutrition.
2012 May; 50(3):227-33. doi:
10.3164/jcbn.11-99
. [PMID: 22573926] - Hui-Ling Liao, Jacqueline K Burns. Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit.
Journal of experimental botany.
2012 May; 63(8):3307-19. doi:
10.1093/jxb/ers070
. [PMID: 22407645] - M Nordio, E Proietti. The combined therapy with myo-inositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone.
European review for medical and pharmacological sciences.
2012 May; 16(5):575-81. doi:
NULL
. [PMID: 22774396] - Amador Goodridge, Carla Cueva, Maureen Lahiff, Grace Muzanye, John L Johnson, Payam Nahid, Lee W Riley. Anti-phospholipid antibody levels as biomarker for monitoring tuberculosis treatment response.
Tuberculosis (Edinburgh, Scotland).
2012 May; 92(3):243-7. doi:
10.1016/j.tube.2012.02.004
. [PMID: 22406155] - Jenny Gu, Katrin Weber, Elisabeth Klemp, Gidon Winters, Susanne U Franssen, Isabell Wienpahl, Ann-Kathrin Huylmans, Karsten Zecher, Thorsten B H Reusch, Erich Bornberg-Bauer, Andreas P M Weber. Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to systems robustness.
Integrative biology : quantitative biosciences from nano to macro.
2012 May; 4(5):480-93. doi:
10.1039/c2ib00109h
. [PMID: 22402787] - Khaled Ben El Kadhi, Grégory Emery, Sebastien Carreno. The unexpected role of Drosophila OCRL during cytokinesis.
Communicative & integrative biology.
2012 May; 5(3):291-3. doi:
10.4161/cib.19914
. [PMID: 22896796] - H Plattner, I M Sehring, I K Mohamed, K Miranda, W De Souza, R Billington, A Genazzani, E-M Ladenburger. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma).
Cell calcium.
2012 May; 51(5):351-82. doi:
10.1016/j.ceca.2012.01.006
. [PMID: 22387010] - Alexandra Constantin, Adam Elkhaled, Llewellyn Jalbert, Radhika Srinivasan, Soonmee Cha, Susan M Chang, Ruzena Bajcsy, Sarah J Nelson. Identifying malignant transformations in recurrent low grade gliomas using high resolution magic angle spinning spectroscopy.
Artificial intelligence in medicine.
2012 May; 55(1):61-70. doi:
10.1016/j.artmed.2012.01.002
. [PMID: 22387185]