3,4-Di-O-caffeoylquinic acid (BioDeep_00000002784)

Main id: BioDeep_00000230881

 

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Cytotoxicity natural product


代谢物信息卡片


(1S,3R,4R,5R)-3,4-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

化学式: C25H24O12 (516.1268)
中文名称: 异绿原酸B
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1C(C(C(CC1(C(=O)O)O)OC(=O)C=CC2=CC(=C(C=C2)O)O)OC(=O)C=CC3=CC(=C(C=C3)O)O)O
InChI: InChI=1S/C25H24O12/c26-15-5-1-13(9-17(15)28)3-7-21(31)36-20-12-25(35,24(33)34)11-19(30)23(20)37-22(32)8-4-14-2-6-16(27)18(29)10-14/h1-10,19-20,23,26-30,35H,11-12H2,(H,33,34)/b7-3+,8-4+/t19-,20-,23-,25+/m1/s1

描述信息

Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products.
3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe
3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].

同义名列表

20 个代谢物同义名

(1S,3R,4R,5R)-3,4-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid; methyl 3,5-di-O-caffeoyl quinate; methyl-3,5-di-O-caffeoylquinate; 4,5-Di-O-caffeoylquinic acid?; Quinic acid 3,4-di-O-caffeate; 3,4-di-O-caffeoylquinic acid; Rel-34-dicaffeoylquinic acid; 3,4-Dicaffeoylquinic acids; 4,5-Dicaffeoylquinic acid; 3,4-dicaffeoylquinic acid; 3,4-Di-O-caffeoylquinate; 34-Dicaffeoylquinic acid; Rel-34-dicaffeoylquinate; Isochlorogenic acid b; 3,4-dicaffeoylquinate; isochlorogenic acid B; 34-Dicaffeoylquinate; Isochlorogenate b; 3,4-DICQA; Isochlorogenic acid b



