L-Aspartic acid (BioDeep_00000001362)
Secondary id: BioDeep_00000398115, BioDeep_00000398614
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C4H7NO4 (133.0375)
中文名称: DL-天门冬氨酸, L-天门冬氨酸, 天冬氨酸溶液, L-天冬氨酸, 天冬氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 14.99%
Last reviewed on 2024-06-29.
Cite this Page
L-Aspartic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/l-aspartic_acid (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001362). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C(C(=O)O)N)C(=O)O
InChI: InChI=1S/C4H7NO4/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H,6,7)(H,8,9)
描述信息
Aspartic acid (Asp), also known as L-aspartic acid or as aspartate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-aspartic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Aspartic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans, aspartic acid is a nonessential amino acid derived from glutamic acid by enzymes using vitamin B6. However, in the human body, aspartate is most frequently synthesized through the transamination of oxaloacetate. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. As its name indicates, aspartic acid is the carboxylic acid analog of asparagine. The D-isomer of aspartic acid (D-aspartic acid) is one of two D-amino acids commonly found in mammals. Aspartic acid was first discovered in 1827 by Auguste-Arthur Plisson and Étienne Ossian Henry by hydrolysis of asparagine, which had been isolated from asparagus juice in 1806. Aspartate has many biochemical roles. It is a neurotransmitter, a metabolite in the urea cycle and it participates in gluconeogenesis. It carries reducing equivalents in the malate-aspartate shuttle, which utilizes the ready interconversion of aspartate and oxaloacetate, which is the oxidized (dehydrogenated) derivative of malic acid. Aspartate donates one nitrogen atom in the biosynthesis of inosine, the precursor to the purine bases which are key to DNA biosynthesis. In addition, aspartic acid acts as a hydrogen acceptor in a chain of ATP synthase. Aspartic acid is a major excitatory neurotransmitter, which is sometimes found to be increased in epileptic and stroke patients. It is decreased in depressed patients and in patients with brain atrophy. As a neurotransmitter, aspartic acid may provide resistance to fatigue and thus lead to endurance, although the evidence to support this idea is not strong (Wikipedia). Aspartic acid supplements are being evaluated. Five grams can raise blood levels. Magnesium and zinc may be natural inhibitors of some of the actions of aspartic acid. Aspartic acid, when chemically coupled with the amino acid D-phenylalanine, is a part of a natural sweetener, aspartame. This sweetener is an advance in artificial sweeteners, and is probably safe in normal doses to all except phenylketonurics. Aspartic acid may be a significant immunostimulant of the thymus and can protect against some of the damaging effects of radiation. Aspartic acid is found in higher abundance in: oysters, luncheon meats, sausage meat, wild game, sprouting seeds, oat flakes, avocado, asparagus, young sugarcane, and molasses from sugar beets.
[Spectral] L-Aspartate (exact mass = 133.03751) and Taurine (exact mass = 125.01466) and L-Asparagine (exact mass = 132.05349) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] L-Aspartate (exact mass = 133.03751) and L-Threonine (exact mass = 119.05824) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly.
L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly.
同义名列表
98 个代谢物同义名
Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate; Aspartic Acid, Magnesium-Potassium (2:1:2) Salt; Aspartic Acid, Magnesium (2:1) Salt; Hydrochloride, aspartate magnesium; Aspartic Acid, Monopotassium Salt; Aspartate Magnesium Hydrochloride; Aspartic Acid, Dipotassium Salt; Aspartic Acid, Monosodium Salt; 2-Amino-3-methylsuccinic acid; Aspartic Acid, Potassium Salt; Aspartic Acid, Disodium Salt; (2S)-2-aminobutanedioic acid; Aspartic Acid, Hydrochloride; Aspartic Acid, Ammonium Salt; Aspartic Acid, Calcium Salt; Hydrochloride aspartic acid; (S)-2-Aminobutanedioic acid; Aspartic Acid, Hydrobromide; Hydrobromide aspartic acid; (S)-Amino-butanedioic acid; Aspartic Acid, Sodium Salt; 2-Amino-3-methylsuccinate; (S)-Aminobutanedioic acid; (S)-2-Aminosuccinic acid; Aspartate, Monopotassium; alpha-Aminosuccinic acid; (S)-2-Aminobutanedioate; Monopotassium Aspartate; Aspartate, Dipotassium; (S)-Amino-butanedioate; Aspartate, Monosodium; (S)-(+)-Aspartic acid; Dipotassium Aspartate; (S)-Aminobutanedioate; Aspartate, Potassium; (S)-2-Aminosuccinate; (R)-2-Aminosuccinate; 2-Aminosuccinic acid; L-Aminosuccinic acid; Monosodium Aspartate; alpha-Aminosuccinate; Aspartate, Magnesium; Poly-DL-succinimide; L-(+)-Aspartic acid; Potassium Aspartate; Aspartate, Ammonium; Aspartate, Disodium; Magnesium Aspartate; (R,S)-Aspartic Acid; L-Asparaginic acid; (2S)-Aspartic acid; Disodium Aspartate; Ammonium Aspartate; (+-)-Aspartic Acid; Aspartate, Calcium; L-Asparaginsaeure; (L)-Aspartic acid; Calcium aspartate; (S)-Aspartic acid; Aspartate, Sodium; (+)-Aspartic acid; (S)-(+)-Aspartate; Asparaginic acid; Sodium Aspartate; L-Asparagic acid; DL-Aspartic Acid; L-Aminosuccinate; 2-Aminosuccinate; L Aspartic Acid; L-Aspartic Acid; L-(+)-Aspartate; Polysuccinimide; (2S)-Aspartate; L-Asparaginate; Aminosuccinate; Asparagic acid; Aspartic Acid; MG 5 Longoral; Mg-5-Longoral; (+)-Aspartate; (L)-Aspartate; (S)-Aspartate; Asparaginate; L-Asparagate; Magnesiocard; L-Aspartate; MG5Longoral; L Aspartate; Asparatate; Asparagate; Aspartate; H-Asp-OH; L-Asp; Asp; D; Aspartic acid; L-Aspartate; Aspartic acid
数据库引用编号
60 个数据库交叉引用编号
- ChEBI: CHEBI:17053
- ChEBI: CHEBI:22660
- KEGG: C00049
- KEGGdrug: D70832
- KEGGdrug: D00013
- PubChem: 5960
- PubChem: 424
- HMDB: HMDB0000191
- Metlin: METLIN15
- DrugBank: DB00128
- ChEMBL: CHEMBL274323
- Wikipedia: Aspartic acid
- MeSH: Aspartic Acid
- MetaCyc: L-ASPARTATE
- KNApSAcK: C00001342
- foodb: FDB012567
- chemspider: 5745
- CAS: 56-84-8
- MoNA: KNA00756
- MoNA: PB000455
- MoNA: KO002063
- MoNA: PB000454
- MoNA: RP001602
- MoNA: KNA00757
- MoNA: KNA00381
- MoNA: KNA00380
- MoNA: KNA00489
- MoNA: PB000453
- MoNA: KO002067
- MoNA: KNA00051
- MoNA: RP001601
- MoNA: PB000452
- MoNA: KO000031
- MoNA: KO002064
- MoNA: KO000033
- MoNA: KNA00052
- MoNA: KNA00487
- MoNA: KO002065
- MoNA: KO002066
- MoNA: PS026801
- MoNA: KO000032
- MoNA: KO000030
- MoNA: RP001611
- MoNA: KNA00049
- MoNA: KNA00758
- MoNA: KO000029
- MoNA: KNA00488
- PMhub: MS000000395
- PDB-CCD: ASP
- PDB-CCD: IAS
- 3DMET: B00015
- NIKKAJI: J9.169C
- KEGG: C16433
- NIKKAJI: J44.432D
- medchemexpress: HY-N0666
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-770
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-65
- PubChem: 3351
- KNApSAcK: 17053
- LOTUS: LTS0205466
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
25 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(12)
- superpathway of histidine, purine and pyrimidine biosynthesis:
ATP + D-ribose 5-phosphate ⟶ 5-phosphoribosyl 1-pyrophosphate + AMP
- aspartate degradation:
α-ketoglutarate + L-aspartate ⟶ L-glutamate + oxaloacetate
- tRNA charging pathway:
ATP + L-serine ⟶ AMP + pyrophosphate
- homoserine biosynthesis:
ATP + L-aspartate ⟶ ADP + L-aspartyl-4-phosphate
- arginine biosynthesis:
