Gene Association: DARS1

UniProt Search: DARS1 (PROTEIN_CODING)
Function Description: aspartyl-tRNA synthetase 1

found 17 associated metabolites with current gene based on the text mining result from the pubmed database.

Azelaic acid

nonanedioic acid

C9H16O4 (188.1049)


Nonanedioic acid is an alpha,omega-dicarboxylic acid that is heptane substituted at positions 1 and 7 by carboxy groups. It has a role as an antibacterial agent, an antineoplastic agent, a dermatologic drug and a plant metabolite. It is a dicarboxylic fatty acid and an alpha,omega-dicarboxylic acid. It is a conjugate acid of an azelaate(2-) and an azelaate. Azelaic acid is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. It is also produced by Malassezia furfur, also known as Pityrosporum ovale, which is a species of fungus that is normally found on human skin. Azelaic acid is effective against a number of skin conditions, such as mild to moderate acne, when applied topically in a cream formulation of 20\\\\\%. It works in part by stopping the growth of skin bacteria that cause acne, and by keeping skin pores clear. Azelaic acids antimicrobial action may be attributable to inhibition of microbial cellular protein synthesis. Azelaic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). The physiologic effect of azelaic acid is by means of Decreased Protein Synthesis, and Decreased Sebaceous Gland Activity. Azelaic Acid is a naturally occurring dicarboxylic acid produced by Malassezia furfur and found in whole grain cereals, rye, barley and animal products. Azelaic acid possesses antibacterial, keratolytic, comedolytic, and anti-oxidant activity. Azelaic acid is bactericidal against Proprionibacterium acnes and Staphylococcus epidermidis due to its inhibitory effect on the synthesis of microbial cellular proteins. Azelaic acid exerts its keratolytic and comedolytic effects by reducing the thickness of the stratum corneum and decreasing the number of keratohyalin granules by reducing the amount and distribution of filaggrin in epidermal layers. Azelaic acid also possesses a direct anti-inflammatory effect due to its scavenger activity of free oxygen radical. This drug is used topically to reduce inflammation associated with acne and rosacea. Azelaic acid is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. It is a natural substance that is produced by Malassezia furfur (also known as Pityrosporum ovale), a yeast that lives on normal skin. It is effective against a number of skin conditions, such as mild to moderate acne, when applied topically in a cream formulation of 20\\\\\%. It works in part by stopping the growth of skin bacteria that cause acne, and by keeping skin pores clear. Azelaic acids antimicrobial action may be attributable to inhibition of microbial cellular protein synthesis. See also: Azelaic acid; niacinamide (component of) ... View More ... Azelaic acid (AZA) is a naturally occurring saturated nine-carbon dicarboxylic acid (COOH (CH2)7-COOH). It possesses a variety of biological actions both in vitro and in vivo. Interest in the biological activity of AZA arose originally out of studies of skin surface lipids and the pathogenesis of hypochromia in pityriasis versicolor infection. Later, it was shown that Pityrosporum can oxidize unsaturated fatty acids to C8-C12 dicarboxylic acids that are cornpetitive inhibitors of tyrosinase in vitro. Azelaic acid was chosen for further investigation and development of a new topical drug for treating hyperpigmentary disorders for the following reasons: it possesses a middle-range of antityrosinase activity, is inexpensive, and more soluble to be incorporated into a base cream than other dicarboxylic acids. Azelaic acid is another option for the topical treatment of mild to moderate inflammatory acne vulgaris. It offers effectiveness similar to that of other agents without the systemic side effects of oral antibiotics or the allergic sensitization of topical benzoyl peroxide and with less irritation than tretinoin. Azelaic acid is less expensive than certain other prescription acne preparations, but it is much more expensive than nonprescription benzoyl peroxide preparations. Whether it is safe and effective when used in combination with other agents is not known. (PMID: 7737781, 8961845). An alpha,omega-dicarboxylic acid that is heptane substituted at positions 1 and 7 by carboxy groups. Plants biology In plants, azelaic acid serves as a "distress flare" involved in defense responses after infection.