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

158 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 CAT, HIF1A, HSP90AA2P, KEAP1, PPARG, SCARB2, TYR, XDH
Peripheral membrane protein 2 GBA1, SORD
Endosome membrane 2 BACE1, SCARB2
Endoplasmic reticulum membrane 1 SCARB2
Mitochondrion membrane 1 SORD
Nucleus 4 GABPA, HIF1A, KEAP1, PPARG
cytosol 8 CAT, GPT, HIF1A, HSP90AA2P, KEAP1, PPARG, SORD, XDH
dendrite 1 BACE1
mitochondrial membrane 1 SORD
nuclear body 1 HIF1A
trans-Golgi network 2 BACE1, GBA1
nucleoplasm 4 GABPA, HIF1A, KEAP1, PPARG
RNA polymerase II transcription regulator complex 2 HIF1A, PPARG
Cell membrane 2 BACE1, TNF
Cell projection, axon 1 BACE1
Multi-pass membrane protein 1 SCARB2
Synapse 1 ACAN
cell surface 2 BACE1, TNF
glutamatergic synapse 1 ACAN
Golgi apparatus 2 BACE1, GBA1
Golgi membrane 2 INS, SCARB2
lysosomal membrane 3 GAA, GBA1, SCARB2
neuronal cell body 2 BACE1, TNF
synaptic vesicle 1 BACE1
Lysosome 5 BACE1, GAA, GBA1, SCARB2, TYR
endosome 1 BACE1
plasma membrane 5 BACE1, GAA, HSP90AA2P, SCARB2, TNF
Membrane 5 BACE1, CAT, GAA, SCARB2, SORD
axon 1 BACE1
extracellular exosome 8 ADAMTS3, CAT, GAA, GBA1, GPT, HSP90AA2P, SCARB2, SORD
Lysosome membrane 3 GAA, GBA1, SCARB2
Lumenal side 1 GBA1
endoplasmic reticulum 3 BACE1, GBA1, KEAP1
extracellular space 7 ACAN, ADAMTS3, IL6, INS, SORD, TNF, XDH
lysosomal lumen 4 ACAN, GAA, GBA1, SCARB2
perinuclear region of cytoplasm 3 HSP90AA2P, PPARG, TYR
mitochondrion 1 CAT
protein-containing complex 3 CAT, HIF1A, HSP90AA2P
intracellular membrane-bounded organelle 4 CAT, GAA, PPARG, TYR
Single-pass type I membrane protein 2 BACE1, TYR
Secreted 4 ADAMTS3, GAA, IL6, INS
extracellular region 7 ACAN, ADAMTS3, CAT, GAA, IL6, INS, TNF
hippocampal mossy fiber to CA3 synapse 1 BACE1
mitochondrial matrix 1 CAT
centriolar satellite 1 KEAP1
motile cilium 2 HIF1A, SORD
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 2 ACAN, ADAMTS3
multivesicular body 1 BACE1
axon cytoplasm 1 HIF1A
Melanosome membrane 1 TYR
midbody 1 KEAP1
Early endosome 1 BACE1
Golgi-associated vesicle 1 TYR
recycling endosome 2 BACE1, TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 2 BACE1, TNF
focal adhesion 2 CAT, SCARB2
GABA-ergic synapse 1 ACAN
extracellular matrix 1 ADAMTS3
Peroxisome 2 CAT, XDH
basement membrane 1 ACAN
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 ACAN
nuclear speck 1 HIF1A
Late endosome 1 BACE1
receptor complex 1 PPARG
chromatin 3 GABPA, HIF1A, PPARG
Late endosome membrane 1 SCARB2
phagocytic cup 1 TNF
Golgi apparatus, trans-Golgi network 1 BACE1
actin filament 1 KEAP1
Cell projection, cilium, flagellum 1 SORD
Cul3-RING ubiquitin ligase complex 1 KEAP1
Endomembrane system 1 BACE1
endosome lumen 1 INS
Cytoplasmic vesicle membrane 1 BACE1
Cell projection, dendrite 1 BACE1
tertiary granule membrane 1 GAA
Melanosome 1 TYR
Nucleus speckle 1 HIF1A
euchromatin 1 HIF1A
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 2 ACAN, INS
endoplasmic reticulum lumen 3 BACE1, IL6, INS
endocytic vesicle membrane 1 SCARB2
transport vesicle 1 INS
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
perineuronal net 1 ACAN
clathrin-coated endocytic vesicle membrane 1 SCARB2
ficolin-1-rich granule membrane 1 GAA
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