ATP + L-aspartate + citrulline ⟶ AMP + L-arginino-succinate + pyrophosphate
- pyrimidine ribonucleotides de novo biosynthesis:
O2 + dihydroorotate ⟶ H2O2 + orotate
- asparagine degradation:
H2O + L-asparagine ⟶ L-aspartate + ammonia
- asparagine biosynthesis:
ATP + H2O + L-aspartate + L-glutamine ⟶ AMP + L-asparagine + L-glutamate + pyrophosphate
- aspartate biosynthesis:
α-ketoglutarate + L-aspartate ⟶ L-glutamate + oxaloacetate
- glutamine degradation:
L-aspartate ⟶ ammonia + fumarate
- salvage pathways of purine nucleosides:
AMP + pyrophosphate ⟶ 5-phosphoribosyl 1-pyrophosphate + adenine
- purine nucleotides de novo biosynthesis:
ATP + XMP + ammonia ⟶ AMP + GMP + pyrophosphate
WikiPathways(7)
- Cerebral organic acidurias, including diseases:
L-2-Aminoadipic acid ⟶ 2-Oxoadipic acid
- Glycolysis and gluconeogenesis:
Aspartate ⟶ Oxaloacetate
- NAD biosynthesis I from aspartate:
L-Aspartic acid ⟶ Iminoaspartic acid
- Threonine biosynthesis:
L-Aspartate ⟶ L-Aspartyl-4-P
- Metabolism overview:
NH3 ⟶ Glutamic acid
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
- Metabolic reprogramming in pancreatic cancer:
lactate ⟶ pyruvate
Plant Reactome(0)
INOH(5)
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
- Pyrimidine Nucleotides and Nucleosides metabolism ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Deoxy-cytidine + H2O ⟶ Deoxy-uridine + NH3
- 2-Oxo-glutaric acid + L-Aspartic acid = L-Glutamic acid + Oxaloacetic acid ( Alanine,Aspartic acid and Asparagine metabolism ):
L-Glutamic acid + Oxaloacetic acid ⟶ 2-Oxo-glutaric acid + L-Aspartic acid
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
PlantCyc(0)
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(0)
PharmGKB(0)
425 个相关的物种来源信息
- 3319 - Abies: LTS0205466
- 90345 - Abies balsamea: 10.1016/S0021-9673(01)97854-9
- 90345 - Abies balsamea: LTS0205466
- 3630 - Abutilon: LTS0205466
- 318060 - Abutilon indicum: 10.1055/S-0028-1097714
- 318060 - Abutilon indicum: LTS0205466
- 42228 - Acoraceae: LTS0205466
- 4464 - Acorus: LTS0205466
- 4465 - Acorus calamus: LTS0205466
- 325552 - Acorus calamus var. angustatus: LTS0205466
- 325552 - Acorus calamus var. angustatus: NA
- 5339 - Agaricaceae: LTS0205466
- 155619 - Agaricomycetes: LTS0205466
- 5340 - Agaricus: LTS0205466
- 56157 - Agaricus campestris: 10.1021/JF60199A047
- 56157 - Agaricus campestris: LTS0205466
- 4449 - Alismataceae: LTS0205466
- 4678 - Allium: LTS0205466
- 1174972 - Allium rotundum: 10.1007/S10600-009-9452-5
- 1174972 - Allium rotundum: LTS0205466
- 4682 - Allium sativum: 10.1016/0378-8741(96)01416-X
- 4682 - Allium sativum: LTS0205466
- 94326 - Alpinia: LTS0205466
- 94327 - Alpinia galanga: 10.1016/0305-1978(86)90092-X
- 94327 - Alpinia galanga: LTS0205466
- 230707 - Alpinia purpurata: 10.1016/0305-1978(86)90092-X
- 230707 - Alpinia purpurata: LTS0205466
- 4668 - Amaryllidaceae: LTS0205466
- 4614 - Ananas: LTS0205466
- 4615 - Ananas comosus: 10.1016/0305-1978(86)90092-X
- 4615 - Ananas comosus: LTS0205466
- 4150 - Antirrhinum: LTS0205466
- 4151 - Antirrhinum majus: 10.1055/S-0028-1097736
- 4151 - Antirrhinum majus: LTS0205466
- 4037 - Apiaceae: LTS0205466
- 3701 - Arabidopsis: LTS0205466
- 3702 - Arabidopsis thaliana: 10.1073/PNAS.1403248111
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: 10.1111/J.1742-4658.2008.06279.X
- 3702 - Arabidopsis thaliana: LTS0205466
- 4454 - Araceae: LTS0205466
- 4050 - Araliaceae: LTS0205466
- 131254 - Archontophoenix: LTS0205466
- 180981 - Archontophoenix alexandrae: 10.1016/0305-1978(86)90092-X
- 180981 - Archontophoenix alexandrae: LTS0205466
- 115440 - Areca: LTS0205466
- 184783 - Areca catechu: 10.1016/0305-1978(86)90092-X
- 184783 - Areca catechu: LTS0205466
- 4710 - Arecaceae: LTS0205466
- 6660 - Artemia: LTS0205466
- 85549 - Artemia salina: 10.1021/JF60200A008
- 85549 - Artemia salina: LTS0205466
- 38009 - Artemiidae: LTS0205466
- 4219 - Artemisia: LTS0205466
- 72332 - Artemisia absinthium: 10.1007/BF00600846
- 72332 - Artemisia absinthium: LTS0205466
- 6656 - Arthropoda: LTS0205466
- 4890 - Ascomycota: LTS0205466
- 40552 - Asparagaceae: LTS0205466
- 4210 - Asteraceae: LTS0205466
- 33849 - Bacillariophyceae: LTS0205466
- 2836 - Bacillariophyta: LTS0205466
- 91061 - Bacilli: LTS0205466
- 2 - Bacteria: LTS0205466
- 5204 - Basidiomycota: LTS0205466
- 6658 - Branchiopoda: LTS0205466
- 3705 - Brassica: LTS0205466
- 3708 - Brassica napus: 10.1021/JF00011A007
- 3708 - Brassica napus: LTS0205466
- 3700 - Brassicaceae: LTS0205466
- 4613 - Bromeliaceae: LTS0205466
- 4269 - Byrsonima: LTS0205466
- 4270 - Byrsonima crassifolia: 10.3109/13880209509088143
- 4270 - Byrsonima crassifolia: LTS0205466
- 5475 - Candida: LTS0205466
- 5476 - Candida albicans: LTS0205466
- 3481 - Cannabaceae: LTS0205466
- 3482 - Cannabis: LTS0205466
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0205466
- 4200 - Caprifoliaceae: LTS0205466
- 3568 - Caryophyllaceae: LTS0205466
- 21019 - Castanea: LTS0205466
- 21020 - Castanea sativa: 10.1016/S0031-9422(00)83785-1
- 21020 - Castanea sativa: LTS0205466
- 41503 - Centaurea: LTS0205466
- 347529 - Centaurea solstitialis: 10.1002/NT.2620030309
- 347529 - Centaurea solstitialis: LTS0205466
- 3051 - Chlamydomonadaceae: LTS0205466
- 3052 - Chlamydomonas: LTS0205466
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0205466
- 3166 - Chlorophyceae: LTS0205466
- 3041 - Chlorophyta: LTS0205466
- 7711 - Chordata: LTS0205466
- 1890464 - Chroococcaceae: LTS0205466
- 13424 - Chrysophyllum: LTS0205466
- 233678 - Chrysophyllum roxburghii: 10.1016/0889-1575(91)90022-X
- 233678 - Chrysophyllum roxburghii: LTS0205466
- 13893 - Cocos: LTS0205466
- 13894 - Cocos nucifera: 10.1016/0305-1978(86)90092-X
- 13894 - Cocos nucifera: LTS0205466
- 41218 - Colchicaceae: LTS0205466
- 13444 - Colchicum: LTS0205466
- 1094124 - Colchicum trigynum: 10.1055/S-0028-1097874
- 1094124 - Colchicum trigynum: LTS0205466
- 4743 - Commelina: LTS0205466
- 4740 - Commelinaceae: LTS0205466
- 33836 - Coscinodiscophyceae: LTS0205466
- 3660 - Cucurbita: LTS0205466
- 184136 - Cucurbita foetidissima: 10.1021/JF60216A022
- 184136 - Cucurbita foetidissima: LTS0205466
- 3650 - Cucurbitaceae: LTS0205466
- 3367 - Cupressaceae: LTS0205466
- 3028117 - Cyanophyceae: LTS0205466
- 3394 - Cycadaceae: LTS0205466
- 3296 - Cycadopsida: LTS0205466
- 3395 - Cycas: LTS0205466
- 3397 - Cycas circinalis: 10.1055/S-2006-958002
- 3397 - Cycas circinalis: LTS0205466
- 58031 - Cycas rumphii: 10.1055/S-2006-958002
- 58031 - Cycas rumphii: LTS0205466
- 4609 - Cyperaceae: LTS0205466
- 4610 - Cyperus: LTS0205466
- 1234190 - Cyperus aromaticus: 10.1016/0305-1978(86)90092-X
- 1234190 - Cyperus aromaticus: LTS0205466
- 4038 - Daucus: LTS0205466
- 4039 - Daucus carota: 10.1016/0008-6215(84)85339-2
- 4039 - Daucus carota: LTS0205466
- 766764 - Debaryomycetaceae: LTS0205466
- 37818 - Dendrobium: LTS0205466
- 51096 - Dendrobium crumenatum: 10.1016/0305-1978(86)90092-X
- 51096 - Dendrobium crumenatum: LTS0205466
- 42195 - Dieffenbachia: LTS0205466
- 4671 - Dioscoreaceae: LTS0205466
- 44615 - Discinaceae: LTS0205466
- 40129 - Donax: LTS0205466
- 96514 - Donax canniformis: 10.1016/0305-1978(86)90092-X
- 96514 - Donax canniformis: LTS0205466
- 210034 - Donax grandis: 10.1016/0305-1978(86)90092-X
- 210034 - Donax grandis: LTS0205466
- 2800709 - Donella: LTS0205466
- 2866387 - Donella lanceolata: LTS0205466