[7] It serves as a signal that induces the accumulation of salicylic acid, an important component of a plant's defensive response.[8] Human biology The mechanism of action in humans is thought to be through the inhibition of hyperactive protease activity that converts cathelicidin into the antimicrobial skin peptide LL-37.[9] Polymers and related materials Esters of this dicarboxylic acid find applications in lubrication and plasticizers. In lubricant industries it is used as a thickening agent in lithium complex grease. With hexamethylenediamine, azelaic acid forms Nylon-6,9, which finds specialized uses as a plastic.[4] Medical Azelaic acid is used to treat mild to moderate acne, both comedonal acne and inflammatory acne.[10][11] It belongs to a class of medication called dicarboxylic acids. It works by killing acne bacteria that infect skin pores. It also decreases the production of keratin, which is a natural substance that promotes the growth[clarification needed] of acne bacteria.[12] Azelaic acid is also used as a topical gel treatment for rosacea, due to its ability to reduce inflammation.[11] It clears the bumps and swelling caused by rosacea. In topical pharmaceutical preparations and scientific research AzA is typically used in concentrations between 15\\\% and 20\\\% but some research demonstrates that in certain vehicle formulations the pharmaceutical effects of 10\\\% Azelaic acid has the potential to be fully comparable to that of some 20\\\% creams.[13] Acne treatment Azelaic acid is effective for mild to moderate acne when applied topically at a 15\\\%-20\\\% concentration.[14][15][16][17] In patients with moderate acne, twice daily application over 3 months of 20\\\% AzA significantly reduced the number of comedones, papules, and pustules;[18][19] at this strength, it’s considered to be as effective as benzoyl peroxide 5\\\%, tretinoin 0.05\\\%, erythromycin 2\\\%, and oral tetracycline at 500 mg-1000 mg.[20][21] In a comparative review of effects of topical AzA, Salicylic acid, Nicotinamide, Sulfur, Zinc, and alpha-hydroxy acid, AzA had more high-quality evidence of effectiveness than the rest.[22] Results can be expected after 4 weeks of twice-daily treatment. The effectiveness of long term use is unclear, but it’s been recommended that AzA be used for at least 6 months continuously for maintenance.[20] Whitening agent Azelaic acid is used for treatment of skin pigmentation, including melasma and postinflammatory hyperpigmentation, particularly in those with darker skin types. It has been recommended as an alternative to hydroquinone.[23] As a tyrosinase inhibitor,[5] azelaic acid reduces synthesis of melanin.[24] According to one report in 1988, azelaic acid in combination with zinc sulfate in vitro was found to be a potent (90\\\% inhibition) 5α-reductase inhibitor, similar to the hair loss drugs finasteride and dutasteride.[25] In vitro research during mid-1980s evaluating azelaic acid's depigmenting (whitening) capability concluded it is effective (cytotoxic to melanocytes) at only high concentrations.[26] A 1996 review claimed 20\\\% AzA is as potent as 4\\\% hydroquinone after a period of application of three months without the latter's adverse effects and even more effective if applied along with tretinoin for the same period of time.[27][19] Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2]. Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2].