inclusion body 1 KEAP1
interleukin-6 receptor complex 1 IL6
autolysosome lumen 1 GAA
perisynaptic extracellular matrix 1 ACAN
Golgi-associated vesicle lumen 1 BACE1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Hanjiao He, Qing Wei, Jiao Chang, Xu Yi, Xiang Yu, Guoyong Luo, Xinfeng Li, Wude Yang, Yi Long. Exploring the hypoglycemic mechanism of chlorogenic acids from Pyrrosia petiolosa (Christ) Ching on type 2 diabetes mellitus based on network pharmacology and transcriptomics strategy. Journal of ethnopharmacology. 2024 Mar; 322(?):117580. doi: 10.1016/j.jep.2023.117580. [PMID: 38104881]
  • Magdy M D Mohammed, Elham A Heikal, Fatma M Ellessy, Tarek Aboushousha, Mosad A Ghareeb. Comprehensive chemical profiling of Bassia indica Wight. aerial parts extract using UPLC-ESI-MS/MS, and its antiparasitic activity in Trichinella spiralis infected mice: in silico supported in vivo study. BMC complementary medicine and therapies. 2023 May; 23(1):161. doi: 10.1186/s12906-023-03988-9. [PMID: 37202749]
  • Fan Wang, Bobby Lim-Ho Kong, Yun-Sang Tang, Hung-Kay Lee, Pang-Chui Shaw. Bioassay guided isolation of caffeoylquinic acids from the leaves of Ilex pubescens Hook. et Arn. and investigation of their anti-influenza mechanism. Journal of ethnopharmacology. 2023 Mar; 309(?):116322. doi: 10.1016/j.jep.2023.116322. [PMID: 36868436]
  • Chung-Fan Hsieh, Yu-Li Chen, Guan-Hua Lin, Yoke Fun Chan, Pei-Wen Hsieh, Jim-Tong Horng. 3,4-Dicaffeoylquinic Acid from the Medicinal Plant Ilex kaushue Disrupts the Interaction Between the Five-Fold Axis of Enterovirus A-71 and the Heparan Sulfate Receptor. Journal of virology. 2022 04; 96(7):e0054221. doi: 10.1128/jvi.00542-21. [PMID: 35319229]
  • Yuanyuan Zhao, Yiran Ren, Zhenqing Liu, Zijian Wang, Ying Liu. The metabolite profiling of 3,4-dicaffeoylquinic acid in Sprague-Dawley rats using ultra-high performance liquid chromatography equipped with linear ion trap-Orbitrap MS. Biomedical chromatography : BMC. 2022 Feb; 36(2):e5276. doi: 10.1002/bmc.5276. [PMID: 34741336]
  • Rong Li, Mingfang Tao, Ting Wu, Zhang Zhuo, Tingting Xu, Siyi Pan, Xiaoyun Xu. A promising strategy for investigating the anti-aging effect of natural compounds: a case study of caffeoylquinic acids. Food & function. 2021 Sep; 12(18):8583-8593. doi: 10.1039/d1fo01383a. [PMID: 34338272]
  • Shi-Wei Sun, Rong-Rong Wang, Xiao-Ying Sun, Jia-He Fan, Hang Qi, Yang Liu, Guo-Qing Qin, Wei Wang. Identification of Transient Receptor Potential Vanilloid 3 Antagonists from Achillea alpina L. and Separation by Liquid-Liquid-Refining Extraction and High-Speed Counter-Current Chromatography. Molecules (Basel, Switzerland). 2020 Apr; 25(9):. doi: 10.3390/molecules25092025. [PMID: 32357572]
  • Jing Hu, Yun Shi, Bing Yang, Zibo Dong, Xinxin Si, Kunming Qin. Changes in chemical components and antitumor activity during the heating process of Fructus Arctii. Pharmaceutical biology. 2019 Dec; 57(1):363-368. doi: 10.1080/13880209.2019.1616778. [PMID: 31295042]
  • Peng Wan, Minhao Xie, Guijie Chen, Zhuqing Dai, Bing Hu, Xiaoxiong Zeng, Yi Sun. Anti-inflammatory effects of dicaffeoylquinic acids from Ilex kudingcha on lipopolysaccharide-treated RAW264.7 macrophages and potential mechanisms. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2019 Apr; 126(?):332-342. doi: 10.1016/j.fct.2019.01.011. [PMID: 30654100]