- 147541 - Dothideomycetes: LTS0205466
- 543 - Enterobacteriaceae: LTS0205466
- 174214 - Epipremnum: LTS0205466
- 78380 - Epipremnum aureum: 10.1016/0305-1978(86)90092-X
- 78380 - Epipremnum aureum: LTS0205466
- 258264 - Epipremnum pinnatum: 10.1016/0305-1978(86)90092-X
- 258264 - Epipremnum pinnatum: LTS0205466
- 561 - Escherichia: LTS0205466
- 562 - Escherichia coli: LTS0205466
- 33682 - Euglenozoa: LTS0205466
- 2759 - Eukaryota: LTS0205466
- 3803 - Fabaceae: LTS0205466
- 3503 - Fagaceae: LTS0205466
- 38944 - Flammulina: LTS0205466
- 38945 - Flammulina velutipes: 10.1111/J.1365-2621.1987.TB13989.X
- 38945 - Flammulina velutipes: LTS0205466
- 3746 - Fragaria: LTS0205466
- 3747 - Fragaria × ananassa: 10.1021/JF00023A036
- 4751 - Fungi: LTS0205466
- 1236 - Gammaproteobacteria: LTS0205466
- 6448 - Gastropoda: LTS0205466
- 41219 - Gloriosa: LTS0205466
- 41220 - Gloriosa superba: 10.1016/0305-1978(86)90092-X
- 41220 - Gloriosa superba: LTS0205466
- 3846 - Glycine: LTS0205466
- 3847 - Glycine max: 10.1007/BF00576124
- 3847 - Glycine max: LTS0205466
- 33160 - Gyromitra: LTS0205466
- 33161 - Gyromitra esculenta: 10.1021/JF60199A047
- 33161 - Gyromitra esculenta: LTS0205466
- 9604 - Hominidae: LTS0205466
- 9605 - Homo: LTS0205466
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: LTS0205466
- 51023 - Hydrilla: LTS0205466
- 51024 - Hydrilla verticillata: 10.1016/0305-1978(86)90092-X
- 51024 - Hydrilla verticillata: LTS0205466
- 26319 - Hydrocharitaceae: LTS0205466
- 20685 - Indigofera: LTS0205466
- 520844 - Indigofera hendecaphylla: 10.1021/JF60189A002
- 520844 - Indigofera hendecaphylla: LTS0205466
- 539088 - Indigofera hirsuta: 10.1021/JF60189A002
- 539088 - Indigofera hirsuta: LTS0205466
- 3089969 - Indigofera pilosa: LTS0205466
- 138272 - Indigofera schimperi: 10.1021/JF60189A002
- 138272 - Indigofera schimperi: LTS0205466
- 13100 - Juniperus: LTS0205466
- 58039 - Juniperus communis: LTS0205466
- 244307 - Juniperus communis var. communis: 10.1016/S0021-9673(01)97854-9
- 244307 - Juniperus communis var. communis: LTS0205466
- 466205 - Juniperus scopulorum: 10.1016/S0021-9673(01)97854-9
- 466205 - Juniperus scopulorum: LTS0205466
- 5653 - Kinetoplastea: LTS0205466
- 4136 - Lamiaceae: LTS0205466
- 3853 - Lathyrus: LTS0205466
- 3860 - Lathyrus sativus: 10.1016/0021-9673(94)00777-2
- 3860 - Lathyrus sativus: LTS0205466
- 147547 - Lecanoromycetes: LTS0205466
- 147548 - Leotiomycetes: LTS0205466
- 4447 - Liliopsida: LTS0205466
- 29683 - Lophatherum gracile: -
- 3963 - Loranthaceae: LTS0205466
- 3867 - Lotus: LTS0205466
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0205466
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: LTS0205466
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0205466
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: LTS0205466
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0205466
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: LTS0205466
- 3398 - Magnoliopsida: LTS0205466
- 4268 - Malpighiaceae: LTS0205466
- 3629 - Malvaceae: LTS0205466
- 40674 - Mammalia: LTS0205466
- 4619 - Marantaceae: LTS0205466
- 589449 - Mediophyceae: LTS0205466
- 1890428 - Merismopediaceae: LTS0205466
- 33208 - Metazoa: LTS0205466
- 6447 - Mollusca: LTS0205466
- 3487 - Moraceae: LTS0205466
- 5193 - Morchella: LTS0205466
- 60347 - Morchella angusticeps: 10.1021/JF60199A047
- 60347 - Morchella angusticeps: LTS0205466
- 62754 - Morchella crassipes: 10.1021/JF60199A047
- 62754 - Morchella crassipes: LTS0205466
- 1579548 - Morchella deliciosa: 10.1021/JF60199A047
- 1579548 - Morchella deliciosa: LTS0205466
- 39407 - Morchella esculenta: 10.1021/JF60199A047
- 39407 - Morchella esculenta: LTS0205466
- 5192 - Morchellaceae: LTS0205466
- 168074 - Murdannia: LTS0205466
- 428249 - Murdannia nudiflora: 10.1016/0305-1978(86)90092-X
- 428249 - Murdannia nudiflora: LTS0205466
- 10066 - Muridae: LTS0205466
- 10088 - Mus: LTS0205466
- 10090 - Mus musculus: LTS0205466
- 10090 - Mus musculus: NA
- 4640 - Musa: LTS0205466
- 89151 - Musa × paradisiaca: 10.1016/0305-1978(86)90092-X
- 4637 - Musaceae: LTS0205466
- 37240 - Myxotrichaceae: LTS0205466
- 78133 - Myxotrichum: 10.1016/0305-1978(86)90092-X
- 78133 - Myxotrichum: LTS0205466
- 4432 - Nelumbo nucifera: -
- 4085 - Nicotiana: LTS0205466
- 4097 - Nicotiana tabacum: 10.1007/BF02660305
- 4097 - Nicotiana tabacum: LTS0205466
- 2696291 - Ochrophyta: LTS0205466
- 42451 - Onchidiidae: LTS0205466
- 69681 - Onchidium: 10.1016/0305-1978(86)90092-X
- 69681 - Onchidium: LTS0205466
- 45173 - Oncidium: 10.1016/0305-1978(86)90092-X
- 45173 - Oncidium: LTS0205466
- 3881 - Onobrychis: LTS0205466
- 1441993 - Onobrychis kachetica: 10.1007/BF00565728
- 1441993 - Onobrychis kachetica: LTS0205466
- 4747 - Orchidaceae: LTS0205466
- 4053 - Panax: LTS0205466
- 4054 - Panax ginseng: 10.1021/JF00093A051
- 4054 - Panax ginseng: LTS0205466
- 4724 - Pandanaceae: LTS0205466
- 4725 - Pandanus: LTS0205466
- 1165086 - Pandanus odorifer: 10.1016/0305-1978(86)90092-X
- 1165086 - Pandanus odorifer: LTS0205466
- 59064 - Peliosanthes: LTS0205466
- 148715 - Pentaclethra: LTS0205466
- 148716 - Pentaclethra macrophylla: 10.1007/BF02666050
- 148716 - Pentaclethra macrophylla: LTS0205466
- 147549 - Pezizomycetes: LTS0205466
- 862241 - Physalacriaceae: LTS0205466
- 3328 - Picea: LTS0205466
- 3330 - Picea glauca: 10.1016/S0021-9673(01)97854-9
- 3330 - Picea glauca: LTS0205466
- 3335 - Picea mariana: 10.1016/S0021-9673(01)97854-9
- 3335 - Picea mariana: LTS0205466
- 3331 - Picea pungens: 10.1016/S0021-9673(01)97854-9
- 3331 - Picea pungens: LTS0205466
- 3318 - Pinaceae: LTS0205466
- 58019 - Pinopsida: LTS0205466
- 3337 - Pinus: LTS0205466
- 3339 - Pinus contorta: 10.1016/S0021-9673(01)97854-9
- 3339 - Pinus contorta: LTS0205466
- 77912 - Pinus densiflora: 10.1248/YAKUSHI1947.107.4_279
- 77912 - Pinus densiflora: LTS0205466
- 55062 - Pinus ponderosa: 10.1016/S0021-9673(01)97854-9
- 55062 - Pinus ponderosa: 10.1034/J.1399-3054.1990.790104.X
- 55062 - Pinus ponderosa: LTS0205466
- 3887 - Pisum: LTS0205466
- 3888 - Pisum sativum: 10.1016/S0031-9422(00)85399-6
- 3888 - Pisum sativum: LTS0205466
- 208194 - Pisum sativum subsp. sativum: 10.1007/BF00574236
- 208194 - Pisum sativum subsp. sativum: LTS0205466
- 156152 - Plantaginaceae: LTS0205466
- 36657 - Pluteaceae: LTS0205466
- 16367 - Pontederiaceae: LTS0205466
- 3689 - Populus: LTS0205466
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0205466
- 81051 - Poria: -
- 1214 - Prochloron: LTS0205466
- 3754 - Prunus: LTS0205466
- 3758 - Prunus domestica: 10.1021/JF00017A016
- 3758 - Prunus domestica: LTS0205466
- 135621 - Pseudomonadaceae: LTS0205466
- 286 - Pseudomonas: LTS0205466
- 287 - Pseudomonas aeruginosa: LTS0205466
- 303 - Pseudomonas putida: LTS0205466
- 3356 - Pseudotsuga: LTS0205466
- 3357 - Pseudotsuga menziesii: 10.1016/S0021-9673(01)97854-9
- 3357 - Pseudotsuga menziesii: LTS0205466
- 3889 - Psophocarpus: LTS0205466
- 3891 - Psophocarpus tetragonolobus: 10.1111/J.1365-2621.1985.TB10514.X
- 3891 - Psophocarpus tetragonolobus: LTS0205466
- 5296 - Puccinia: LTS0205466
- 5297 - Puccinia graminis: 10.1139/V60-033
- 5297 - Puccinia graminis: LTS0205466
- 5262 - Pucciniaceae: LTS0205466
- 162484 - Pucciniomycetes: LTS0205466
- 56479 - Ramalina: LTS0205466
- 157169 - Ramalina fraxinea: 10.5586/ASBP.1979.002
- 157169 - Ramalina fraxinea: LTS0205466