   

L-Aspartic acid

(2S)-2-aminobutanedioic acid

C4H7NO4 (133.0375)


Aspartic acid (Asp), also known as L-aspartic acid or as aspartate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-aspartic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Aspartic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans, aspartic acid is a nonessential amino acid derived from glutamic acid by enzymes using vitamin B6. However, in the human body, aspartate is most frequently synthesized through the transamination of oxaloacetate. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. As its name indicates, aspartic acid is the carboxylic acid analog of asparagine. The D-isomer of aspartic acid (D-aspartic acid) is one of two D-amino acids commonly found in mammals. Aspartic acid was first discovered in 1827 by Auguste-Arthur Plisson and Étienne Ossian Henry by hydrolysis of asparagine, which had been isolated from asparagus juice in 1806. Aspartate has many biochemical roles. It is a neurotransmitter, a metabolite in the urea cycle and it participates in gluconeogenesis. It carries reducing equivalents in the malate-aspartate shuttle, which utilizes the ready interconversion of aspartate and oxaloacetate, which is the oxidized (dehydrogenated) derivative of malic acid. Aspartate donates one nitrogen atom in the biosynthesis of inosine, the precursor to the purine bases which are key to DNA biosynthesis. In addition, aspartic acid acts as a hydrogen acceptor in a chain of ATP synthase. Aspartic acid is a major excitatory neurotransmitter, which is sometimes found to be increased in epileptic and stroke patients. It is decreased in depressed patients and in patients with brain atrophy. As a neurotransmitter, aspartic acid may provide resistance to fatigue and thus lead to endurance, although the evidence to support this idea is not strong (Wikipedia). Aspartic acid supplements are being evaluated. Five grams can raise blood levels. Magnesium and zinc may be natural inhibitors of some of the actions of aspartic acid. Aspartic acid, when chemically coupled with the amino acid D-phenylalanine, is a part of a natural sweetener, aspartame. This sweetener is an advance in artificial sweeteners, and is probably safe in normal doses to all except phenylketonurics. Aspartic acid may be a significant immunostimulant of the thymus and can protect against some of the damaging effects of radiation. Aspartic acid is found in higher abundance in: oysters, luncheon meats, sausage meat, wild game, sprouting seeds, oat flakes, avocado, asparagus, young sugarcane, and molasses from sugar beets. [Spectral] L-Aspartate (exact mass = 133.03751) and Taurine (exact mass = 125.01466) and L-Asparagine (exact mass = 132.05349) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Aspartate (exact mass = 133.03751) and L-Threonine (exact mass = 119.05824) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly.

   

Etomidate

(R)-(+)-1-(alpha-Methylbenzyl)imidazole-5-carboxylic acid ethyl ester

C14H16N2O2 (244.1212)


Etomidate is only found in individuals that have used or taken this drug. It is an midazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It has been proposed as an induction anesthetic. [PubChem]Etomidate binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Ribose 1-phosphate

{[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}phosphonic acid

C5H11O8P (230.0192)


Ribose 1-phosphate, also known as alpha-D-ribofuranose 1-phosphate or 1-O-phosphono-A-D-ribofuranose, is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Ribose 1-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Ribose 1-phosphate can be found in a number of food items such as cassava, capers, pine nut, and wheat, which makes ribose 1-phosphate a potential biomarker for the consumption of these food products. Ribose 1-phosphate can be found primarily in cellular cytoplasm. Ribose 1-phosphate exists in all living species, ranging from bacteria to humans. In humans, ribose 1-phosphate is involved in several metabolic pathways, some of which include pyrimidine metabolism, nicotinate and nicotinamide metabolism, pentose phosphate pathway, and azathioprine action pathway. Ribose 1-phosphate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, gout or kelley-seegmiller syndrome, transaldolase deficiency, and UMP synthase deficiency (orotic aciduria). Ribose 1-phosphate is an intermediate in the metabolism of Pyrimidine and the metabolism of Nicotinate and nicotinamide. It is a substrate for Uridine phosphorylase 2, Phosphoglucomutase, Purine nucleoside phosphorylase and Uridine phosphorylase 1. Ribose 1-phosphate can be formed from guanosine through the action of purine nucleoside phosphorylase. Ribose 1-phosphate can also act as a ribose donor in the synthesis of xanthosine as catalyzed by the same enzyme (purine nucleoside phosphorylase). The presence of guanase, which irreversibly converts guanine to xanthine, affects the overall process of guanosine transformation. As a result of this purine pathway, guanosine is converted into xanthosine, thus overcoming the lack of guanosine deaminase in mammals. The activated ribose moiety in Ribose 1-phosphate which stems from the catabolism of purine nucleosides can be transferred to uracil and, in the presence of ATP, used for the synthesis of pyrimidine nucleotides; therefore, purine nucleosides can act as ribose donors for the salvage of pyrimidine bases. (PMID: 9133638). COVID info from COVID-19 Disease Map Corona-virus KEIO_ID R017 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cytidine monophosphate

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H14N3O8P (323.0518)