  • Ruokun Yi, Jing Zhang, Peng Sun, Yu Qian, Xin Zhao. Protective Effects of Kuding Tea (Ilex kudingcha C. J. Tseng) Polyphenols on UVB-Induced Skin Aging in SKH1 Hairless Mice. Molecules (Basel, Switzerland). 2019 03; 24(6):. doi: 10.3390/molecules24061016. [PMID: 30871261]
  • Chunxu Chen, Guijie Chen, Peng Wan, Dan Chen, Tao Zhu, Bing Hu, Yi Sun, Xiaoxiong Zeng. Characterization of Bovine Serum Albumin and (-)-Epigallocatechin Gallate/3,4- O-Dicaffeoylquinic Acid/Tannic Acid Layer by Layer Assembled Microcapsule for Protecting Immunoglobulin G in Stomach Digestion and Release in Small Intestinal Tract. Journal of agricultural and food chemistry. 2018 Oct; 66(42):11141-11150. doi: 10.1021/acs.jafc.8b04381. [PMID: 30277397]
  • Shao-Nan Wang, Yong-Sheng Ding, Xiao-Jie Ma, Cheng-Bowen Zhao, Ming-Xuan Lin, Jing Luo, Yi-Nan Jiang, Shuai He, Jian-You Guo, Jin-Li Shi. Identification of Bioactive Chemical Markers in Zhi zhu xiang Improving Anxiety in Rat by Fingerprint-Efficacy Study. Molecules (Basel, Switzerland). 2018 Sep; 23(9):. doi: 10.3390/molecules23092329. [PMID: 30213112]
  • Benjamin J Knollenberg, Jingjing Liu, Shu Yu, Hong Lin, Li Tian. Cloning and functional characterization of a p-coumaroyl quinate/shikimate 3'-hydroxylase from potato (Solanum tuberosum). Biochemical and biophysical research communications. 2018 02; 496(2):462-467. doi: 10.1016/j.bbrc.2018.01.075. [PMID: 29337064]
  • Peng-Fei Yang, Zi-Ming Feng, Ya-Nan Yang, Jian-Shuang Jiang, Pei-Cheng Zhang. Neuroprotective Caffeoylquinic Acid Derivatives from the Flowers of Chrysanthemum morifolium. Journal of natural products. 2017 04; 80(4):1028-1033. doi: 10.1021/acs.jnatprod.6b01026. [PMID: 28248102]
  • Lu Wang, Shu Liu, Junpeng Xing, Zhiqiang Liu, Fengrui Song. Characterization of interaction property of multi-components in Gardenia jasminoides with aldose reductase by microdialysis combined with liquid chromatography coupled to mass spectrometry. Rapid communications in mass spectrometry : RCM. 2016 08; 30 Suppl 1(?):87-94. doi: 10.1002/rcm.7620. [PMID: 27539421]
  • Ting Tan, Chang-Jiang-Sheng Lai, Hui OuYang, Ming-Zhen He, Yulin Feng. Ionic liquid-based ultrasound-assisted extraction and aqueous two-phase system for analysis of caffeoylquinic acids from Flos Lonicerae Japonicae. Journal of pharmaceutical and biomedical analysis. 2016 Feb; 120(?):134-41. doi: 10.1016/j.jpba.2015.12.019. [PMID: 26730510]
  • J N Ma, S Bolraa, M Ji, Q Q He, C M Ma. Quantification and antioxidant and anti-HCV activities of the constituents from the inflorescences of Scabiosa comosa and S. tschilliensis. Natural product research. 2016; 30(5):590-4. doi: 10.1080/14786419.2015.1027701. [PMID: 25835468]
  • Hong Liu, Yan-fang Zheng, Chu-yuan Li, Yu-ying Zheng, De-qin Wang, Zhong Wu, Lin Huang, Yong-gang Wang, Pei-bo Li, Wei Peng, Wei-wei Su. Discovery of Anti-inflammatory Ingredients in Chinese Herbal Formula Kouyanqing Granule based on Relevance Analysis between Chemical Characters and Biological Effects. Scientific reports. 2015 Dec; 5(?):18080. doi: 10.1038/srep18080. [PMID: 26657159]