- 56478 - Ramalinaceae: LTS0205466
- 46332 - Rhynchospora: LTS0205466
- 906937 - Rhynchospora colorata: 10.1016/0305-1978(86)90092-X
- 906937 - Rhynchospora colorata: LTS0205466
- 2872799 - Ripariosida: LTS0205466
- 108447 - Ripariosida hermaphrodita: LTS0205466
- 3745 - Rosaceae: LTS0205466
- 4891 - Saccharomycetes: LTS0205466
- 4450 - Sagittaria: LTS0205466
- 4451 - Sagittaria sagittifolia: 10.1016/0305-1978(86)90092-X
- 4451 - Sagittaria sagittifolia: LTS0205466
- 3688 - Salicaceae: LTS0205466
- 590 - Salmonella: LTS0205466
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0205466
- 3958 - Santalaceae: LTS0205466
- 3737 - Sapotaceae: LTS0205466
- 53922 - Senna: LTS0205466
- 346985 - Senna obtusifolia: 10.1021/JF00102A014
- 346985 - Senna obtusifolia: LTS0205466
- 77655 - Sida: LTS0205466
- 108447 - Sida hermaphrodita: 10.1007/BF00607552
- 4070 - Solanaceae: LTS0205466
- 4107 - Solanum: LTS0205466
- 4081 - Solanum lycopersicum: 10.1038/SDATA.2014.29
- 4081 - Solanum lycopersicum: LTS0205466
- 27029 - Stangeria: LTS0205466
- 34343 - Stangeria eriopus: 10.1016/0378-8741(94)90005-1
- 34343 - Stangeria eriopus: LTS0205466
- 90964 - Staphylococcaceae: LTS0205466
- 1279 - Staphylococcus: LTS0205466
- 1280 - Staphylococcus aureus: LTS0205466
- 13273 - Stellaria: LTS0205466
- 13274 - Stellaria media: 10.1007/S10600-010-9710-6
- 13274 - Stellaria media: LTS0205466
- 1883 - Streptomyces: LTS0205466
- 40842 - Streptomyces akiyoshiensis: 10.1139/V94-207
- 40842 - Streptomyces akiyoshiensis: LTS0205466
- 58346 - Streptomyces platensis: 10.1038/JA.2017.49
- 58346 - Streptomyces platensis: LTS0205466
- 2062 - Streptomycetaceae: LTS0205466
- 35493 - Streptophyta: LTS0205466
- 137301 - Styphnolobium: LTS0205466
- 3897 - Styphnolobium japonicum: 10.1016/S0031-9422(00)83857-1
- 3897 - Styphnolobium japonicum: LTS0205466
- 1142 - Synechocystis: 10.1104/PP.108.129403
- 1142 - Synechocystis: LTS0205466
- 44981 - Tacca: LTS0205466
- 2487666 - Tacca cristata: 10.1016/0305-1978(86)90092-X
- 2487666 - Tacca cristata: LTS0205466
- 167567 - Tacca integrifolia: 10.1016/0305-1978(86)90092-X
- 167567 - Tacca integrifolia: LTS0205466
- 1898022 - Taccaceae: LTS0205466
- 35127 - Thalassiosira: LTS0205466
- 35128 - Thalassiosira pseudonana: 10.1016/J.PROTIS.2019.05.004
- 35128 - Thalassiosira pseudonana: LTS0205466
- 29202 - Thalassiosiraceae: LTS0205466
- 49990 - Thymus: LTS0205466
- 2019959 - Thymus transcaucasicus: 10.1007/BF00575075
- 2019959 - Thymus transcaucasicus: LTS0205466
- 58023 - Tracheophyta: LTS0205466
- 4741 - Tradescantia: LTS0205466
- 428268 - Tradescantia spathacea: 10.1016/0305-1978(86)90092-X
- 428268 - Tradescantia spathacea: LTS0205466
- 709071 - Treculia: LTS0205466
- 709072 - Treculia africana: 10.1007/BF02666050
- 709072 - Treculia africana: LTS0205466
- 3677 - Trichosanthes kirilowii Maxim.: -
- 676073 - Trichosanthes rosthornii Harms: -
- 5690 - Trypanosoma: LTS0205466
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0205466
- 5654 - Trypanosomatidae: LTS0205466
- 3358 - Tsuga: LTS0205466
- 3359 - Tsuga heterophylla: 10.1016/S0021-9673(01)97854-9
- 3359 - Tsuga heterophylla: LTS0205466
- 19952 - Valeriana: LTS0205466
- 19953 - Valeriana officinalis: 10.1055/S-2006-959538
- 19953 - Valeriana officinalis: LTS0205466
- 19944 - Valerianaceae: LTS0205466
- 44607 - Verpa: LTS0205466
- 44609 - Verpa bohemica: 10.1021/JF60199A047
- 44609 - Verpa bohemica: LTS0205466
- 33090 - Viridiplantae: LTS0205466
- 1003255 - Viscaceae: LTS0205466
- 3971 - Viscum: LTS0205466
- 3972 - Viscum album: 10.1515/BCHM2.1960.322.1.273
- 3972 - Viscum album: LTS0205466
- 36658 - Volvariella: LTS0205466
- 36659 - Volvariella volvacea: LTS0205466
- 3298 - Zamiaceae: LTS0205466
- 4642 - Zingiberaceae: LTS0205466
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xinying Fu, Siyang Yan, Zongren Hu, Wen Sheng, Wanyu Li, Shida Kuang, Xue Feng, Lumei Liu, Wei Zhang, Qinghu He. Guhan Yangsheng Jing mitigates hippocampal neuronal pyroptotic injury and manifies learning and memory capabilities in sleep deprived mice via the NLRP3/Caspase1/GSDMD signaling pathway.
Journal of ethnopharmacology.
2024 May; 326(?):117972. doi:
10.1016/j.jep.2024.117972
. [PMID: 38403005] - Qing Xiao, Qingrong Huang, Chi-Tang Ho. Asparagine-Glucose Amadori Compounds: Formation, Characterization, and Analysis in Dry Jujube Fruit.
Journal of agricultural and food chemistry.
2024 Apr; 72(13):7344-7353. doi:
10.1021/acs.jafc.4c00526
. [PMID: 38502793] - Xiao-Ping Li, Michael J Rudolph, Yang Chen, Nilgun E Tumer. Structure-Function Analysis of the A1 Subunit of Shiga Toxin 2 with Peptides That Target the P-Stalk Binding Site and Inhibit Activity.
Biochemistry.
2024 Apr; 63(7):893-905. doi:
10.1021/acs.biochem.3c00733
. [PMID: 38467020] - Ariadne N M Furtado, Sávio Torres de Farias, Mayara Dos Santos Maia. Structural analyzes suggest that MiSSP13 and MiSSP16.5 may act as proteases inhibitors during ectomycorrhiza establishment in Laccaria bicolor.
Bio Systems.
2024 Apr; 238(?):105194. doi:
10.1016/j.biosystems.2024.105194
. [PMID: 38513884] - Debora Latino, Massimo Venditti, Sara Falvo, Giulia Grillo, Alessandra Santillo, Imed Messaoudi, Mariem Ben Rhouma, Sergio Minucci, Gabriella Chieffi Baccari, Maria Maddalena Di Fiore. Steroidogenesis Upregulation through Mitochondria-Associated Endoplasmic Reticulum Membranes and Mitochondrial Dynamics in Rat Testes: The Role of D-Aspartate.
Cells.
2024 Mar; 13(6):. doi:
10.3390/cells13060523
. [PMID: 38534366] - Noriaki Katayama, Takashi Osanai. Arginine inhibits the arginine biosynthesis rate-limiting enzyme and leads to the accumulation of intracellular aspartate in Synechocystis sp. PCC 6803.
Plant molecular biology.
2024 Mar; 114(2):27. doi:
10.1007/s11103-024-01416-1
. [PMID: 38478146] - Rômulo Pedro Macêdo Lima, Jakeline Santos Oliveira, Leandro Costa do Nascimento, Mônica Teresa Veneziano Labate, Carlos Alberto Labate, Pedro Barreto, Ivan de Godoy Maia. High-throughput analysis reveals disturbances throughout the cell caused by Arabidopsis UCP1 and UCP3 double knockdown.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108324. doi:
10.1016/j.plaphy.2023.108324
. [PMID: 38183903] - Marta Ramos-Barbero, Eva E Rufino-Palomares, Sergio Serrano-Carmona, Manuel Hernández-Yera, Leticia García-Salguero, José Antonio Lupiáñez, Amalia Pérez-Jiménez. Effect of Nutraceutical Factors on Hepatic Intermediary Metabolism in Wistar Rats with Induced Tendinopathy.
International journal of molecular sciences.
2024 Jan; 25(1):. doi:
10.3390/ijms25010629
. [PMID: 38203800] - Yi Shen, Yi-Qi Sun, He-Ming Li, Quan-Long Zhang, Qi-Ming Zhao, Jin-Long Xu, Lu-Ping Qin, Qiao-Yan Zhang. [UPLC-Q-TOF-MS-based metabolomics reveals mechanism of Morinda officinalis iridoid glycosides in treating rheumatoid arthritis and bone loss].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2024 Jan; 49(2):453-460. doi:
10.19540/j.cnki.cjcmm.20230914.705
. [PMID: 38403321] - Feng Wan, Linlu Jin, Yixue Qin, Ye Zeng. Modulation of muscarinic receptors by anisodine hydrobromide in cerebral ischemia.
Cellular and molecular biology (Noisy-le-Grand, France).
2023 Nov; 69(11):17-24. doi:
10.14715/cmb/2023.69.11.3
. [PMID: 38015513] - Shoki Ito, Atsuko Watanabe, Takashi Osanai. Regulation of l-aspartate oxidase contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803.
Plant physiology.
2023 Nov; ?(?):. doi:
10.1093/plphys/kiad580
. [PMID: 37936332] - Dengxun Lai, Brian P Hedlund, Rebecca L Mau, Jian-Yu Jiao, Junhui Li, Michaela Hayer, Paul Dijkstra, Egbert Schwartz, Wen-Jun Li, Hailiang Dong, Marike Palmer, Jeremy A Dodsworth, En-Min Zhou, Bruce A Hungate. Resource partitioning and amino acid assimilation in a terrestrial geothermal spring.
The ISME journal.
2023 11; 17(11):2112-2122. doi:
10.1038/s41396-023-01517-7
. [PMID: 37741957] - Huachao Xi, Xiaoqun Nie, Fang Gao, Xinxin Liang, Hu Li, Haiyan Zhou, Yujie Cai, Chen Yang. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine.
Science advances.
2023 10; 9(43):eadj9075. doi:
10.1126/sciadv.adj9075
. [PMID: 37878710] - Leyi Shao, Wei Wang, Xin Gong, Yinghao Yu, Junao Xue, Xinnian Zeng, Jiali Liu. The Toxicity Differences of Fluralaner against the Red Imported Fire Ant (Solenopsis invicta) at Different Developmental Stages.
International journal of molecular sciences.
2023 Oct; 24(21):. doi:
10.3390/ijms242115627
. [PMID: 37958611] - Spenser Waller, Avery Powell, Randi Noel, Michael J Schueller, Richard A Ferrieri. Radiocarbon Flux Measurements Reveal Mechanistic Insight into Heat-Stress Induction of Nicotine Biosynthesis in Nicotiana attenuata.
International journal of molecular sciences.
2023 Oct; 24(21):. doi:
10.3390/ijms242115509
. [PMID: 37958493] - Jing Zhao, Xin-Chen Tian, Jia-Qi Zhang, Chen Huang, Yan Sun, Sen Qiao, Shu-Long Jiang. Mechanism Exploration of Euphorbia fischeriana Steud. for Liver Cancer Based on Aspartic Acid Identification in Metabolomics.
Chinese journal of integrative medicine.
2023 Oct; ?(?):. doi:
10.1007/s11655-023-3706-0
. [PMID: 37861961] - Min Xu, Qiyu Yue, Ziyang He, Xiaoyang Ling, Wenhua Wang, Mingjie Gong. Wu-zhu-yu Decoction reduces early brain injury following subarachnoid hemorrhage in vivo and in vitro by activating the Nrf2 antioxidant system via SIRT6 targeting.
Journal of ethnopharmacology.
2023 Oct; 319(Pt 3):117335. doi:
10.1016/j.jep.2023.117335
. [PMID: 37863400] - Tingting Zhao, Ting Shu, Jinrong Lang, Ziyu Cui, Ping Li, Shi Wang. An Fe-organic framework/arginine-glycine-aspartate peptide-modified sensor for electrochemically detecting nitric oxide released from living cells.
Biomaterials science.
2023 Sep; ?(?):. doi:
10.1039/d3bm00923h
. [PMID: 37772672] - Xi Meng, Guoqi Yu, Tingyu Luo, Ruiyuan Zhang, Jun Zhang, Yongjie Liu. Transcriptomics integrated with metabolomics reveals perfluorobutane sulfonate (PFBS) exposure effect during pregnancy and lactation on lipid metabolism in rat offspring.
Chemosphere.
2023 Sep; 341(?):140120. doi:
10.1016/j.chemosphere.2023.140120
. [PMID: 37696479] - Sirui Zhou, Yancheng Zhou, Wanyu Zhong, Zhonghao Su, Zhenxia Qin. Involvement of protein L-isoaspartyl methyltransferase in the physiopathology of neurodegenerative diseases: Possible substrates associated with synaptic function.
Neurochemistry international.
2023 Aug; 170(?):105606. doi:
10.1016/j.neuint.2023.105606
. [PMID: 37657764] - Xin Hou, Sanjay Kumar Singh, Joshua R Werkman, Yongliang Liu, Qinghua Yuan, Xia Wu, Barunava Patra, Xueyi Sui, Ruiqing Lyu, Bingwu Wang, Xiaoyu Liu, Yongqing Li, Wei Ma, Sitakanta Pattanaik, Ling Yuan. Partial desensitization of MYC2 transcription factor alters the interaction with jasmonate signaling components and affects specialized metabolism.
International journal of biological macromolecules.
2023 Aug; ?(?):126472. doi:
10.1016/j.ijbiomac.2023.126472
. [PMID: 37625752] - Chenyu Wang, Le Huang, Shunshun Jin, Ruoxin Hou, Mingzhe Chen, Yonghui Liu, Wenjie Tang, Tiejun Li, Yulong Yin, Liuqin He. d-Aspartate in Low-Protein Diets Improves the Pork Quality by Regulating Energy and Lipid Metabolism via the Gut Microbes.
Journal of agricultural and food chemistry.
2023 Aug; 71(33):12417-12430. doi:
10.1021/acs.jafc.3c01974
. [PMID: 37578298] - Qianqian Chen, Jinhe Zhang, Mutu Huang, Peiqi Wang, Xiao Zhang, Mingjun Ma. Construction of 131I-RGDyC-PEG-PAMAM-DTX targeted drug delivery system and study of its physicochemical properties and biological activity.
Hellenic journal of nuclear medicine.
2023 Aug; ?(?):. doi:
10.1967/s002449912574
. [PMID: 37527047] - Ying-Lan Chen, Fan-Wei Lin, Kai-Tan Cheng, Chi-Hsin Chang, Sheng-Chi Hung, Thomas Efferth, Yet-Ran Chen. XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis.
Nature communications.
2023 08; 14(1):4697. doi:
10.1038/s41467-023-40406-7
. [PMID: 37542077] - Tomás F D Silva, Hannah Visca, Craig Klumpp, Oleg A Andreev, Yana K Reshetnyak, Miguel Machuqueiro. Arginine Residues Modulate the Membrane Interactions of pHLIP Peptides.
Journal of chemical information and modeling.
2023 07; 63(14):4433-4446. doi:
10.1021/acs.jcim.3c00360
. [PMID: 37395685] - Zhefeng Wang, Yumei Zhang, Tiantian Zhou, Xin Wu. N-carbamoyl aspartate reduced body weight by stimulating the thermogenesis of iBAT.
Biochemical and biophysical research communications.
2023 Jul; 665(?):152-158. doi:
10.1016/j.bbrc.2023.04.094
. [PMID: 37163935] - Farshad Teymoori, Golaleh Asghari, Sanaz Hoseinpour, Sajjad Roosta, Maryam Bordbar, Parvin Mirmiran, Narges Sarbazi, Fereidoun Azizi. Dietary amino acids and anthropometric indices: Tehran Lipid and Glucose Study.
Archives of endocrinology and metabolism.
2023 Jun; 67(6):e000646. doi:
10.20945/2359-3997000000646
. [PMID: 37364148] - Himanshu Saini, Medha Panthri, Biswaranjan Rout, Ashutosh Pandey, Meetu Gupta. Iono-metabolomic guided elucidation of arsenic induced physiological and metabolic dynamics in wheat genotypes.
Environmental pollution (Barking, Essex : 1987).
2023 Jun; 333(?):122040. doi:
10.1016/j.envpol.2023.122040
. [PMID: 37328127] - Hairong Wang, Yuan Liu, Jiawen Cui, Miaomiao Tong, Wenlong Guan, Zhi Cao, Xiaoli Gao, Xiaopeng Han, Xiaomeng Xian, Jiankun Li, Lili Zhao. Effects of Scutellaria strigillosa Hemsl. extract on HepG2 cell proliferation and apoptosis through binding to aspartate β-hydroxylase.
Biochemical and biophysical research communications.
2023 May; 668(?):62-69. doi:
10.1016/j.bbrc.2023.05.077
. [PMID: 37244036] - Yong Zhuo, Xiangyang Zou, Ya Wang, Xuemei Jiang, Mengmeng Sun, Shengyu Xu, Yan Lin, Lun Hua, Jian Li, Bin Feng, Zhengfeng Fang, Lianqiang Che, De Wu. Standardized ileal digestibility of amino acids in cottonseed meal fed to pregnant and non-pregnant sows.
Journal of animal science.
2023 Apr; ?(?):. doi:
10.1093/jas/skad132
. [PMID: 37119089] - Mingyi Du, Zhibin Yin, Kaijie Xu, Yudi Huang, Yizhu Xu, Wenlin Wen, Zhixiang Zhang, Hanhong Xu, Xinzhou Wu. Integrated mass spectrometry imaging and metabolomics reveals sublethal effects of indoxacarb on the red fire ant Solenopsis invicta.
Pest management science.
2023 Apr; ?(?):. doi:
10.1002/ps.7489
. [PMID: 37013793] - Jacob A Argandona, Dohyup Kim, Allison K Hansen. Comparative transcriptomics of aphid species that diverged > 22 MYA reveals genes that are important for the maintenance of their symbiosis.
Scientific reports.
2023 04; 13(1):5341. doi:
10.1038/s41598-023-32291-3
. [PMID: 37005434] - Hanae Makhokh, Pierre Lafite, Mélanie Larcher, Frédéric Lamblin, Françoise Chefdor, Christiane Depierreux, Mirai Tanigawa, Tatsuya Maeda, Sabine Carpin, François Héricourt. Searching for Osmosensing Determinants in Poplar Histidine-Aspartate Kinases.
International journal of molecular sciences.
2023 Mar; 24(7):. doi:
10.3390/ijms24076318
. [PMID: 37047295] - Yue Pu, Juan Zhang, Nian Peng, Rui Li, Dao-Jun Xie, Rong-Xin Zhang, Lan-Ting Sun, Jin-le Wang, Hao Ye. 1H NMR-based metabolomic study of striatal injury in rats with copper-loaded Wilson's disease by Chinese and Western medicine intervention.
Journal of pharmaceutical and biomedical analysis.
2023 Mar; 229(?):115355. doi:
10.1016/j.jpba.2023.115355
. [PMID: 37018958] - Shuang Li, Zhanru Shao, Chang Lu, Delin Duan. Isolation and functional verification of an aspartate aminotransferase gene from Neoporphyra haitanensis.
BMC plant biology.
2023 Mar; 23(1):150. doi:
10.1186/s12870-023-04158-2
. [PMID: 36941626] - João A Rodrigues, Mónica Silva, Rita Araújo, Leonor Madureira, Amadeu M V M Soares, Rosa Freitas, Ana M Gil. The influence of temperature rise on the metabolic response of Ruditapes philippinarum clams to 17-α-ethinylestradiol.
The Science of the total environment.
2023 Mar; 877(?):162898. doi:
10.1016/j.scitotenv.2023.162898
. [PMID: 36934939] - Leo Bellin, Diana Laura Garza Amaya, Vanessa Scherer, Tobias Pruß, Annalisa John, Andreas Richter, Torsten Möhlmann. Nucleotide Imbalance, Provoked by Downregulation of Aspartate Transcarbamoylase Impairs Cold Acclimation in Arabidopsis.
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041585
. [PMID: 36838573] - Simona Todisco, Biagia Musio, Vito Pesce, Maria Maddalena Cavalluzzi, Giuseppe Petrosillo, Gianluigi La Piana, Maria Noemi Sgobba, Nikola Schlosserová, Lucas Cafferati Beltrame, Rosa Di Lorenzo, Vincenzo Tragni, Domenico Marzulli, Lorenzo Guerra, Anna De Grassi, Vito Gallo, Mariateresa Volpicella, Luigi Leonardo Palese, Giovanni Lentini, Ciro Leonardo Pierri. Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets.
Biochemical pharmacology.
2023 02; 208(?):115405. doi:
10.1016/j.bcp.2022.115405
. [PMID: 36603686] - Feng Huang, Tong Zhang, Bin Li, Shaosong Wang, Chang Xu, Caihua Huang, Donghai Lin. NMR-based metabolomic analysis for the effects of moxibustion on imiquimod-induced psoriatic mice.
Journal of ethnopharmacology.
2023 Jan; 300(?):115626. doi:
10.1016/j.jep.2022.115626
. [PMID: 36049653] - M S Sadak, B A Bakry, T M Abdel-Razik, R S Hanafy. Amino acids foliar application for maximizing growth, productivity and quality of peanut grown under sandy soil.
Brazilian journal of biology = Revista brasleira de biologia.
2023; 83(?):e256338. doi:
10.1590/1519-6984.256338
. [PMID: 36753149] - Yingjie Ma, Jingyan Song, Xianling Cao, Zhengao Sun. Mechanism of Guilu Erxian ointment based on targeted metabolomics in intervening in vitro fertilization and embryo transfer outcome in older patients with poor ovarian response of kidney-qi deficiency type.
Frontiers in endocrinology.
2023; 14(?):1045384. doi:
10.3389/fendo.2023.1045384
. [PMID: 36742408] - Yi Shi, Qian Wu, Yi Lu, Ling-Peng Meng, Xiao-Ling Xu, Xiao-Juan Wang, Wei Chen. Arginine-Glycine-Aspartic Acid-anchored Curcumin-based Nanotherapeutics Inhibit Pyroptosis-induced Cytokine Release Syndrome for In Vivo and In Vitro Sepsis Applications.
Current pharmaceutical design.
2023; 29(4):283-294. doi:
10.2174/1381612829666230201144029
. [PMID: 36722481] - Si-Yuan Luo, Zhi Huang, Xi Chen, Min-Hua Zong, Wen-Yong Lou. Extraction and characterization of a functional protein from Millettia speciosa Champ. leaf.
Natural product research.
2023 Jan; 37(1):31-38. doi:
10.1080/14786419.2021.1947271
. [PMID: 34212817] - Yunan Hu, Mingxia Li, Yongjun Hu, Defu Han, Jian Wei, Tao Zhang, Jixun Guo, Lianxuan Shi. Wild soybean salt tolerance metabolic model: Assessment of storage protein mobilization in cotyledons and C/N balance in the hypocotyl/root axis.
Physiologia plantarum.
2023 Jan; 175(1):e13863. doi:
10.1111/ppl.13863
. [PMID: 36688582] - Tao Gong, Steve C N Hui, Helge J Zöllner, Mark Britton, Yulu Song, Yufan Chen, Aaron T Gudmundson, Kathleen E Hupfeld, Christopher W Davies-Jenkins, Saipavitra Murali-Manohar, Eric C Porges, Georg Oeltzschner, Weibo Chen, Guangbin Wang, Richard A E Edden. Neurometabolic timecourse of healthy aging.
NeuroImage.
2022 12; 264(?):119740. doi:
10.1016/j.neuroimage.2022.119740
. [PMID: 36356822] - Qing-Qi Chang, Long Chen, Ya-Fang Liao, Chun-Lu Yuan, Dan-Dan Zhang. [Mechanism of timosaponin AⅢ in regulation of metabolism against glioblastoma growth].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Dec; 47(24):6679-6686. doi:
10.19540/j.cnki.cjcmm.20220728.401
. [PMID: 36604918] - Hussain Ahmad, Xinrui Zhao, Nisar Ahmad, Abbas Khan, Yuexin Jin, Jie Du, Xuewei Zheng, Li Zeng, Yanan Ouyang, Pengfei Yang, Meng Chen, Xiaoxue Li, Zhe Yang, Zhongmin Tian. Benincasa hispida extracts positively regulated high salt-induced hypertension in Dahl salt-sensitive rats: Impact on biochemical profile and metabolic patterns.
Journal of food biochemistry.
2022 12; 46(12):e14497. doi:
10.1111/jfbc.14497
. [PMID: 36314446] - Abdur Rouf Samim, Vinay Kumar Singh, Huma Vaseem. Assessment of hazardous impact of nickel oxide nanoparticles on biochemical and histological parameters of gills and liver tissues of Heteropneustes fossilis.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2022 Dec; 74(?):127059. doi:
10.1016/j.jtemb.2022.127059
. [PMID: 35987181] - Zhehua Zhang, Deying Chen, Jiong Yu, Xiaoling Su, Lanjuan Li. Metabolic perturbations in human hepatocytes induced by bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate exposure: Insights from high-coverage quantitative metabolomics.
Analytical biochemistry.
2022 11; 657(?):114887. doi:
10.1016/j.ab.2022.114887
. [PMID: 36150471] - Hongzhao Yuan, Zhen He, Xiangbi Chen, Tida Ge, Liping Zhang, Jiurong Wang. Rapid, sensitive analysis method for determining the nitrogen stable isotope ratio of total free amino acids in soil.
Rapid communications in mass spectrometry : RCM.
2022 Nov; 36(21):e9390. doi:
10.1002/rcm.9390
. [PMID: 36056455] - Meshal M Almutairi, Hany M Almotairy. Analysis of Heat Shock Proteins Based on Amino Acids for the Tomato Genome.
Genes.
2022 11; 13(11):. doi:
10.3390/genes13112014
. [PMID: 36360251] - Yu Du, Chang Li, Shouchao Xu, Jiehong Yang, Haitong Wan, Yu He. LC-MS/MS combined with blood-brain dual channel microdialysis for simultaneous determination of active components of astragali radix-safflower combination and neurotransmitters in rats with cerebral ischemia reperfusion injury: Application in pharmacokinetic and pharmacodynamic study.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Nov; 106(?):154432. doi:
10.1016/j.phymed.2022.154432
. [PMID: 36113188] - Shangqing Li, Guorong Lyu, Shaohui Li, Hainan Yang, Yiru Yang. Metabolic characterization of amniotic fluid of fetuses with isolated choroid plexus cyst.
Journal of perinatal medicine.
2022 Oct; 50(8):1100-1106. doi:
10.1515/jpm-2022-0028
. [PMID: 35607760] - Hanxia Wang, Qiaoyun Ma, Fuhua Shan, Liping Tian, Jie Gong, Wei Quan, Weibing Yang, Qiling Hou, Fengting Zhang, Shengquan Zhang. Transcriptional regulation mechanism of wheat varieties with different nitrogen use efficiencies in response to nitrogen deficiency stress.
BMC genomics.
2022 Oct; 23(1):727. doi:
10.1186/s12864-022-08948-0
. [PMID: 36289540] - Christian Shema Mugisha, Tung Dinh, Abhishek Kumar, Kasyap Tenneti, Jenna E Eschbach, Keanu Davis, Robert Gifford, Mamuka Kvaratskhelia, Sebla B Kutluay. Emergence of Compensatory Mutations Reveals the Importance of Electrostatic Interactions between HIV-1 Integrase and Genomic RNA.
mBio.
2022 10; 13(5):e0043122. doi:
10.1128/mbio.00431-22
. [PMID: 35975921] - Kouji Uda, Luke A Moe. Distribution and evolution of the serine/aspartate racemase family in invertebrates. II. Frequent and widespread parallel evolution of aspartate racemase.
Journal of biochemistry.
2022 Oct; 172(5):303-311. doi:
10.1093/jb/mvac067
. [PMID: 35997160] - Lillian F Hyde, Yang Kong, Lihong Zhao, Sriganesh Ramachandra Rao, Jieping Wang, Lisa Stone, Andrew Njaa, Gayle B Collin, Mark P Krebs, Bo Chang, Steven J Fliesler, Patsy M Nishina, Jürgen K Naggert. A Dpagt1 Missense Variant Causes Degenerative Retinopathy without Myasthenic Syndrome in Mice.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231912005
. [PMID: 36233305] - Aradhana Mishra, Arpita Bhattacharya, Priyanka Chauhan, Shipra Pandey, Ashish Dwivedi. Phenotype microarray analysis reveals the biotransformation of Fusarium oxysporum f.sp. lycopersici influenced by Bacillus subtilis PBE-8 metabolites.