Cytidine monophosphate, also known as 5-cytidylic acid and abbreviated CMP, is a nucleotide. It is an ester of phosphoric acid with the nucleoside cytidine. CMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase cytosine. Cytidine monophosphate (CMP) is derived from cytidine triphosphate (CTP) with subsequent loss of two phosphates. The synthesis of the pyrimidines CTP and UTP occurs in the cytoplasm and starts with the formation of carbamoyl phosphate from glutamine and CO2. Next, aspartate undergoes a condensation reaction with carbamoyl-phosphate to form orotic acid. In a subsequent cyclization reaction, the enzyme Aspartate carbamoyltransferase forms N-carbamoyl-aspartate which is converted into dihydroorotic acid by Dihydroorotase. The latter is converted to orotate by Dihydroorotate oxidase. Orotate is covalently linked with a phosphorylated ribosyl unit with Orotate phosphoribosyltransferase (aka "PRPP transferase") catalyzing reaction, yielding orotidine monophosphate (OMP). Orotidine-5-phosphate is decarboxylated by Orotidine-5-phosphate decarboxylase to form uridine monophosphate (UMP). UMP is phosphorylated by two kinases to uridine triphosphate (UTP) via two sequential reactions with ATP. CTP is subsequently formed by amination of UTP by the catalytic activity of CTP synthetase. Cytosine monophosphate (CMP) and uridine monophosphate (UMP) have been prescribed for the treatment of neuromuscular affections in humans. Patients treated with CMP/UMP recover from altered neurological functions. Additionally, the administration of CMP/UMP appears to favour the entry of glucose in the muscle and CMP/UMP may be important in maintaining the level of hepatic glycogen constant during exercise. [PMID:18663991]. Cytidine monophosphate, also known as cmp or cytidylic acid, is a member of the class of compounds known as pyrimidine ribonucleoside monophosphates. Pyrimidine ribonucleoside monophosphates are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. Cytidine monophosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Cytidine monophosphate can be found in a number of food items such as elliotts blueberry, small-leaf linden, orange mint, and malabar spinach, which makes cytidine monophosphate a potential biomarker for the consumption of these food products. Cytidine monophosphate can be found primarily in saliva, as well as throughout all human tissues. Cytidine monophosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine monophosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/i-18:0/i-17:0/18:2(9z,11z)), cardiolipin biosynthesis cl(i-13:0/i-24:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(i-13:0/i-22:0/i-20:0/i-15:0), and cardiolipin biosynthesis cl(i-12:0/a-17:0/i-20:0/a-21:0). Cytidine monophosphate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), UMP synthase deficiency (orotic aciduria), and dihydropyrimidinase deficiency. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1]. Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1].

   

Adenylsuccinic acid

(2S)-2-({9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-9H-purin-6-yl}amino)butanedioic acid

C14H18N5O11P (463.074)


Adenylsuccinic acid, also known as adenylosuccinate, succinyladenosine or aspartyl adenylate, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenylsuccinic acid is found in all living organisms, ranging from bacteria to plants to animals. Adenylsuccinic acid is an important intermediate in the de novo purine biosynthesis pathway. Specifically, adenylsuccinic acid is an intermediate in the interconversion of purine nucleotides inosine monophosphate (IMP) and adenosine monophosphate (AMP). The enzyme adenylosuccinate synthase carries out the reaction by the addition of aspartate to IMP. This reaction requires the input of energy from a phosphoanhydride bond in the form of guanosine triphosphate (GTP). Adenylsuccinic acid is a substrate least one other important metabolic reaction in purine biosynthesis. In particular, adenylsuccinic acid can be converted into fumaric acid through its interaction with the enzyme known as adenylosuccinate lyase (or adenylosuccinase). Adenylosuccinate lyase deficiency, is a rare autosomal recessive metabolic disorder characterized by the appearance of succinylaminoimidazolecarboxamide riboside (SAICA riboside) and adenylsuccinic acid in cerebrospinal fluid and urine (PMID: 8412002). Adenylosuccinate lyase deficiency presents with varying degrees of psychomotor retardation, autism, muscle wasting, and epilepsy. The exact cause of the symptoms is unknown, but possibilities include not enough purine nucleotide synthesis for cell replication, malfunctioning of the purine nucleotide cycle, and a buildup of substrates to toxic levels. Adenylsuccinic acid is a substrate of the enzyme adenylosuccinase [EC 4.3.2.2] in purine metabolism pathway. The accumulation of adenylsuccinic acid in body fluids occurs due to a deficiency of adenylosuccinase. (KEGG; PMID 8412002) [HMDB] D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID A037; [MS2] KO008839 KEIO_ID A037; [MS3] KO008840 KEIO_ID A037