  • Jianping Zhao, Mei Wang, Bharathi Avula, Lingyun Zhong, Zhonghua Song, Qiongming Xu, Shunxiang Li, Ikhlas A Khan. Effect of Processing on the Traditional Chinese Herbal Medicine Flos Lonicerae: An NMR-based Chemometric Approach. Planta medica. 2015 Jun; 81(9):754-64. doi: 10.1055/s-0035-1546081. [PMID: 26039268]
  • Heino Martin Heyman, François Senejoux, Isabell Seibert, Thomas Klimkait, Vinesh Jaichand Maharaj, Jacobus Johannes Marion Meyer. Identification of anti-HIV active dicaffeoylquinic- and tricaffeoylquinic acids in Helichrysum populifolium by NMR-based metabolomic guided fractionation. Fitoterapia. 2015 Jun; 103(?):155-64. doi: 10.1016/j.fitote.2015.03.024. [PMID: 25841639]
  • Wen-Zheng Ju, Yang Zhao, Fang Liu, Ting Wu, Jun Zhang, Shi-Jia Liu, Ling Zhou, Guo-Liang Dai, Ning-Ning Xiong, Zhu-Yuan Fang. Clinical tolerability and pharmacokinetics of Erigerontis hydroxybenzene injection: results of a randomized phase I study in healthy Chinese volunteers. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2015 Feb; 22(2):319-25. doi: 10.1016/j.phymed.2014.11.014. [PMID: 25765839]
  • Andrea Moglia, Sergio Lanteri, Cinzia Comino, Lionel Hill, Daniel Knevitt, Cecilia Cagliero, Patrizia Rubiolo, Stephen Bornemann, Cathie Martin. Dual catalytic activity of hydroxycinnamoyl-coenzyme A quinate transferase from tomato allows it to moonlight in the synthesis of both mono- and dicaffeoylquinic acids. Plant physiology. 2014 Dec; 166(4):1777-87. doi: 10.1104/pp.114.251371. [PMID: 25301886]
  • Jian Chen, Sven Mangelinckx, Li Ma, Zhengtao Wang, Weilin Li, Norbert De Kimpe. Caffeoylquinic acid derivatives isolated from the aerial parts of Gynura divaricata and their yeast α-glucosidase and PTP1B inhibitory activity. Fitoterapia. 2014 Dec; 99(?):1-6. doi: 10.1016/j.fitote.2014.08.015. [PMID: 25172103]
  • Jin Han, Qing-Yuan Lv, Shi-Ying Jin, Tian-Tian Zhang, Shi-Xiao Jin, Xian-Yi Li, Hai-Long Yuan. Comparison of anti-bacterial activity of three types of di-O-caffeoylquinic acids in Lonicera japonica flowers based on microcalorimetry. Chinese journal of natural medicines. 2014 Feb; 12(2):108-13. doi: 10.1016/s1875-5364(14)60017-0. [PMID: 24636060]
  • Erdenechimeg Selenge, Toshihiro Murata, Kyoko Kobayashi, Javzan Batkhuu, Fumihiko Yoshizaki. Flavone tetraglycosides and benzyl alcohol glycosides from the Mongolian medicinal plant Dracocephalum ruyschiana. Journal of natural products. 2013 Feb; 76(2):186-93. doi: 10.1021/np300609u. [PMID: 23356964]
  • Jing Zhou, Hong-yue Ma, Xin-sheng Fan, Wei Xiao, Tuan-jie Wang. [Molecular docking of chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid with human serum albumin]. Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine. 2012 Oct; 10(10):1149-54. doi: 10.3736/jcim20121012. [PMID: 23073199]
  • Nassira Kacem, Anne-Emmanuelle Hay, Andrew Marston, Amar Zellagui, Salah Rhouati, Kurt Hostettmann. Antioxidant compounds from Algerian Convolvulus tricolor (Convolvulaceae) seed husks. Natural product communications. 2012 Jul; 7(7):873-4. doi: ". [PMID: 22908568]
  • Weicheng Hu, Ting Shen, Myeong-Hyeon Wang. Cell cycle arrest and apoptosis induced by methyl 3,5-dicaffeoyl quinate in human colon cancer cells: Involvement of the PI3K/Akt and MAP kinase pathways. Chemico-biological interactions. 2011 Oct; 194(1):48-57. doi: 10.1016/j.cbi.2011.08.006. [PMID: 21872580]
  • Sirima Puangpraphant, Mark A Berhow, Karl Vermillion, Greg Potts, Elvira Gonzalez de Mejia. Dicaffeoylquinic acids in Yerba mate (Ilex paraguariensis St. Hilaire) inhibit NF-κB nucleus translocation in macrophages and induce apoptosis by activating caspases-8 and -3 in human colon cancer cells. Molecular nutrition & food research. 2011 Oct; 55(10):1509-22. doi: 10.1002/mnfr.201100128. [PMID: 21656672]
  • Kheng Leong Ooi, Tengku Sifzizul Tengku Muhammad, Mei Lan Tan, Shaida Fariza Sulaiman. Cytotoxic, apoptotic and anti-α-glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth. Journal of ethnopharmacology. 2011 Jun; 135(3):685-95. doi: 10.1016/j.jep.2011.04.001. [PMID: 21497647]
  • Rakesh Jaiswal, Nikolai Kuhnert. Identification and characterization of five new classes of chlorogenic acids in burdock (Arctium lappa L.) roots by liquid chromatography/tandem mass spectrometry. Food & function. 2011 Jan; 2(1):63-71. doi: 10.1039/c0fo00125b. [PMID: 21773587]
  • Ya Fang Shang, Sang Min Kim, Dae-Geun Song, Cheol-Ho Pan, Won Jong Lee, Byung-Hun Um. Isolation and identification of antioxidant compounds from Ligularia fischeri. Journal of food science. 2010 Aug; 75(6):C530-5. doi: 10.1111/j.1750-3841.2010.01714.x. [PMID: 20722907]
  • Shengqiang Tong, Jizhong Yan, Yi-Xin Guan. Preparative separation of isomeric caffeoylquinic acids from Flos Lonicerae by pH-zone-refining counter-current chromatography. Journal of chromatography. A. 2008 Nov; 1212(1-2):48-53. doi: 10.1016/j.chroma.2008.09.114. [PMID: 18952222]
  • Yong-Qin Yin, Zhi-Bin Shen, Ling-Yi Kong. [Studies on chemical constituents from Ipomoea batatas]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2008 Oct; 31(10):1501-3. doi: ". [PMID: 19230398]
  • Yihang Wu, Leixiang Yang, Fang Wang, Xiumei Wu, Changxin Zhou, Shuyun Shi, Jianxia Mo, Yu Zhao. Hepatoprotective and antioxidative effects of total phenolics from Laggera pterodonta on chemical-induced injury in primary cultured neonatal rat hepatocytes. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2007 Aug; 45(8):1349-55. doi: 10.1016/j.fct.2007.01.011. [PMID: 17329003]
  • Tran Manh Hung, MinKyun Na, Phuong Thien Thuong, Nguyen Duy Su, DaiEun Sok, Kyung Sik Song, Yeon Hee Seong, KiHwan Bae. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. Journal of ethnopharmacology. 2006 Nov; 108(2):188-92. doi: 10.1016/j.jep.2006.04.029. [PMID: 16809011]
  • Fumihiro Teramachi, Takashi Koyano, Thaworn Kowithayakorn, Masahiko Hayashi, Kanki Komiyama, Masami Ishibashi. Collagenase inhibitory quinic acid esters from Ipomoea pes-caprae. Journal of natural products. 2005 May; 68(5):794-6. doi: 10.1021/np0500631. [PMID: 15921434]
  • Jongwon Choi, Jung-Kwan Park, Kyung-Tae Lee, Kwang-Kyun Park, Won-Bae Kim, Jin-Ha Lee, Hyun-Ju Jung, Hee-Juhn Park. In vivo antihepatotoxic effects of Ligularia fischeri var. spiciformis and the identification of the active component, 3,4-dicaffeoylquinic acid. Journal of medicinal food. 2005; 8(3):348-52. doi: 10.1089/jmf.2005.8.348. [PMID: 16176146]
  • Hong-liang Jiang, Li-zhen Xu, Xue-dong Yang, Da Zhang, Shi-lin Yang, Zhong-mei Zou. [Quinic acid esters from herba of Siphonostegia chinensis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2002 Dec; 27(12):923-6. doi: ". [PMID: 12776533]