FEMS microbiology ecology.
2022 10; 98(10):. doi:
10.1093/femsec/fiac102
. [PMID: 36066920] - Misato Kuroiwa, Syoya Handa, Yutaka Gyoutoku, Miho Moriyama, Yutaro Neriya, Hisashi Nishigawa, Tomohide Natsuaki. Characterization of a ToMV isolate overcoming Tm-22 resistance gene in tomato.
Virus genes.
2022 Oct; 58(5):478-482. doi:
10.1007/s11262-022-01921-9
. [PMID: 35727492] - Yuan Kong, Chenyang Ji, Dong Guo, Rujian He, Meirong Zhao, Jun Fan. Triticonazole enantiomers induced enantioselective metabolic phenotypes in Fusarium graminearum and HepG2 cells.
Environmental science and pollution research international.
2022 Oct; 29(50):75978-75988. doi:
10.1007/s11356-022-21137-6
. [PMID: 35665887] - Ram Prasad Aganja, Chandran Sivasankar, Chamith Hewawaduge, John Hwa Lee. Safety assessment of compliant, highly invasive, lipid A-altered, O-antigen-defected Salmonella strains as prospective vaccine delivery systems.
Veterinary research.
2022 Oct; 53(1):76. doi:
10.1186/s13567-022-01096-z
. [PMID: 36183131] - Zhiyuan Meng, Jiajia Cui, Li Liu, Chunmei Yang, Xin Bao, Jianjun Wang, Xiaojun Chen. Toxicity effects of chlorantraniliprole in zebrafish (Danio rerio) involving in liver function and metabolic phenotype.
Pesticide biochemistry and physiology.
2022 Oct; 187(?):105194. doi:
10.1016/j.pestbp.2022.105194
. [PMID: 36127066] - Ivonne González-Gamboa, Adam A Caparco, Justin M McCaskill, Nicole F Steinmetz. Bioconjugation Strategies for Tobacco Mild Green Mosaic Virus.
Chembiochem : a European journal of chemical biology.
2022 09; 23(18):e202200323. doi:
10.1002/cbic.202200323
. [PMID: 35835718] - Heming Sui, Shiqi Wang, Gang Liu, Fei Meng, Zubing Cao, Yunhai Zhang. Effects of Heat Stress on Motion Characteristics and Metabolomic Profiles of Boar Spermatozoa.
Genes.
2022 09; 13(9):. doi:
10.3390/genes13091647
. [PMID: 36140814] - Che-Wei Lin, Chih-Yun Lee, Sung-Yen Lin, Lin Kang, Yin-Chih Fu, Chung-Hwan Chen, Chih-Kuang Wang. Bone-Targeting Nanoparticles of a Dendritic (Aspartic acid)3-Functionalized PEG-PLGA Biopolymer Encapsulating Simvastatin for the Treatment of Osteoporosis in Rat Models.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810530
. [PMID: 36142447] - Venelina Popova, Zhana Petkova, Nadezhda Mazova, Tanya Ivanova, Nadezhda Petkova, Magdalena Stoyanova, Albena Stoyanova, Sezai Ercisli, Zuhal Okcu, Sona Skrovankova, Jiri Mlcek. Chemical Composition Assessment of Structural Parts (Seeds, Peel, Pulp) of Physalis alkekengi L. Fruits.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27185787
. [PMID: 36144521] - Ling Gao, Qiang Gu, Hong Wang, Xingkong Ma, Feng Xue, Xing Zhang, Jiachun Ge, Tao Ding, Weijian Shen. [Determination of free amino acids in Eriocheir sinensis by ultra-high performance liquid chromatography-high resolution mass spectrometry].
Se pu = Chinese journal of chromatography.
2022 Sep; 40(9):825-832. doi:
10.3724/sp.j.1123.2022.03027
. [PMID: 36156629] - Pedro García-Caparrós, Lara Vogelsang, Marcus Persicke, Markus Wirtz, Vijay Kumar, Karl-Josef Dietz. Differential sensitivity of metabolic pathways in sugar beet roots to combined salt, heat, and light stress.
Physiologia plantarum.
2022 Sep; 174(5):e13786. doi:
10.1111/ppl.13786
. [PMID: 36169530] - Khaled Mohamed Mohamed Koriem, Marwa A El-Attar. Almond oil restores blood parameters, liver function, blood and liver antioxidants and DNA, and liver histology more efficiently than olive oil in favism.
Journal of complementary & integrative medicine.
2022 Sep; 19(3):599-606. doi:
10.1515/jcim-2022-0086
. [PMID: 35751565] - Takuya Miyakawa, Jian Yang, Masato Kawasaki, Naruhiko Adachi, Ayumu Fujii, Yumiko Miyauchi, Tomonari Muramatsu, Toshio Moriya, Toshiya Senda, Masaru Tanokura. Structural bases for aspartate recognition and polymerization efficiency of cyanobacterial cyanophycin synthetase.
Nature communications.
2022 08; 13(1):5097. doi:
10.1038/s41467-022-32834-8
. [PMID: 36042318] - Lijun Huang, Leiqiang Gong, Xueyan Huo, Lirong Lei, Qi Zhang, Yunjie Hu, Qixuan Kuang, Yu Gui, Yifei Dai, Yucheng Gu, Yun Deng, Dong Wang, Dale Guo. N-acetyldopamine dimer inhibits neuroinflammation through the TLR4/NF-κB and NLRP3/Caspase-1 pathways.
Acta biochimica et biophysica Sinica.
2022 Aug; 55(1):23-33. doi:
10.3724/abbs.2022116
. [PMID: 36017888] - Surabhi Bangarbale, Blythe D Shepard, Shivani Bansal, Meth M Jayatilake, Ryan Kurtz, Moshe Levi, Carolyn M Ecelbarger. Renal Metabolome in Obese Mice Treated with Empagliflozin Suggests a Reduction in Cellular Respiration.
Biomolecules.
2022 08; 12(9):. doi:
10.3390/biom12091176
. [PMID: 36139016] - Michael R MacArthur, Sarah J Mitchell, Katia S Chadaideh, J Humberto Treviño-Villarreal, Jonathan Jung, Krystle C Kalafut, Justin S Reynolds, Charlotte G Mann, Kaspar M Trocha, Ming Tao, Tay-Zar Aye Cho, Anantawat Koontanatechanon, Vladimir Yeliseyev, Lynn Bry, Alban Longchamp, C Keith Ozaki, Caroline A Lewis, Rachel N Carmody, James R Mitchell. Multiomics assessment of dietary protein titration reveals altered hepatic glucose utilization.
Cell reports.
2022 08; 40(7):111187. doi:
10.1016/j.celrep.2022.111187
. [PMID: 35977507] - İbrahim Ethem, Ceyhan Hacıoğlu. Effects of perilipin-5 on lipid metabolism and high-sensitivity cardiac troponin I.
Revista da Associacao Medica Brasileira (1992).
2022 Aug; 68(8):1011-1016. doi:
10.1590/1806-9282.20211377
. [PMID: 36134829] - Qiong Fang, Jing Liu, Lang Chen, Qiaobin Chen, Yan Wang, Zuanfang Li, Wei Fu, Ying Liu. Taurine supplementation improves hippocampal metabolism in immature rats with intrauterine growth restriction (IUGR) through protecting neurons and reducing gliosis.
Metabolic brain disease.
2022 08; 37(6):2077-2088. doi:
10.1007/s11011-021-00896-0
. [PMID: 35048325] - Eleni Rebelos, Giuseppe Daniele, Beatrice Campi, Alessandro Saba, Kalle Koskensalo, Jukka Ihalainen, Ekaterina Saukko, Pirjo Nuutila, Walter H Backes, Jacobus F A Jansen, Pieter C Dagnelie, Sebastian Köhler, Bastiaan E de Galan, Thomas T van Sloten, Coen D A Stehouwer, Ele Ferrannini. Circulating N-Acetylaspartate does not track brain NAA concentrations, cognitive function or features of small vessel disease in humans.
Scientific reports.
2022 Jul; 12(1):11530. doi:
10.1038/s41598-022-15670-0
. [PMID: 35798828] - Teo Atz Dick, Hasan Uludağ. A Polyplex in a Shell: The Effect of Poly(aspartic acid)-Mediated Calcium Carbonate Mineralization on Polyplexes Properties and Transfection Efficiency.
Molecular pharmaceutics.
2022 07; 19(7):2077-2091. doi:
10.1021/acs.molpharmaceut.1c00909
. [PMID: 35649175] - Jiayu Hou, Muhammad Riaz, Lei Yan, Kesong Lu, Cuncang Jiang. Effect of exogenous l-aspartate nano‑calcium on root growth, calcium forms and cell wall metabolism of Brassica napus L.
NanoImpact.
2022 07; 27(?):100415. doi:
10.1016/j.impact.2022.100415
. [PMID: 35981643] - Erica N Grodin, Steven J Nieto, Lindsay R Meredith, Elizabeth Burnette, Joseph O'Neill, Jeffry Alger, Edythe D London, Karen Miotto, Christopher J Evans, Michael R Irwin, Lara A Ray. Effects of ibudilast on central and peripheral markers of inflammation in alcohol use disorder: A randomized clinical trial.
Addiction biology.
2022 07; 27(4):e13182. doi:
10.1111/adb.13182
. [PMID: 35754106] - Jeanne Friedrichs, Rabea Schweiger, Caroline Müller. Unique metabolism of different glucosinolates in larvae and adults of a leaf beetle specialised on Brassicaceae.
Scientific reports.
2022 06; 12(1):10905. doi:
10.1038/s41598-022-14636-6
. [PMID: 35764778] - Mei Han, Xianglei Xu, Xue Li, Mingyue Xu, Mei Hu, Yuan Xiong, Junhu Feng, Hao Wu, Hui Zhu, Tao Su. New Insight into Aspartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani.
International journal of molecular sciences.
2022 Jun; 23(12):. doi:
10.3390/ijms23126368
. [PMID: 35742809] - Haoran Zhang, Jiaqiang Huang, Jie Yang, Jingzeng Cai, Qi Liu, Xintong Zhang, Jun Bao, Ziwei Zhang. Cadmium induces apoptosis and autophagy in swine small intestine by downregulating the PI3K/Akt pathway.
Environmental science and pollution research international.
2022 Jun; 29(27):41207-41218. doi:
10.1007/s11356-022-18863-2
. [PMID: 35091949] - Liu Zhen, Zhang Qingyan, Deng Bowen, Sang Feng, Wang Danni, Kang Ning, L I Jie, Zhang Min, Liang Shoupei, Duan Chenchen, Liu Zhibin, X U Qianlei, L I Qiang. Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 expression and its relationship with T cell activation in human immunodeficiency virus/acquired immune deficiency syndrome patients with lung-spleen deficiency syndrome pattern.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2022 06; 42(3):451-457. doi:
10.19852/j.cnki.jtcm.20220408.004
. [PMID: 35610016] - Lucas Rischka, Chrysoula Vraka, Verena Pichler, Sazan Rasul, Lukas Nics, Gregor Gryglewski, Patricia Handschuh, Matej Murgaš, Godber M Godbersen, Leo R Silberbauer, Jakob Unterholzner, Christoph Wotawa, Ahmed Haider, Hazem Ahmed, Roger Schibli, Thomas Mindt, Markus Mitterhauser, Wolfgang Wadsak, Andreas Hahn, Rupert Lanzenberger, Marcus Hacker, Simon M Ametamey. First-in-Humans Brain PET Imaging of the GluN2B-Containing N-methyl-d-aspartate Receptor with (R)-11C-Me-NB1.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine.
2022 06; 63(6):936-941. doi:
10.2967/jnumed.121.262427
. [PMID: 34620732] - Moriaki Saito, Mineko Konishi, Atsuko Miyagi, Yasuhito Sakuraba, Maki Kawai-Yamada, Shuichi Yanagisawa. Arabidopsis nitrate-induced aspartate oxidase gene expression is necessary to maintain metabolic balance under nitrogen nutrient fluctuation.
Communications biology.
2022 05; 5(1):432. doi:
10.1038/s42003-022-03399-5
. [PMID: 35534536] - Pinky Dhatterwal, Sandhya Mehrotra, Anthony J Miller, Raviprasad Aduri, Rajesh Mehrotra. Effect of ACGT motif in spatiotemporal regulation of AtAVT6D, which improves tolerance to osmotic stress and nitrogen-starvation.
Plant molecular biology.
2022 May; 109(1-2):67-82. doi:
10.1007/s11103-022-01256-x
. [PMID: 35377091] - Ali Madian, Ahmed Eliwa, Hytham Abdalla, Haitham A Azeem Aly. Aspartate transferase-to-platelet ratio index-plus: A new simplified model for predicting the risk of mortality among patients with COVID-19.
World journal of gastroenterology.
2022 Apr; 28(16):1671-1680. doi:
10.3748/wjg.v28.i16.1671
. [PMID: 35581967] - Huanchen Wang, Lalith Perera, Nikolaus Jork, Guangning Zong, Andrew M Riley, Barry V L Potter, Henning J Jessen, Stephen B Shears. A structural exposé of noncanonical molecular reactivity within the protein tyrosine phosphatase WPD loop.
Nature communications.
2022 04; 13(1):2231. doi:
10.1038/s41467-022-29673-y
. [PMID: 35468885] - Ernst R Werner, Monica L Fernández-Quintero, Nicolas Hulo, Georg Golderer, Sabrina Sailer, Katharina Lackner, Gabriele Werner-Felmayer, Klaus R Liedl, Katrin Watschinger. Essential role of a conserved aspartate for the enzymatic activity of plasmanylethanolamine desaturase.
Cellular and molecular life sciences : CMLS.
2022 Mar; 79(4):214. doi:
10.1007/s00018-022-04238-w
. [PMID: 35347434] - Yindan Lin, Ze Yang, Jingjia Li, Yandi Sun, Xueyun Zhang, Zihao Qu, Yan Luo, Lihong Zhang. Effects of glutamate and aspartate on prostate cancer and breast cancer: a Mendelian randomization study.
BMC genomics.
2022 Mar; 23(1):213. doi:
10.1186/s12864-022-08442-7
. [PMID: 35296245] - Thaysa Mara Gazzotto Neves, Estefania Simoes, Maria Concepcíon García Otaduy, Elie Leal de Barros Calfat, Pâmela Bertolazzi, Naomi Antunes da Costa, Fábio Luís de Souza Duran, Joanna Correia-Lima, Maria da Graça Morais Martin, Marília Cerqueira Leite Seelander, Victor Henrique Oyamada Otani, Thais Zélia Dos Santos Otani, Daniel Augusto Corrêa Vasques, Geraldo Busatto Filho, Cristiane Kochi, Ricardo Riyoiti Uchida. Inverse Association Between Hypothalamic N-Acetyl Aspartate/Creatine Ratio and Indices of Body Mass in Adolescents with Obesity.
The Journal of nutrition.
2022 03; 152(3):663-670. doi:
10.1093/jn/nxab415
. [PMID: 34888674] - Xinying Gao, Haixu Liu, Han Yu, Zhuoqun Zhang, Xiangqi Bi, Yifan Zhao, Tai An, Jingzhi Wen. Combination of Developmental Behaviors and Transcriptome Reveals Differential Response Mechanisms of Phytophthora sojae to Aspartic Acid and Glucose in Seed Exudates.
Phytopathology.
2022 Mar; 112(3):620-629. doi:
10.1094/phyto-08-21-0332-r
. [PMID: 34445895] - Nathaniel Yakobov, Nassira Mahmoudi, Guillaume Grob, Daisuke Yokokawa, Yusuke Saga, Tetsuo Kushiro, Danielle Worrell, Hervé Roy, Hubert Schaller, Bruno Senger, Laurence Huck, Gisela Riera Gascon, Hubert D Becker, Frédéric Fischer. RNA-dependent synthesis of ergosteryl-3β-O-glycine in Ascomycota expands the diversity of steryl-amino acids.
The Journal of biological chemistry.
2022 03; 298(3):101657. doi:
10.1016/j.jbc.2022.101657
. [PMID: 35131263] - Kimberly A Lewis, Nico Osier, Ruy Carrasco, Jennifer Chiou, Patricia Carter, Alexandra Garcia, Elena Flowers, Efstathios D Gennatas, Christina Nguyen, Ambreen Rana, Sharon A Brown, Stefano Tiziani. Serine, N-acetylaspartate differentiate adolescents with juvenile idiopathic arthritis compared with healthy controls: a metabolomics cross-sectional study.
Pediatric rheumatology online journal.
2022 Feb; 20(1):12. doi:
10.1186/s12969-022-00672-z
. [PMID: 35144633] - Oleg Ya Shatursky, Alexander P Demchenko, Ihor Panas, Natalia Krisanova, Natalia Pozdnyakova, Tatiana Borisova. The ability of carbon nanoparticles to increase transmembrane current of cations coincides with impaired synaptic neurotransmission.
Biochimica et biophysica acta. Biomembranes.
2022 02; 1864(1):183817. doi:
10.1016/j.bbamem.2021.183817
. [PMID: 34767780] - Susan Morgello, Korhan Buyukturkoglu, Jacinta Murray, Mike Veenstra, Joan W Berman, Desiree Byrd, Matilde Inglese. MR spectroscopy and diffusion imaging in people with human immunodeficiency virus: Relationships to clinical and immunologic findings.
Journal of neuroimaging : official journal of the American Society of Neuroimaging.
2022 01; 32(1):158-170. doi:
10.1111/jon.12931
. [PMID: 34520593] - Muqing Zhang, Jian Chen, Yanwei Wang, Guobin Kang, Yixin Zhang, Xue Han. Network Pharmacology-Based Combined with Experimental Validation Study to Explore the Underlying Mechanism of Agrimonia pilosa Ledeb. Extract in Treating Acute Myocardial Infarction.
Drug design, development and therapy.
2022; 16(?):3117-3132. doi:
10.2147/dddt.s370473
. [PMID: 36132334] - Chenxi Wang, You Zheng, Zubiao Niu, Xiaoyi Jiang, Qiang Sun. The virological impacts of SARS-CoV-2 D614G mutation.
Journal of molecular cell biology.
2021 12; 13(10):712-720. doi:
10.1093/jmcb/mjab045
. [PMID: 34289053] - Anna Scortica, Matteo Capone, Daniele Narzi, Mario Frezzini, Valentina Scafati, Moira Giovannoni, Francesco Angelucci, Leonardo Guidoni, Benedetta Mattei, Manuel Benedetti. A molecular dynamics-guided mutagenesis identifies two aspartic acid residues involved in the pH-dependent activity of OG-OXIDASE 1.
Plant physiology and biochemistry : PPB.
2021 Dec; 169(?):171-182. doi:
10.1016/j.plaphy.2021.11.011
. [PMID: 34800821]