   

Blasticidin S

(2S,3S,6R)-3-{[(3R)-3-amino-1-hydroxy-5-(N-methylcarbamimidamido)pentylidene]amino}-6-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)-3,6-dihydro-2H-pyran-2-carboxylate

C17H26N8O5 (422.2026)


Contact fungicide used against rice blast disease in Japan Blasticidin S is an antibiotic used to select transformed cells in genetic engineering. In short, DNA of interest is fused to DNA encoding a resistance gene, and then is transformed into cells. After allowing time for recovery and for cells to begin transcribing and translating their new DNA, blasticidin is added. Now only the cells that have the new DNA can grow D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents KEIO_ID B019; [MS3] KO008877 KEIO_ID B019; [MS2] KO008876 D004791 - Enzyme Inhibitors KEIO_ID B019

   

Magnesium

Magnesium Cation

Mg+2 (23.985)


   

D-Erythro-imidazole-glycerol-phosphate

[(2R,3S)-2,3-dihydroxy-3-(1H-imidazol-4-yl)propoxy]phosphonic acid

C6H11N2O6P (238.0355)


D-Erythro-imidazole-glycerol-phosphate belongs to the class of organic compounds known as monoalkyl phosphates. These are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. D-Erythro-imidazole-glycerol-phosphate is a very strong basic compound (based on its pKa). Outside of the human body, D-erythro-imidazole-glycerol-phosphate has been detected, but not quantified in, several different foods, such as mammee apples, scarlet beans, grass pea, olives, and bog bilberries. This could make D-erythro-imidazole-glycerol-phosphate a potential biomarker for the consumption of these foods. D-Erythro-imidazole-glycerol-phosphate is an intermediate in histidine metabolism. It is a substrate for imidazoleglycerol-phosphate dehydratase (hisB) and can be generated from phosphoribulosylformimino-AICAR-P. D-Erythro-imidazole-glycerol-phosphate is an intermediate in Histidine metabolism. It is a substrate for imidazoleglycerol-phosphate dehydratase (hisB) and can be generated from Phosphoribulosyl-formimino-AICAR-phosphate then it is converted to Imidazole-acetol phosphate. [HMDB]. D-Erythro-imidazole-glycerol-phosphate is found in many foods, some of which are buffalo currant, fruits, hyacinth bean, and small-leaf linden.

   

Pyrrolysine

N~6~-{[(2s,3s)-3-Methyl-3,4-Dihydro-2h-Pyrrol-2-Yl]carbonyl}-L-Lysine

C12H21N3O3 (255.1583)


A N(6)-acyl-L-lysine having a (2R,3R)-3-methyl-3,4-dihydro-2H-pyrrol-2-ylcarboxy group at the N(6)-position.

   

Aspartic Acid

DL-Aspartic Acid

C4H7NO4 (133.0375)


An alpha-amino acid that consists of succinic acid bearing a single alpha-amino substituent COVID info from COVID-19 Disease Map, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.050 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly.

   

Azelaic Acid

Azelaic Acid

C9H16O4 (188.1049)


D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000970 - Antineoplastic Agents D003879 - Dermatologic Agents Annotation level-2 Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2]. Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2].

   

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

C14H16N2O2 (244.1212)


   

Blasticidin S

(2S,3S,6R)-3-[[3-amino-5-[carbamimidoyl(methyl)amino]pentanoyl]amino]-6-(4-amino-2-oxopyrimidin-1-yl)-3,6-dihydro-2H-pyran-2-carboxylic acid

C17H26N8O5 (422.2026)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents A blasticidin that is an antibiotic obtained from Streptomyces griseochromogene. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors

   

5-Cytidylic acid

5-Cytidylic acid

C9H14N3O8P (323.0518)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1]. Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1].

   

Magnesium Cation

Magnesium Cation

Mg+2 (23.985)


   

Ribose-1-phosphate

Ribose-1-phosphate

C5H11O8P (230.0192)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS