Succinic acid (BioDeep_00000000439)
Secondary id: BioDeep_00000400032, BioDeep_00000400417, BioDeep_00000400475
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs BioNovoGene_Lab2019
代谢物信息卡片
化学式: C4H6O4 (118.0266076)
中文名称: 丁二酸, 琥珀酸
谱图信息:
最多检出来源 Homo sapiens(feces) 0.17%
Last reviewed on 2024-07-01.
Cite this Page
Succinic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/succinic_acid (retrieved
2024-11-08) (BioDeep RN: BioDeep_00000000439). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C(=O)O)CC(=O)O
InChI: InChI=1S/C4H6O4/c5-3(6)1-2-4(7)8/h1-2H2,(H,5,6)(H,7,8)
描述信息
Succinic acid appears as white crystals or shiny white odorless crystalline powder. pH of 0.1 molar solution: 2.7. Very acid taste. (NTP, 1992)
Succinic acid is an alpha,omega-dicarboxylic acid resulting from the formal oxidation of each of the terminal methyl groups of butane to the corresponding carboxy group. It is an intermediate metabolite in the citric acid cycle. It has a role as a nutraceutical, a radiation protective agent, an anti-ulcer drug, a micronutrient and a fundamental metabolite. It is an alpha,omega-dicarboxylic acid and a C4-dicarboxylic acid. It is a conjugate acid of a succinate(1-).
A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawleys Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851)
Succinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Succinic acid is a dicarboxylic acid. The anion, succinate, is a component of the citric acid cycle capable of donating electrons to the electron transfer chain. Succinic acid is created as a byproduct of the fermentation of sugar. It lends to fermented beverages such as wine and beer a common taste that is a combination of saltiness, bitterness and acidity. Succinate is commonly used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. Succinate plays a role in the citric acid cycle, an energy-yielding process and is metabolized by succinate dehydrogenase to fumarate. Succinate dehydrogenase (SDH) plays an important role in the mitochondria, being both part of the respiratory chain and the Krebs cycle. SDH with a covalently attached FAD prosthetic group, binds enzyme substrates (succinate and fumarate) and physiological regulators (oxaloacetate and ATP). Oxidizing succinate links SDH to the fast-cycling Krebs cycle portion where it participates in the breakdown of acetyl-CoA throughout the whole Krebs cycle. Succinate can readily be imported into the mitochondrial matrix by the n-butylmalonate- (or phenylsuccinate-) sensitive dicarboxylate carrier in exchange with inorganic phosphate or another organic acid, e.g. malate. (A3509) Mutations in the four genes encoding the subunits of succinate dehydrogenase are associated with a wide spectrum of clinical presentations (i.e.: Huntingtons disease. (A3510). Succinate also acts as an oncometabolite. Succinate inhibits 2-oxoglutarate-dependent histone and DNA demethylase enzymes, resulting in epigenetic silencing that affects neuroendocrine differentiation.
A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawleys Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851)
Succinic acid (succinate) is a dicarboxylic acid. It is an important component of the citric acid or TCA cycle and is capable of donating electrons to the electron transfer chain. Succinate is found in all living organisms ranging from bacteria to plants to mammals. In eukaryotes, succinate is generated in the mitochondria via the tricarboxylic acid cycle (TCA). Succinate can readily be imported into the mitochondrial matrix by the n-butylmalonate- (or phenylsuccinate-) sensitive dicarboxylate carrier in exchange with inorganic phosphate or another organic acid, e. g. malate (PMID 16143825). Succinate can exit the mitochondrial matrix and function in the cytoplasm as well as the extracellular space. Succinate has multiple biological roles including roles as a metabolic intermediate and roles as a cell signalling molecule. Succinate can alter gene expression patterns, thereby modulating the epigenetic landscape or it can exhibit hormone-like signaling functions (PMID: 26971832). As such, succinate links cellular metabolism, especially ATP formation, to the regulation of cellular function. Succinate can be broken down or metabolized into fumarate by the enzyme succinate dehydrogenase (SDH), which is part of the electron transport chain involved in making ATP. Dysregulation of succinate synthesis, and therefore ATP synthesis, can happen in a number of genetic mitochondrial diseases, such as Leigh syndrome, and Melas syndrome. Succinate has been found to be associated with D-2-hydroxyglutaric aciduria, which is an inborn error of metabolism. Succinic acid has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite. High levels of this organic acid can be found in tumors or biofluids surrounding tumors. Its oncogenic action appears to due to its ability to inhibit prolyl hydroxylase-containing enzymes. In many tumours, oxygen availability becomes limited (hypoxia) very quickly due to rapid cell proliferation and limited blood vessel growth. The major regulator of the response to hypoxia is the HIF transcription factor (HIF-alpha). Under normal oxygen levels, protein levels of HIF-alpha are very low due to constant degradation, mediated by a series of post-translational modification events catalyzed by the prolyl hydroxylase domain-containing enzymes PHD1, 2 and 3, (also known as EglN2, 1 and 3) that hydroxylate HIF-alpha and lead to its degradation. All three of the PHD enzymes are inhibited by succinate. In humans, urinary succinic acid is produced by Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis (PMID: 22292465). Succinic acid is also found in Actinobacillus, Anaerobiospirillum, Mannheimia, Corynebacterium and Basfia (PMID: 22292465; PMID: 18191255; PMID: 26360870).
Succinic acid is widely distributed in higher plants and produced by microorganisms. It is found in cheeses and fresh meats. Succinic acid is a flavouring enhancer, pH control agent [DFC]. Succinic acid is also found in yellow wax bean, swamp cabbage, peanut, and abalone.
An alpha,omega-dicarboxylic acid resulting from the formal oxidation of each of the terminal methyl groups of butane to the corresponding carboxy group. It is an intermediate metabolite in the citric acid cycle.
COVID info from PDB, Protein Data Bank
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Acquisition and generation of the data is financially supported in part by CREST/JST.
KEIO_ID S004
Succinic acid is a potent and orally active anxiolytic agent. Succinic acid is an intermediate product of the tricarboxylic acid cycle. Succinic acid can be used as a precursor of many industrially important chemicals in food, chemical and pharmaceutical industries[1][2].
Succinic acid is a potent and orally active anxiolytic agent. Succinic acid is an intermediate product of the tricarboxylic acid cycle. Succinic acid can be used as a precursor of many industrially important chemicals in food, chemical and pharmaceutical industries[1][2].
同义名列表
123 个代谢物同义名
Succinic acid, BioReagent, suitable for cell culture, suitable for insect cell culture; Succinic Acid, Pharmaceutical Secondary Standard; Certified Reference Material; Succinic acid, anhydrous, free-flowing, Redi-Dri(TM), ACS reagent, >=99.0\\%; Succinic acid, matrix substance for MALDI-MS, >=99.5\\% (T), Ultra pure; Succinic acid, United States Pharmacopeia (USP) Reference Standard; Succinic acid, certified reference material, TraceCERT(R); Succinic acid, puriss. p.a., ACS reagent, >=99.5\\% (T); InChI=1/C4H6O4/c5-3(6)1-2-4(7)8/h1-2H2,(H,5,6)(H,7,8; Succinic acid, Vetec(TM) reagent grade, 98\\%; 4-02-00-01908 (Beilstein Handbook Reference); Succinic acid, SAJ special grade, >=99.5\\%; Succinic acid, SAJ first grade, >=99.0\\%; Succinic acid, p.a., ACS reagent, 99.0\\%; Succinic acid, purum p.a., >=99.0\\% (T); Succinic acid, ReagentPlus(R), >=99.0\\%; SuccinicAcid(IndustrialGrade&FoodGrade); ADIPIC ACID IMPURITY B (EP IMPURITY); ADIPIC ACID IMPURITY B [EP IMPURITY]; 37E8FFFB-70DA-4399-B724-476BD8715EF0; 1,4-BUTANEDIOIC ACID (SUCCINIC ACID); Succinic acid, ACS reagent, >=99.0\\%; Succinic acid, BioXtra, >=99.0\\%; Butanedioic acid diammonium salt; Succinic acid (Butanedioic acid); Succinic Acid; Butanedioic acid; Succinic acid, >=99\\%, FCC, FG; 2-Acetamido-2-deoxy-D-glucose; 2 Acetamido 2 deoxy D glucose; SUCCINIC ACID (USP IMPURITY); SUCCINIC ACID [USP IMPURITY]; 1,2 Ethanedicarboxylic Acid; 1,2-Ethanedicarboxylic acid; Ethylene dicarboxylic acid; 2 Acetamido 2 deoxyglucose; Kyselina jantarova [Czech]; 2-Acetamido-2-deoxyglucose; Butanedioic acid-1,4-13C2; SUCCINICUM ACIDUM [HPUS]; Succinic acid, ACS grade; Bernsteinsaure [German]; 1,2-Ethanedicarboxylate; Ethanedicarboxylic acid; SUCCINIC ACID [WHO-DD]; Butanedioic acid (9CI); Succinic acid, natural; Ethylene succinic acid; N-Acetyl-D-glucosamine; SUCCINIC ACID [USP-RS]; N Acetyl D glucosamine; ethylenesuccinic acid; Butanedioic acid-13C4; SUCCINIC ACID (MART.); SUCCINIC ACID [VANDF]; SUCCINIC ACID [MART.]; SUCCINIC ACID [HSDB]; 1,4 Butanedioic Acid; Succinate, Potassium; 1,4-Butanedioic acid; SUCCINIC ACID [INCI]; N-Acetylchitosamine; Succinate, Ammonium; SUCCINIC ACID [FCC]; Succinic acid, 99\\%; Dihydrofumaric acid; Succinic acid (8CI); 1,4-Butandioic Acid; Potassium Succinate; acide butanedioique; Kyselina jantarova; SUCCINIC ACID (II); SUCCINIC ACID [MI]; Succinic acid, FCC; SUCCINIC ACID [II]; Succinic Acide,(S); Ammonium Succinate; Succinic acid [NF]; Ethylenesuccinate; Acidum succinicum; HOOC-CH2-CH2-COOH; Succinicum acidum; Butanedionic acid; Acetylglucosamine; 1,4-Butanedioate; butanedioic acid; acide succinique; Succinic acid, 6; UNII-AB6MNQ6J6L; Dihydrofumarate; Bernsteinsaeure; Spirit OF amber; Bernsteinsaure; Tox21_111612_1; succinic-acid; Wormwood acid; Butandisaeure; Butanedionate; Succinic acid; Butane diacid; Tox21_201918; Tox21_111612; Tox21_303247; Succinellite; succinate, 9; butandisaure; Succinicate; Sal succini; Katasuccin; AB6MNQ6J6L; Amber acid; WLN: QV2VQ; AI3-06297; Succinate; FA 4:1;O2; Wormwood; D-GlcNAc; Asuccin; succ; e363; 4lh2; 1cze; suc; SIN; Succinic acid
数据库引用编号
39 个数据库交叉引用编号
- ChEBI: CHEBI:15741
- KEGG: C00042
- KEGGdrug: D85169
- PubChem: 1110
- HMDB: HMDB0000254
- Metlin: METLIN114
- DrugBank: DB00139
- ChEMBL: CHEMBL576
- Wikipedia: Succinic_acid
- Wikipedia: Succinic acid
- LipidMAPS: LMFA01170043
- MeSH: Succinic Acid
- ChemIDplus: 0000110156
- MetaCyc: SUC
- KNApSAcK: C00001205
- foodb: FDB001931
- chemspider: 1078
- CAS: 110-15-6
- MoNA: KNA00525
- MoNA: PS034407
- MoNA: KO001788
- MoNA: PR101002
- MoNA: KO001787
- MoNA: KNA00523
- MoNA: KO001786
- MoNA: PR100606
- MoNA: KO001785
- MoNA: KNA00526
- MoNA: KO001784
- MoNA: KNA00524
- PMhub: MS000001000
- MetaboLights: MTBLC15741
- PDB-CCD: SIN
- 3DMET: B00012
- NIKKAJI: J2.879G
- RefMet: Succinic acid
- medchemexpress: HY-N0420
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-731
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-61
分类词条
相关代谢途径
Reactome(2)
BioCyc(6)
PlantCyc(0)
代谢反应
1043 个相关的代谢反应过程信息。
Reactome(87)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR ligand binding:
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Neuronal System:
ATP + L-Glu + NH4+ ⟶ ADP + L-Gln + Pi
- Transmission across Chemical Synapses:
ATP + L-Glu + NH4+ ⟶ ADP + L-Gln + Pi
- Neurotransmitter release cycle:
H2O + NAD + SUCCSA ⟶ NADH + SUCCA
- GABA synthesis, release, reuptake and degradation:
H2O + NAD + SUCCSA ⟶ NADH + SUCCA
- Degradation of GABA:
H2O + NAD + SUCCSA ⟶ NADH + SUCCA
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Chromatin organization:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Cellular response to hypoxia:
2OG + HIF1A + Oxygen ⟶ G5EGD2 + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF1A + Oxygen ⟶ 2xHP-HIF1A + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Cellular response to hypoxia:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Chromatin organization:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- GABA synthesis, release, reuptake and degradation:
2OG + GABA + PXLP ⟶ Glu + PXLP + SUCCSA
- Degradation of GABA:
2OG + GABA + PXLP ⟶ Glu + PXLP + SUCCSA
- Cellular responses to external stimuli:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular responses to stress:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular response to hypoxia:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Regulation of Hypoxia-inducible Factor (HIF) by oxygen:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A + Oxygen ⟶ H0ZRX1 + SUCCA + carbon dioxide
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + Homologues of Me2sR4-HIST1H4 + Oxygen ⟶ CH2O + Homologues of MeR4-HIST1H4 + SUCCA + carbon dioxide
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Citric acid cycle (TCA cycle):
CIT ⟶ ISCIT
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Extracellular matrix organization:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Collagen formation:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Collagen biosynthesis and modifying enzymes:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
BioCyc(66)
- glyoxylate cycle:
H2O + cis-aconitate ⟶ isocitrate
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- TCA cycle variation I:
2-oxoglutarate + H+ ⟶ CO2 + succinate semialdehyde
- aerobic respiration -- electron donors reaction list:
UQ + succinate ⟶ UQH2 + fumarate
- methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- aspartate superpathway:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- isoflavonoid biosynthesis II:
2-oxoglutarate + O2 + naringenin ⟶ CO2 + H2O + apigenin + succinate
- TCA cycle:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of isoflavonoids (via naringenin):
2-oxoglutarate + O2 + naringenin ⟶ CO2 + H2O + apigenin + succinate
- glyoxylate cycle:
citrate ⟶ cis-aconitate + H2O
- aerobic respiration -- electron donor III:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle variation II:
2-oxoglutarate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + a reduced ferredoxin [iron-sulfur] cluster + succinyl-CoA
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- lysine biosynthesis I:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + glt
- reductive TCA cycle I:
2-oxoglutarate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + a reduced ferredoxin [iron-sulfur] cluster + succinyl-CoA
- superpathway of lysine, threonine and methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- aerobic respiration -- electron donor II:
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glyoxylate cycle:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- aerobic respiration -- electron donor II:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration -- electron donors reaction list:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle variation III (eukaryotic):
H2O + acetyl-CoA + oxaloacetate ⟶ H+ + citrate + coenzyme A
- 4-aminobutyrate degradation II:
2-oxoglutarate + 4-aminobutyrate ⟶ glt + succinate semialdehyde
- itaconate degradation:
L-citramalyl-CoA ⟶ acetyl-CoA + pyruvate
- mixed acid fermentation:
citrate ⟶ cis-aconitate + H2O
- respiration (anaerobic):
citrate ⟶ cis-aconitate + H2O
- 2-methylcitrate cycle I:
ATP + coenzyme A + propionate ⟶ AMP + H+ + diphosphate + propanoyl-CoA
- 4-aminobutyrate degradation I:
2-oxoglutarate + 4-aminobutyrate ⟶ glt + succinate semialdehyde
- superpathway of 4-aminobutyrate degradation:
2-oxoglutarate + 4-aminobutyrate ⟶ glt + succinate semialdehyde
- aerobic respiration -- electron donor II:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle variation III (eukaryotic):
citrate ⟶ cis-aconitate + H2O
- glutamate degradation IV:
4-aminobutyrate + pyruvate ⟶ ala + succinate semialdehyde
- aerobic respiration -- electron donor III:
UQ + succinate ⟶ UQH2 + fumarate
- glyoxylate cycle:
citrate ⟶ cis-aconitate + H2O
- methionine biosynthesis I:
L-cysteine + O-succinyl-L-homoserine ⟶ H+ + cystathionine + succinate
- pyruvate fermentation to acetate VI:
acetyl-CoA + succinate ⟶ acetate + succinyl-CoA
- acetate formation from acetyl-CoA III (succinate):
acetyl-CoA + succinate ⟶ acetate + succinyl-CoA
- aspartate superpathway:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + L-glutamate
- superpathway of glyoxylate cycle:
ATP + oxaloacetate ⟶ ADP + CO2 + H+ + phosphoenolpyruvate
- pyruvate fermentation to propionate I:
propionyl-CoA + succinate ⟶ propionate + succinyl-CoA
- pyruvate fermentation to acetate V:
acetyl-CoA + succinate ⟶ acetate + succinyl-CoA
- superpathway of lysine, threonine and methionine biosynthesis I:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + L-glutamate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- 2-methylcitrate cycle I:
methylisocitrate ⟶ pyruvate + succinate
- lysine biosynthesis I:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + L-glutamate
- (5R)-carbapenem biosynthesis:
(3S,5S)-carbapenam + 2-oxoglutarate + O2 ⟶ (5R)-carbapenem + CO2 + H2O + succinate
- TCA cycle variation II:
2-oxoglutarate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + a reduced ferredoxin [iron-sulfur] cluster + succinyl-CoA
- superpathway of methionine biosynthesis (transsulfuration):
2-oxoglutarate + L-aspartate ⟶ L-glutamate + oxaloacetate
- methionine and methyl-donor-molecule biosynthesis:
L-aspartate-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- aerobic respiration -- electron donor III:
UQ + succinate ⟶ UQH2 + fumarate
- homoserine and methionine biosynthesis:
L-aspartate-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- TCA cycle variation IV:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- succinate to cytochrome bd oxidase electron transfer:
UQ + succinate ⟶ UQH2 + fumarate
- arginine degradation II (AST pathway):
2-oxoglutarate + N2-succinyl-L-ornithine ⟶ L-glutamate + N2-succinyl-L-glutamate 5-semialdehyde
- mixed acid fermentation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- glyoxylate cycle:
D-threo-isocitrate ⟶ glyoxylate + succinate
- aerobic respiration -- electron donor II:
UQ + succinate ⟶ UQH2 + fumarate
- 2-methylcitrate cycle II:
methylisocitrate ⟶ pyruvate + succinate
- deacetylcephalosporin C biosynthesis:
2-oxoglutarate + O2 + deacetoxycephalosporin C ⟶ CO2 + deacetylcephalosporin-C + succinate
- aerobic respiration (cyanide insensitive, alternative oxidase) -- electron donors:
UQ + succinate ⟶ UQH2 + fumarate
- aromatic compound degradation:
NADPH + O2 + phenol ⟶ H2O + NADP+ + catechol
- TCA cycle, aerobic respiration:
H2O + cis-aconitate ⟶ isocitrate
- glutamate degradation to succinate:
α-ketoglutarate + 4-aminobutyrate ⟶ L-glutamate + succinate semialdehyde
- GABA degradation:
α-ketoglutarate + 4-aminobutyrate ⟶ L-glutamate + succinate semialdehyde
- threonine degradation:
2-oxobutanoate + ammonia + succinate ⟶ H2O + O-succinyl-L-homoserine
- aerobic respiration (cyanide sensitive) -- electron donors:
UQ + succinate ⟶ UQH2 + fumarate
WikiPathways(3)
- TCA cycle (Krebs cycle):
citrate ⟶ isocitrate
- Metabolism overview:
NH3 ⟶ Glutamic acid
- TCA cycle (aka Krebs or citric acid cycle):
cis-aconitate ⟶ citrate
Plant Reactome(606)
- gibberellin biosynthesis I (late C-3 hydroxylation):
2OG + Oxygen + gibberellin A12 ⟶ SUCCA + carbon dioxide + gibberellin A15
- Gibberellin biosynthesis II (early C-3 hydroxylation):
2OG + Oxygen + gibberellin A14 ⟶ SUCCA + carbon dioxide + gibberellin A37
- Gibberellin biosynthesis III (early C-13 hydroxylation):
2OG + Oxygen + gibberellin A53 ⟶ SUCCA + carbon dioxide + gibberellin A44
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
L-Glu ⟶ GABA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
L-Glu ⟶ GABA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
L-Glu ⟶ GABA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
L-Glu ⟶ GABA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
L-Glu ⟶ GABA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
L-Glu ⟶ GABA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
INOH(11)
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- Lysine degradation ( Lysine degradation ):
2-Oxo-glutaric acid + L-Lysine + NADH ⟶ H2O + L-Saccharopine + NAD+
- Succinic acid + Ubiquinone = Fumaric acid + Ubiquinol ( Tyrosine metabolism ):
Fumaric acid + Ubiquinol ⟶ Succinic acid + Ubiquinone
- Butanoate metabolism ( Butanoate metabolism ):
Acetoacetic acid + NADH ⟶ (R)-3-Hydroxy-butanoic acid + NAD+
- Succinyl-CoA + Acetoacetic acid = Succinic acid + Acetoacetyl-CoA ( Valine,Leucine and Isoleucine degradation ):
Acetoacetic acid + Succinyl-CoA ⟶ Acetoacetyl-CoA + Succinic acid
- Citrate cycle ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Isocitric acid
- CoA + GTP + Succinic acid = Succinyl-CoA + GDP + Orthophosphate ( Citrate cycle ):
GDP + Orthophosphate + Succinyl-CoA ⟶ CoA + GTP + Succinic acid
- CoA + ATP + Succinic acid = Succinyl-CoA + ADP + Orthophosphate ( Citrate cycle ):
ATP + CoA + Succinic acid ⟶ ADP + Orthophosphate + Succinyl-CoA
- Glutamic acid and Glutamine metabolism ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamine + tRNA(Gln) ⟶ AMP + L-Glutaminyl-tRNA(Gln) + Pyrophosphate
- NAD+ + Succinate semialdehyde + H2O = NADH + Succinic acid ( Glutamic acid and Glutamine metabolism ):
H2O + NAD+ + Succinate semialdehyde ⟶ NADH + Succinic acid
- Valine,Leucine and Isoleucine degradation ( Valine,Leucine and Isoleucine degradation ):
2-Methyl-3-acetoacetyl-CoA + CoA ⟶ Acetyl-CoA + Propanoyl-CoA
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(270)
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of Succinate:
Citric acid ⟶ Water + cis-Aconitic acid
- The Oncogenic Action of Fumarate:
Citric acid ⟶ Water + cis-Aconitic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- The Oncogenic Action of L-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of D-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Citrate Cycle:
Isocitric acid ⟶ Water + cis-Aconitic acid
- Gibberellin Biosynthesis II (Early C-13 Hydroxylation):
Oxoglutaric acid + Oxygen + gibberellin A12 ⟶ Carbon dioxide + Gibberellin A53 + Succinic acid
- Propanoate Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A ⟶ Formic acid + Propionyl-CoA
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Secondary Metabolites: Glyoxylate Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Glycolate and Glyoxylate Degradation II:
Water + cis-Aconitic acid ⟶ Isocitric acid
- Glyoxylate Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Secondary Metabolites: Glyoxylate Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Glycolate and Glyoxylate Degradation II:
Water + cis-Aconitic acid ⟶ Isocitric acid
- Flavonoid Biosynthesis:
Hydrogen Ion + NADPH + Naringenin ⟶ Apiforol + NADP
- Taurine Metabolism:
Oxoglutaric acid + Oxygen + Taurine ⟶ Aminoacetaldehyde + Carbon dioxide + Succinic acid + Sulfite
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Taurine Metabolism I:
Oxoglutaric acid + Oxygen + Taurine ⟶ Aminoacetaldehyde + Carbon dioxide + Succinic acid + Sulfite
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Taurine Metabolism:
Adenosine triphosphate + Taurine + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Taurine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Taurine Metabolism I:
Adenosine triphosphate + Taurine + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Taurine
- Leucopelargonidin and Leucocyanidin Biosynthesis:
Eriodictyol + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + Succinic acid + taxifolin
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Valine, Leucine, and Isoleucine Degradation:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Mitochondrial Electron Transport Chain:
Adenosine diphosphate + Hydrogen Ion ⟶ Adenosine triphosphate + Hydrogen Ion
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Phytanic Acid Peroxisomal Oxidation:
Oxoglutaric acid + Oxygen + Phytanoyl-CoA ⟶ 2-Hydroxyphytanoyl-CoA + Carbon dioxide + Succinic acid
- beta-Ketothiolase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Propionic Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Maple Syrup Urine Disease:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type III:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonic Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Isovaleric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Refsum Disease:
Oxoglutaric acid + Oxygen + Phytanoyl-CoA ⟶ 2-Hydroxyphytanoyl-CoA + Carbon dioxide + Succinic acid
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- 3-Methylglutaconic Aciduria Type IV:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isobutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Lysine Biosynthesis:
Hydrogen Ion + meso-diaminopimelate ⟶ Carbon dioxide + L-Lysine
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Inner Membrane Transport:
Adenosine triphosphate + Water + Zinc ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Zinc
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Methionine Biosynthesis:
L-Cysteine + O-succinyl-L-homoserine ⟶ Hydrogen Ion + L-Cystathionine + Succinic acid
- Oxidative Phosphorylation:
Succinic acid + Ubiquinone-1 ⟶ Fumaric acid + Ubiquinol-1
- TCA cycle (ubiquinol-2):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-3):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-4):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-5):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-6):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-7):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-8):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-9):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-10):
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Oxopent-4-enoate Metabolism:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- TCA cycle (ubiquinol-0):
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Oxopent-4-enoate Metabolism 2:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- Propanoyl-CoA Degradation:
Adenosine triphosphate + Hydrogen carbonate + Propionyl-CoA ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + S-Methylmalonyl-CoA
- Conversion of Succinate to Propanoate:
Hydrogen Ion + R-Methylmalonyl-CoA ⟶ Carbon dioxide + Propionyl-CoA
- 4-Aminobutanoate Degradation I:
-Aminobutyric acid + Oxoglutaric acid ⟶ L-Glutamic acid + Succinic acid semialdehyde
- Glutamate Metabolism:
Ornithine + Oxoglutaric acid ⟶ L-Glutamic -semialdehyde + L-Glutamic acid
- 4-Aminobutanoate Degradation:
-Aminobutyric acid + Oxoglutaric acid ⟶ L-Glutamic acid + Succinic acid semialdehyde
- Oxidative Phosphorylation:
Succinic acid + Ubiquinone-1 ⟶ Fumaric acid + Ubiquinol-1
- Selenocompound Metabolism:
Selenomethionine + Water ⟶ 2-Ketobutyric acid + Ammonia + methylselenol
- Glutamic Acid Metabolism:
-Aminobutyric acid + Pyruvic acid ⟶ L-Alanine + Succinic acid semialdehyde
- Flavone and Flavonol Biosynthesis:
Phosphoadenosine phosphosulfate + Quercetin ⟶ Adenosine 3',5'-diphosphate + Hydrogen Ion + Quercetin 3'-sulfate
- Gibberellin Biosynthesis I (Early C-3 Hydroxylation):
Oxoglutaric acid + Oxygen + gibberellin A12 ⟶ Carbon dioxide + Succinic acid + gibberellin A14
- Gibberellin Biosynthesis III (Non C-3, Non C-13 Hydroxylation):
Oxoglutaric acid + Oxygen + gibberellin A12 ⟶ Carbon dioxide + Succinic acid + gibberellin A15
- Oxidative Phosphorylation:
Adenosine diphosphate + Phosphate ⟶ Adenosine triphosphate
- Butanoate Metabolism:
3-Hydroxy-3-methylglutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Mitochondrial Electron Transport Chain:
Coenzyme Q10 + Succinic acid ⟶ Fumaric acid + Ubiquinol-8
- Phytanic Acid Peroxisomal Oxidation:
Oxoglutaric acid + Oxygen + Phytanoyl-CoA ⟶ 2-Hydroxyphytanoyl-CoA + Carbon dioxide + Succinic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Refsum Disease:
Oxoglutaric acid + Oxygen + Phytanoyl-CoA ⟶ 2-Hydroxyphytanoyl-CoA + Carbon dioxide + Succinic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Phytanic Acid Peroxisomal Oxidation:
Adenosine triphosphate + Coenzyme A + Phytanic acid ⟶ Adenosine diphosphate + Phytanoyl-CoA + Pyrophosphate
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Mitochondrial Electron Transport Chain:
Coenzyme Q10 + Succinic acid ⟶ Fumaric acid + Ubiquinol-8
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Phytanic Acid Peroxisomal Oxidation:
Adenosine triphosphate + Coenzyme A + Phytanic acid ⟶ Adenosine diphosphate + Phytanoyl-CoA + Pyrophosphate
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Mitochondrial Electron Transport Chain:
Coenzyme Q10 + Succinic acid ⟶ Fumaric acid + Ubiquinol-8
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Phytanic Acid Peroxisomal Oxidation:
Adenosine triphosphate + Coenzyme A + Phytanic acid ⟶ Adenosine diphosphate + Phytanoyl-CoA + Pyrophosphate
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Mitochondrial Electron Transport Chain:
Coenzyme Q10 + Succinic acid ⟶ Fumaric acid + Ubiquinol-8
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Phytanic Acid Peroxisomal Oxidation:
Adenosine triphosphate + Coenzyme A + Phytanic acid ⟶ Adenosine diphosphate + Phytanoyl-CoA + Pyrophosphate
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Mitochondrial Electron Transport Chain:
Coenzyme Q10 + Succinic acid ⟶ Fumaric acid + Ubiquinol-8
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Refsum Disease:
Adenosine triphosphate + Coenzyme A + Phytanic acid ⟶ Adenosine diphosphate + Phytanoyl-CoA + Pyrophosphate
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Ketone Body Metabolism:
Acetoacetic acid + Succinyl-CoA ⟶ Acetoacetyl-CoA + Succinic acid
- Lysine Biosynthesis:
Hydrogen Ion + meso-diaminopimelate ⟶ Carbon dioxide + L-Lysine
- TCA Cycle:
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- Inner Membrane Transport:
Adenosine triphosphate + Water + Zinc ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Zinc
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Methionine Biosynthesis:
L-Cysteine + O-succinyl-L-homoserine ⟶ Hydrogen Ion + L-Cystathionine + Succinic acid
- Oxidative Phosphorylation:
Succinic acid + Ubiquinone-1 ⟶ Fumaric acid + Ubiquinol-1
- TCA Cycle (Ubiquinol-2):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-3):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-4):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-5):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-6):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-7):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-8):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-9):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-10):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- 2-Oxopent-4-enoate Metabolism:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
- TCA Cycle (Ubiquinol-0):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- 2-Oxopent-4-enoate Metabolism 2:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
- 4-Aminobutanoate Degradation I:
-Aminobutyric acid + Oxoglutaric acid ⟶ L-Glutamic acid + Succinic acid semialdehyde
PharmGKB(0)
24 个相关的物种来源信息
- 25641 - Aloe: -
- 165353 - Angelica sinensis (Oliv.)Diels: -
- 377125 - Apocynum venetum L.: -
- 48106 - Centella Asiatica (L.) Urban[Hydro-Cotyle Asiatica L.]: -
- 386280 - Changium smyrnioides Wolff: -
- 161395 - Cistanche deserticola Y.C. Ma: -
- 161397 - Cistanche tubulosa (Schrenk) Wight: -
- 510735 - Crataegus pinnatifida Bge.: -
- 510735 - Crataegus pinnatifida Bge. var.major N.E.Br.: -
- 3262 - Equisetum hyemale L.: -
- 330892 - Eupatorium Fortunei Turcz: -
- 4414 - Euryale ferox Salisb.: -
- 91201 - Gastrodia elata Bl.: -
- 202327 - Geranium Wilfordii Maxim.: -
- 9606 - Homo sapiens: -
- 368926 - Lobelia chinensis Lour.: -
- 4054 - Panax ginseng C. A. Mey.: -
- 226208 - Salvia miltiorrhiza Bge.: -
- 182070 - Saxifraga Stolonifera: -
- 455371 - Spatholobus Suberectus Dunn: -
- 167572 - Stemona tuberosa Lour.: -
- 59011 - Typha angustifolia L: -
- 644748 - Typha orientalis Presl: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Nikhil Dnyaneshwar Patil, Aarti Bains, Sawinder Kaur, Rahul Yadav, Gulden Goksen, Nemat Ali, Abdullah F AlAsmari, Prince Chawla. Effect of dual modifications with ultrasonication and succinylation on Cicer arietinum protein-iron complexes: Characterization, digestibility, in-vitro cellular mineral uptake and preparation of fortified smoothie.
Food research international (Ottawa, Ont.).
2024 Jun; 186(?):114344. doi:
10.1016/j.foodres.2024.114344
. [PMID: 38729696] - Yiwen Li, Tan Dai, Yidong Tang, Yan Wang, Xixi Wang, Zhongqiao Huang, Feng Li, Liang Lu, Jianqiang Miao, Xili Liu. Inhibitory activity to Fusarium spp. and control potential for wheat Fusarium crown rot of a novel succinate dehydrogenase inhibitor cyclobutrifluram.
Pest management science.
2024 Apr; 80(4):2001-2010. doi:
10.1002/ps.7935
. [PMID: 38096203] - Jing Wu, Yilian Li, Jinbao Yin, Chen Wang, Xuejin Qi, Yujie Zhou, Hongjuan Liu, Pengfei Wu, Jianan Zhang. Mutation breeding of high-stress resistant strains for succinic acid production from corn straw.
Applied microbiology and biotechnology.
2024 Apr; 108(1):278. doi:
10.1007/s00253-024-13112-7
. [PMID: 38558151] - Ningbo Wang, Zeming Zhang, Yinan Wang, Liuquan Zhang, Aili Sun, Hua Liu, Xizhi Shi. Comparative antioxidant and metabolomic analysis for the identification of differential response of mussel (Mytilus coruscus) to four succinate dehydrogenase inhibitor fungicides.
Environmental science and pollution research international.
2024 Mar; 31(11):16819-16831. doi:
10.1007/s11356-024-32309-x
. [PMID: 38324158] - Mei-Yu Zhang, Xin-Ru Xu, Ru-Ping Zhao, Chao Huang, Yuan-Da Song, Zi-Tong Zhao, Yu-Bin Zhao, Xiao-Jie Ren, Xin-He Zhao. Mechanism of enhanced microalgal biomass and lipid accumulation through symbiosis between a highly succinic acid-producing strain of Escherichia coli SUC and Aurantiochytrium sp. SW1.
Bioresource technology.
2024 Feb; 394(?):130232. doi:
10.1016/j.biortech.2023.130232
. [PMID: 38141881] - Shuying Gu, Taju Wu, Junqi Zhao, Tao Sun, Zhen Zhao, Lu Zhang, Jingen Li, Chaoguang Tian. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila.
Microbial biotechnology.
2024 Jan; ?(?):e14410. doi:
10.1111/1751-7915.14410
. [PMID: 38298109] - Monique Marcondes Krauskopf, Chimenes Darlan Leal de Araújo, Priscila R Dos Santos-Donado, Mariana Damiames Baccarin Dargelio, João Antônio Santos Manzi, Anna Cecilia Venturini, Júlio César de Carvalho Balieiro, Eduardo Francisquine Delgado, Carmen Josefina Contreras Castillo. The effect of succinate on color stability of Bos indicus bull meat: pH-dependent effects during the 14-day aging period.
Food research international (Ottawa, Ont.).
2024 Jan; 175(?):113688. doi:
10.1016/j.foodres.2023.113688
. [PMID: 38129031] - Haiyan Sun, Shiyan Cai, Yuanyu Deng, Shulin Cao, Xiaoyue Yang, Yanteng Lu, Wei Li, Huaigu Chen. Efficacy of cyclobutrifluram in controlling Fusarium crown rot of wheat and resistance risk of three Fusarium species to cyclobutrifluram.
Pesticide biochemistry and physiology.
2024 Jan; 198(?):105723. doi:
10.1016/j.pestbp.2023.105723
. [PMID: 38225078] - Xin Jin, Hangyi Wu, Jie Yu, Yanni Cao, Lanyi Zhang, Zhenhai Zhang, Huixia Lv. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles.
Journal of controlled release : official journal of the Controlled Release Society.
2024 Jan; 365(?):802-817. doi:
10.1016/j.jconrel.2023.12.013
. [PMID: 38092255] - Keke Luo, Haiyu Zhao, Mengxiao Wang, Mengyao Tian, Nan Si, Wen Xia, Jianfang Song, Yunqin Chen, Linna Wang, Yan Zhang, Xiaolu Wei, Xing Li, Guangyuan Qin, Jiaying Yang, Hongjie Wang, Baolin Bian, Yanyan Zhou. Huanglian Jiedu Wan intervened with 'Shi-Re Shanghuo' syndrome through regulating immune balance mediated by biomarker succinate.
Clinical immunology (Orlando, Fla.).
2024 01; 258(?):109861. doi:
10.1016/j.clim.2023.109861
. [PMID: 38065370] - Chao Ma, Chunran Zhu, Yajun Zhang, Mei Yu, Yizhi Song, Yulong Chong, Yan Yang, Chan Zhu, Yucui Jiang, Changming Wang, Shuo Cheng, Keke Jia, Guang Yu, Jia Li, Zongxiang Tang. Gastrodin alleviates NTG-induced migraine-like pain via inhibiting succinate/HIF-1α/TRPM2 signaling pathway in trigeminal ganglion.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Dec; 125(?):155266. doi:
10.1016/j.phymed.2023.155266
. [PMID: 38241917] - Yurong Qiu, Yaling Meng, Wenxu Lian, Shasha Jian, Yannan Du, Meng Wang, Ye Yang, Xiaoyu Liang, Yu Zhang. Polymorphisms at amino acid positions 85 and 86 in succinate dehydrogenase subunit C of Colletotrichum siamense: Implications for fitness and intrinsic sensitivity to SDHI fungicides.
Fungal genetics and biology : FG & B.
2023 Dec; 169(?):103844. doi:
10.1016/j.fgb.2023.103844
. [PMID: 37989450] - Shiyong Li, Chaodong Song, Hongyan Zhang, Yan Qin, Mingguo Jiang, Naikun Shen. Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO3 in Actinobacillus succinogenes GXAS137.
Polish journal of microbiology.
2023 Dec; 72(4):399-411. doi:
10.33073/pjm-2023-036
. [PMID: 38000010] - Seo Hyun Hwang, Chaw Ei Htwe Maung, Jun Su Noh, Jeong-Yong Cho, Kil Yong Kim. Butyl succinate-mediated control of Bacillus velezensis ce 100 for apple anthracnose caused by Colletotrichum gloeosporioides.
Journal of applied microbiology.
2023 Nov; 134(11):. doi:
10.1093/jambio/lxad247
. [PMID: 37903743] - Yan-Ming Yin, Zong-Yue Sun, Da-Wei Wang, Zhen Xi. Discovery of Benzothiazolylpyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors through Active Fragment Exchange and Link Approach.
Journal of agricultural and food chemistry.
2023 Oct; 71(40):14471-14482. doi:
10.1021/acs.jafc.3c03646
. [PMID: 37775473] - Bingxue Sun, Rongjia Zhou, Guangxue Zhu, Xuewen Xie, Ali Chai, Lei Li, Tengfei Fan, Jingjing Shi, Baoju Li, Yanxia Shi. A Rapid Molecular Detection System for Sdh Mutations Conferring Differential Succinate Dehydrogenase Inhibitor Resistance in Corynespora cassiicola.
Plant disease.
2023 Jul; 107(7):2153-2159. doi:
10.1094/pdis-11-22-2626-re
. [PMID: 36548917] - Jun Liu, Jiaxuan Wu, Peiyuan Jin, Jian Hu, Kurt Lamour, Zhimin Yang. Activity of a succinate dehydrogenase inhibitor fungicide benzovindiflupyr against Clarireedia spp.
Plant disease.
2023 Jun; ?(?):. doi:
10.1094/pdis-02-23-0201-re
. [PMID: 37340553] - Sarah Abdullah, Michael Ghio, Aaron Cotton-Betteridge, Aditya Vinjamuri, Robert Drury, Jacob Packer, Oguz Aras, Jessica Friedman, Mardeen Karim, David Engelhardt, Emma Kosowski, Kelby Duong, Farhana Shaheen, Patrick R McGrew, Charles T Harris, Robert Reily, Mimi Sammarco, Partha K Chandra, Derek Pociask, Jay Kolls, Prasad V Katakam, Alison Smith, Sharven Taghavi, Juan Duchesne, Olan Jackson-Weaver. Succinate metabolism and membrane reorganization drives the endotheliopathy and coagulopathy of traumatic hemorrhage.
Science advances.
2023 06; 9(24):eadf6600. doi:
10.1126/sciadv.adf6600
. [PMID: 37315138] - Shengfang Zhou, Yingli Zhang, Zhiwen Wei, Sunghoon Park. Recent advances in metabolic engineering of microorganisms for the production of monomeric C3 and C4 chemical compounds.
Bioresource technology.
2023 Jun; 377(?):128973. doi:
10.1016/j.biortech.2023.128973
. [PMID: 36972803] - Jingwen Xu, Zhenhua Tian, Zhe Li, Xiaoshi Du, Yansong Cui, Jiangrong Wang, Mei Gao, Yinglong Hou. Puerarin-Tanshinone IIA Suppresses atherosclerosis inflammatory plaque via targeting succinate/HIF-1α/IL-1β axis.
Journal of ethnopharmacology.
2023 May; ?(?):116675. doi:
10.1016/j.jep.2023.116675
. [PMID: 37257708] - Tamieka Pearce, Jason Scott, Calum R Wilson, David H Gent. Evolution of the genetic structure of the Didymella tanaceti population during development of succinate dehydrogenase inhibitor resistance.
Phytopathology.
2023 May; ?(?):. doi:
10.1094/phyto-10-22-0385-r
. [PMID: 37129263] - Salvatore Nesci, Cristina Algieri, Fabiana Trombetti, Micaela Fabbri, Giorgio Lenaz. Two separate pathways underlie NADH and succinate oxidation in swine heart mitochondria: Kinetic evidence on the mobile electron carriers.
Biochimica et biophysica acta. Bioenergetics.
2023 Apr; 1864(3):148977. doi:
10.1016/j.bbabio.2023.148977
. [PMID: 37059413] - Mathias Brouillard, Rémi Kinet, Marie Joyeux, Benjamin Dehay, Sylvie Crauste-Manciet, Valérie Desvergnes. Modulating Lysosomal pH through Innovative Multimerized Succinic Acid-Based Nucleolipid Derivatives.
Bioconjugate chemistry.
2023 03; 34(3):572-580. doi:
10.1021/acs.bioconjchem.3c00041
. [PMID: 36853958] - Jinhang Li, Peng Wei, Juan Qin, Kaiyang Feng, Guangmao Shen, Wei Dou, Youjun Zhang, Peng Cao, Zhiguang Yuchi, Thomas Van Leeuwen, Lin He. Molecular Basis for the Selectivity of the Succinate Dehydrogenase Inhibitor Cyflumetofen between Pest and Predatory Mites.
Journal of agricultural and food chemistry.
2023 Mar; 71(8):3658-3669. doi:
10.1021/acs.jafc.2c06149
. [PMID: 36787109] - Chang-Shun Liu, Yin-Xia Hu, Zhen-Ye Luo, Chuan-Wei Qiu, Xiang-Hua Deng, Fei-Long Chen. Xianglian pill modulates gut microbial production of succinate and induces regulatory T cells to alleviate ulcerative colitis in rats.
Journal of ethnopharmacology.
2023 Mar; 303(?):116007. doi:
10.1016/j.jep.2022.116007
. [PMID: 36473618] - Naikun Shen, Shiyong Li, Shuyan Li, Yibing Wang, Hongyan Zhang, Mingguo Jiang. Reduced acetic acid formation using NaHSO3 as a steering agent by Actinobacillus succinogenes GXAS137.
Journal of bioscience and bioengineering.
2023 Mar; 135(3):203-209. doi:
10.1016/j.jbiosc.2022.12.007
. [PMID: 36628842] - Zhaolin Xue, Shan Zhong, Jinghuan Shen, Ye Sun, Xuheng Gao, Xiangyang Wang, Feng Li, Liang Lu, Xili Liu. Multiple Mutations in SDHB and SDHC2 Subunits Confer Resistance to the Succinate Dehydrogenase Inhibitor Cyclobutrifluram in Fusarium fujikuroi.
Journal of agricultural and food chemistry.
2023 Mar; 71(8):3694-3704. doi:
10.1021/acs.jafc.2c08023
. [PMID: 36802617] - Yu-Hao Zhang, Shan-Shan Yang, Qi Zhang, Tian-Tian Zhang, Tian-Yi Zhang, Bo-Hang Zhou, Le Zhou. Discovery of N-Phenylpropiolamide as a Novel Succinate Dehydrogenase Inhibitor Scaffold with Broad-Spectrum Antifungal Activity on Phytopathogenic Fungi.
Journal of agricultural and food chemistry.
2023 Feb; ?(?):. doi:
10.1021/acs.jafc.2c07712
. [PMID: 36790098] - Trinita K Barboza, Leonardo Susta, Alex Zur Linden, Sara Gardhouse, Hugues Beaufrère. Association of plasma metabolites and diagnostic imaging findings with hepatic lipidosis in bearded dragons (Pogona vitticeps) and effects of gemfibrozil therapy.
PloS one.
2023; 18(2):e0274060. doi:
10.1371/journal.pone.0274060
. [PMID: 36735707] - Haoran Zhao, Minmin Li, Xiaowei Liu, Jiajie Yang, Xueyao Li, Jieyin Chen, Xiaofeng Dai, Jesus Simal-Gandara, Zhiqiang Kong, Zhizhong Li. Simultaneous determination of succinate-dehydrogenase-inhibitor fungicide traces in cereals by QuEChERS preparation and UPLC-MS/MS analysis.
Food chemistry.
2022 Dec; 396(?):133708. doi:
10.1016/j.foodchem.2022.133708
. [PMID: 35878445] - Xuan Li, Yuting Ren, Guowen Huang, Ruofan Zhang, Yanan Zhang, Weiyun Zhu, Kaifan Yu. Succinate communicates pro-inflammatory signals to the host and regulates bile acid enterohepatic metabolism in a pig model.
Food & function.
2022 Oct; 13(21):11070-11082. doi:
10.1039/d2fo01958b
. [PMID: 36197400] - Hao Liu, Hairong Zhang, Xiaoyu Zhang, Qian Chen, Lei Xia. Role of succinic acid in the regulation of sepsis.
International immunopharmacology.
2022 Sep; 110(?):109065. doi:
10.1016/j.intimp.2022.109065
. [PMID: 35853278] - Jing Li, Huyi Zhou, Wei Zuo, Wenjin An, Yaohai Zhang, Qiyang Zhao. Simultaneous enantioselective determination of two succinate- dehydrogenase-inhibitor fungicides in plant-origin foods by ultra-high performance liquid chromatography-tandem mass spectrometry.
Journal of chromatography. A.
2022 Aug; 1677(?):463325. doi:
10.1016/j.chroma.2022.463325
. [PMID: 35853420] - Nadezhda Fedotcheva, Natalia Beloborodova. Influence of Microbial Metabolites and Itaconic Acid Involved in Bacterial Inflammation on the Activity of Mitochondrial Enzymes and the Protective Role of Alkalization.
International journal of molecular sciences.
2022 Aug; 23(16):. doi:
10.3390/ijms23169069
. [PMID: 36012366] - Xiang-Lin Kong, Qin Lyu, Ya-Qi Zhang, Dong-Fang Kang, Chao Li, Lei Zhang, Zi-Chen Gao, Xin-Xin Liu, Ji-Biao Wu, Yun-Lun Li. Effect of astragaloside IV and salvianolic acid B on antioxidant stress and vascular endothelial protection in the treatment of atherosclerosis based on metabonomics.
Chinese journal of natural medicines.
2022 Aug; 20(8):601-613. doi:
10.1016/s1875-5364(22)60186-9
. [PMID: 36031232] - Chunli Yu, Hui-Ping Wang, Xuya Yu. The associative induction of succinic acid and hydrogen sulfide for high-producing biomass, astaxanthin and lipids in Haematococcus pluvialis.
Bioresource technology.
2022 Aug; 358(?):127397. doi:
10.1016/j.biortech.2022.127397
. [PMID: 35636672] - Sarah Budde-Rodriguez, Julie S Pasche, Fereshteh Shahoveisi, Ipsita Mallik, Neil C Gudmestad. Aggressiveness of Small-Spored Alternaria spp. and Their Sensitivity to Succinate Dehydrogenase Inhibitor Fungicides.
Plant disease.
2022 Jul; 106(7):1919-1928. doi:
10.1094/pdis-10-21-2292-re
. [PMID: 34978878] - Eduardo Henrique Goulin, Thiago Antônio de Lima, Paulo José Camargo Dos Santos, Marcos Antonio Machado. RNAi-induced silencing of the succinate dehydrogenase subunits gene in Colletotrichum abscissum, the causal agent of postbloom fruit drop (PFD) in citrus.
Microbiological research.
2022 Jul; 260(?):126938. doi:
10.1016/j.micres.2021.126938
. [PMID: 35500454] - Qiao Wang, Yushuai Mao, Shengxue Li, Tao Li, Jianxin Wang, Mingguo Zhou, Yabing Duan. Molecular Mechanism of Sclerotinia sclerotiorum Resistance to Succinate Dehydrogenase Inhibitor Fungicides.
Journal of agricultural and food chemistry.
2022 Jun; 70(23):7039-7048. doi:
10.1021/acs.jafc.2c02056
. [PMID: 35666187] - Yang Lin, Zi-Yuan Wang, Ma-Jie Wang, Zheng-Meng Jiang, Ya-Qiu Qin, Tian-Qing Huang, Yu Song, Hui-Ting Liang, E-Hu Liu. Baicalin attenuate diet-induced metabolic syndrome by improving abnormal metabolism and gut microbiota.
European journal of pharmacology.
2022 Jun; 925(?):174996. doi:
10.1016/j.ejphar.2022.174996
. [PMID: 35513018] - Xiaoyu Liang, Lijun Zou, Wenxu Lian, Meng Wang, Ye Yang, Yu Zhang. Comparative Transcriptome Analyses Reveal Conserved and Distinct Mechanisms of the SDHI Fungicide Benzovindiflupyr Inhibiting Colletotrichum.
Phytopathology.
2022 Jun; 112(6):1255-1263. doi:
10.1094/phyto-10-21-0420-r
. [PMID: 34879716] - Xiao Liu, Dong-He Liu, Tao Chen, Jing Zhang, Chun-Lei Wang. Watercore Pear Fruit Respiration Changed and Accumulated γ-Aminobutyric Acid (GABA) in Response to Inner Hypoxia Stress.
Genes.
2022 05; 13(6):. doi:
10.3390/genes13060977
. [PMID: 35741739] - Wenyong Shao, Jingrui Wang, Huiyuan Wang, Ziyue Wen, Chao Liu, Yu Zhang, Youfu Zhao, Zhonghua Ma. Fusarium graminearum FgSdhC1 point mutation A78V confers resistance to the succinate dehydrogenase inhibitor pydiflumetofen.
Pest management science.
2022 May; 78(5):1780-1788. doi:
10.1002/ps.6795
. [PMID: 35014167] - Artem P Gureev, Vadim V Sitnikov, Daniil I Pogorelov, Inna Yu Vitkalova, Abir U Igamberdiev, Vasily N Popov. The effect of pesticides on the NADH-supported mitochondrial respiration of permeabilized potato mitochondria.
Pesticide biochemistry and physiology.
2022 May; 183(?):105056. doi:
10.1016/j.pestbp.2022.105056
. [PMID: 35430060] - Shirong Huang, Xiaojie Chen, Rui Yan, Meng Huang, Dongfang Chen. Isolation, Identification and Antibacterial Mechanism of the Main Antibacterial Component from Pickled and Dried Mustard (Brassica juncea Coss. var. foliosa Bailey).
Molecules (Basel, Switzerland).
2022 Apr; 27(8):. doi:
10.3390/molecules27082418
. [PMID: 35458613] - Celia M Bisbach, Daniel T Hass, Eric D Thomas, Timothy J Cherry, James B Hurley. Monocarboxylate Transporter 1 (MCT1) Mediates Succinate Export in the Retina.
Investigative ophthalmology & visual science.
2022 04; 63(4):1. doi:
10.1167/iovs.63.4.1
. [PMID: 35363247] - Alex Gomez-Gomez, Paula Aguilera, Klaus Langohr, Gregori Casals, Cristina Pavon, Josep Marcos, Jordi To-Figueras, Oscar J Pozo. Evaluation of Metabolic Changes in Acute Intermittent Porphyria Patients by Targeted Metabolomics.
International journal of molecular sciences.
2022 Mar; 23(6):. doi:
10.3390/ijms23063219
. [PMID: 35328641] - Yasser Nehela, Nabil Killiny. Not Just a Cycle: Three gab Genes Enable the Non-Cyclic Flux Toward Succinate via GABA Shunt in 'Candidatus Liberibacter asiaticus'-Infected Citrus.
Molecular plant-microbe interactions : MPMI.
2022 Mar; 35(3):200-214. doi:
10.1094/mpmi-09-21-0241-r
. [PMID: 34775834] - Shulei Zhang, Yamin Liang, Lu Li, Yanmei Chen, Peng Wu, Dangheng Wei. Succinate: A Novel Mediator to Promote Atherosclerotic Lesion Progression.
DNA and cell biology.
2022 Mar; 41(3):285-291. doi:
10.1089/dna.2021.0345
. [PMID: 35138943] - Can Zhao, Yuting Li, Zhijian Liang, Lihong Gao, Chenggui Han, Xuehong Wu. Molecular Mechanisms Associated with the Resistance of Rhizoctonia solani AG-4 Isolates to the Succinate Dehydrogenase Inhibitor Thifluzamide.
Phytopathology.
2022 Mar; 112(3):567-578. doi:
10.1094/phyto-06-21-0266-r
. [PMID: 34615378] - Yaoqing Wang, Xiao Zhang, Haoya Yao, Xiaocui Chen, Lin Shang, Ping Li, Xiaojuan Cui, Jia Zeng. Peroxisome-generated succinate induces lipid accumulation and oxidative stress in the kidneys of diabetic mice.
The Journal of biological chemistry.
2022 03; 298(3):101660. doi:
10.1016/j.jbc.2022.101660
. [PMID: 35124006] - Hyunkyu Sang, Hao-Xun Chang, Sungyu Choi, Doeun Son, Gahee Lee, Martin I Chilvers. Genome-wide transcriptional response of the causal soybean sudden death syndrome pathogen Fusarium virguliforme to a succinate dehydrogenase inhibitor fluopyram.
Pest management science.
2022 Feb; 78(2):530-540. doi:
10.1002/ps.6657
. [PMID: 34561937] - Constance Lamy, Clémence Mansard, Louis Blondel, Lionel Mercier, Angelo Paci, Sophie Broutin. Quantification of succinic acid levels, linked to succinate dehydrogenase (SDH) dysfunctions, by an automated and fully validated liquid chromatography tandem mass spectrometry method suitable for multi-matrix applications.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2022 Jan; 1189(?):123085. doi:
10.1016/j.jchromb.2021.123085
. [PMID: 34974318] - Kunzhe Lin, Jianping Zhang, Yinghong Lin, Zhijie Pei, Shousen Wang. Metabolic Characteristics and M2 Macrophage Infiltrates in Invasive Nonfunctioning Pituitary Adenomas.
Frontiers in endocrinology.
2022; 13(?):901884. doi:
10.3389/fendo.2022.901884
. [PMID: 35898456] - Jingwen Xu, Yabing Zheng, Yaqing Zhao, Yujiao Zhang, Huilin Li, An Zhang, Xuehan Wang, Weizong Wang, Yinglong Hou, Jiangrong Wang. Succinate/IL-1β Signaling Axis Promotes the Inflammatory Progression of Endothelial and Exacerbates Atherosclerosis.
Frontiers in immunology.
2022; 13(?):817572. doi:
10.3389/fimmu.2022.817572
. [PMID: 35273600] - Ke Feng, Wenjie Dai, Ling Liu, Shengming Li, Yi Gou, Zhongwei Chen, Guodong Chen, Xufeng Fu. Identification of biomarkers and the mechanisms of multiple trauma complicated with sepsis using metabolomics.
Frontiers in public health.
2022; 10(?):923170. doi:
10.3389/fpubh.2022.923170
. [PMID: 35991069] - Eduardo Sommella, Giulio Verna, Marina Liso, Emanuela Salviati, Tiziana Esposito, Daniela Carbone, Camilla Pecoraro, Marcello Chieppa, Pietro Campiglia. Hop-derived fraction rich in beta acids and prenylflavonoids regulates the inflammatory response in dendritic cells differently from quercetin: unveiling metabolic changes by mass spectrometry-based metabolomics.
Food & function.
2021 Dec; 12(24):12800-12811. doi:
10.1039/d1fo02361f
. [PMID: 34859812] - Mònica Bulló, Christopher Papandreou, Jesus García-Gavilán, Miguel Ruiz-Canela, Jun Li, Marta Guasch-Ferré, Estefanía Toledo, Clary Clish, Dolores Corella, Ramon Estruch, Emilio Ros, Montserrat Fitó, Chih-Hao Lee, Kerry Pierce, Cristina Razquin, Fernando Arós, Lluís Serra-Majem, Liming Liang, Miguel A Martínez-González, Frank B Hu, Jordi Salas-Salvadó. Tricarboxylic acid cycle related-metabolites and risk of atrial fibrillation and heart failure.
Metabolism: clinical and experimental.
2021 12; 125(?):154915. doi:
10.1016/j.metabol.2021.154915
. [PMID: 34678258] - Yonglan Ruan, Jinying Ling, Fan Ye, Nuo Cheng, Fei Wu, Zongxiang Tang, Xiaolan Cheng, Hongquan Liu. Paeoniflorin alleviates CFA-induced inflammatory pain by inhibiting TRPV1 and succinate/SUCNR1-HIF-1α/NLPR3 pathway.
International immunopharmacology.
2021 Dec; 101(Pt B):108364. doi:
10.1016/j.intimp.2021.108364
. [PMID: 34844873] - Chengyuan Liang, Juan Li, Bin Tian, Lei Tian, Yuzhi Liu, Jingyi Li, Liang Xin, Jun Wang, Chao Fu, Zhenfeng Shi, Juan Xia, Yiting Liang, Kun Wang. Foresight regarding drug candidates acting on the succinate-GPR91 signalling pathway for non-alcoholic steatohepatitis (NASH) treatment.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Dec; 144(?):112298. doi:
10.1016/j.biopha.2021.112298
. [PMID: 34649219] - Pierre Hellin, Maxime Duvivier, Thies M Heick, Bart A Fraaije, Charlotte Bataille, Aurélie Clinckemaillie, Anne Legrève, Lise N Jørgensen, Björn Andersson, Berit Samils, Bernd Rodemann, Gunilla Berg, Fiona Hutton, Maxime Garnault, Moussa El Jarroudi, Gilles Couleaud, Steven Kildea. Spatio-temporal distribution of DMI and SDHI fungicide resistance of Zymoseptoria tritici throughout Europe based on frequencies of key target-site alterations.
Pest management science.
2021 Dec; 77(12):5576-5588. doi:
10.1002/ps.6601
. [PMID: 34392616] - Lizhan Su, Yarou Gao, Mingxin Zhang, Zexin Liu, Qisheng Lin, Lang Gong, Jianying Guo, Lixia Chen, Tongqing An, Jianxin Chen. Andrographolide and Its Derivative Potassium Dehydrographolide Succinate Suppress PRRSV Replication in Primary and Established Cells via Differential Mechanisms of Action.
Virologica Sinica.
2021 Dec; 36(6):1626-1643. doi:
10.1007/s12250-021-00455-y
. [PMID: 34704222] - Wenchan Chen, Lingling Wei, Xiujuan Li, Hongyu Ma, Tiancheng Lou, Pengcheng Zhang, Huanhuan Zheng, Xiaolei Zhu, Yu Zhang, Fengquan Liu, Changjun Chen, Guangfu Yang. Point Mutations in FgSdhC2 or in the 5' Untranslated Region of FgSdhC1 Confer Resistance to a Novel Succinate Dehydrogenase Inhibitor Flubeneteram in Fusarium graminearum.
Journal of agricultural and food chemistry.
2021 Nov; 69(44):13006-13019. doi:
10.1021/acs.jafc.1c04363
. [PMID: 34723519] - Hongtu Cui, Yanghui Chen, Ke Li, Rui Zhan, Mingming Zhao, Yangkai Xu, Zhiyong Lin, Yi Fu, Qihua He, Paul C Tang, Ienglam Lei, Jifeng Zhang, Chenze Li, Yang Sun, Xinhua Zhang, Tiffany Horng, Hong S Lu, Y Eugene Chen, Alan Daugherty, Daowen Wang, Lemin Zheng. Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection.
European heart journal.
2021 11; 42(42):4373-4385. doi:
10.1093/eurheartj/ehab605
. [PMID: 34534287] - Falin He, Jingqiang Wan, Xiangxiang Li, Shanshan Chu, Ning Sun, Rutao Liu. Toxic effects of benzovindiflupyr, a new SDHI-type fungicide on earthworms (Eisenia fetida).
Environmental science and pollution research international.
2021 Nov; 28(44):62782-62795. doi:
10.1007/s11356-021-15207-4
. [PMID: 34215985] - Selçuk Varol, Faruk Öktem, Abdurrahim Koçyiğit, Ayşegül Doğan Demir, Ersin Karataş, Mehmet Aydın, Nilüfer Göknar, Tümay İpekçi. The impact of Technetium-99m dimercapto-succinic acid scintigraphy on DNA damage and oxidative stress in children.
International journal of clinical practice.
2021 Nov; 75(11):e14810. doi:
10.1111/ijcp.14810
. [PMID: 34487588] - Chunli Yu, Hui-Ping Wang, Tengsheng Qiao, Yongteng Zhao, Xuya Yu. A fed-batch feeding with succinic acid strategy for astaxanthin and lipid hyper-production in Haematococcus pluviualis.
Bioresource technology.
2021 Nov; 340(?):125648. doi:
10.1016/j.biortech.2021.125648
. [PMID: 34332443] - Pratibha Sharma, Dean K Malvick, Ashok K Chanda. Sensitivity of Rhizoctonia solani Anastomosis Group 2-2 Isolates from Soybean and Sugar Beet to Selected SDHI and QoI Fungicides.
Plant disease.
2021 Nov; 105(11):3573-3579. doi:
10.1094/pdis-12-20-2680-re
. [PMID: 33835827] - Yanan Sun, Haiping Shi, Chenxin Mao, Jianyan Wu, Chuanqing Zhang. Activity of a SDHI fungicide penflufen and the characterization of natural-resistance in Fusarium fujikuroi.
Pesticide biochemistry and physiology.
2021 Nov; 179(?):104960. doi:
10.1016/j.pestbp.2021.104960
. [PMID: 34802512] - Goksu Kasarci, Baris Ertugrul, Elif Sinem Iplik, Bedia Cakmakoglu. The apoptotic efficacy of succinic acid on renal cancer cell lines.
Medical oncology (Northwood, London, England).
2021 Oct; 38(12):144. doi:
10.1007/s12032-021-01577-9
. [PMID: 34687367] - Yang Bai, Chun-Yan Gu, Rui Pan, Muhammad Abid, Hao-Yu Zang, Xue Yang, Gen-Jia Tan, Yu Chen. Activity of A Novel Succinate Dehydrogenase Inhibitor Fungicide Pydiflumetofen Against Fusarium fujikuroi causing Rice Bakanae Disease.
Plant disease.
2021 Oct; 105(10):3208-3217. doi:
10.1094/pdis-10-20-2274-re
. [PMID: 33560887] - Panagiota Ntasiou, Anastasios Samaras, George Karaoglanidis. Apple Fruit Core Rot Agents in Greece and Control with Succinate Dehydrogenase Inhibitor Fungicides.
Plant disease.
2021 Oct; 105(10):3072-3081. doi:
10.1094/pdis-11-20-2422-re
. [PMID: 33673771] - Moran Fremder, Seung Won Kim, Ahlam Khamaysi, Liana Shimshilashvili, Hadar Eini-Rider, I Seul Park, Uzi Hadad, Jae Hee Cheon, Ehud Ohana. A transepithelial pathway delivers succinate to macrophages, thus perpetuating their pro-inflammatory metabolic state.
Cell reports.
2021 08; 36(6):109521. doi:
10.1016/j.celrep.2021.109521
. [PMID: 34380041] - Corrilynn O Hileman, Robert C Kalayjian, Sausan Azzam, Daniela Schlatzer, Kunling Wu, Katherine Tassiopoulos, Roger Bedimo, Ronald J Ellis, Kristine M Erlandson, Asha Kallianpur, Susan L Koletar, Alan L Landay, Frank J Palella, Babafemi Taiwo, Muralidhar Pallaki, Charles L Hoppel. Plasma Citrate and Succinate Are Associated With Neurocognitive Impairment in Older People With HIV.
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
2021 08; 73(3):e765-e772. doi:
10.1093/cid/ciab107
. [PMID: 33564870] - Francisco J Osuna-Prieto, Borja Martinez-Tellez, Lourdes Ortiz-Alvarez, Xinyu Di, Lucas Jurado-Fasoli, Huiwen Xu, Victoria Ceperuelo-Mallafré, Catalina Núñez-Roa, Isabelle Kohler, Antonio Segura-Carretero, José V García-Lario, Angel Gil, Concepción M Aguilera, Jose M Llamas-Elvira, Patrick C N Rensen, Joan Vendrell, Jonatan R Ruiz, Sonia Fernández-Veledo. Elevated plasma succinate levels are linked to higher cardiovascular disease risk factors in young adults.
Cardiovascular diabetology.
2021 07; 20(1):151. doi:
10.1186/s12933-021-01333-3
. [PMID: 34315463] - Pouria Jarsiah, Joerg Roehrich, Theresa Kueting, Walter Martz, Cornelius Hess. GHB related acids are useful in routine casework of suspected GHB intoxication cases.
Forensic science international.
2021 Jul; 324(?):110833. doi:
10.1016/j.forsciint.2021.110833
. [PMID: 34020075] - Xinyao Su, Qiang Xue, Mengchu Sun, Jiarou Liu, Ming Hung Wong, Caixia Wang, Shilin Chen. Co-production of polysaccharides, ginsenosides and succinic acid from Panax ginseng residue: A typical industrial herbal waste.
Bioresource technology.
2021 Jul; 331(?):125073. doi:
10.1016/j.biortech.2021.125073
. [PMID: 33819907] - M A González Hernández, E E Canfora, E E Blaak. Faecal microbial metabolites of proteolytic and saccharolytic fermentation in relation to degree of insulin resistance in adult individuals.
Beneficial microbes.
2021 Jun; 12(3):259-266. doi:
10.3920/bm2020.0179
. [PMID: 33880973] - N Mota-Martorell, M Jové, R Berdún, R Pamplona. Plasma methionine metabolic profile is associated with longevity in mammals.
Communications biology.
2021 06; 4(1):725. doi:
10.1038/s42003-021-02254-3
. [PMID: 34117367] - Yingying Tong, Dong Guo, Shu-Hai Lin, Jiazhen Liang, Dianqiang Yang, Chunmin Ma, Fei Shao, Min Li, Qiujing Yu, Yuhui Jiang, Lei Li, Jing Fang, Rilei Yu, Zhimin Lu. SUCLA2-coupled regulation of GLS succinylation and activity counteracts oxidative stress in tumor cells.
Molecular cell.
2021 06; 81(11):2303-2316.e8. doi:
10.1016/j.molcel.2021.04.002
. [PMID: 33991485] - Zhichao Wang, Qiong A Wang, Yong Liu, Lei Jiang. Energy metabolism in brown adipose tissue.
The FEBS journal.
2021 06; 288(12):3647-3662. doi:
10.1111/febs.16015
. [PMID: 34028971] - Hiroyo Shinno-Hashimoto, Yaeko Hashimoto, Yan Wei, Lijia Chang, Yuko Fujita, Tamaki Ishima, Hiroyuki Matsue, Kenji Hashimoto. Abnormal composition of microbiota in the gut and skin of imiquimod-treated mice.
Scientific reports.
2021 05; 11(1):11265. doi:
10.1038/s41598-021-90480-4
. [PMID: 34050205] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Yibo Dong, Ping Li, Ping Li, Chao Chen. First comprehensive analysis of lysine succinylation in paper mulberry (Broussonetia papyrifera).
BMC genomics.
2021 Apr; 22(1):255. doi:
10.1186/s12864-021-07567-5
. [PMID: 33838656] - Sengnolotha Marak, Elena Shumilina, Nutan Kaushik, Eva Falch, Alexander Dikiy. Effect of Different Drying Methods on the Nutritional Value of Hibiscus sabdariffa Calyces as Revealed by NMR Metabolomics.
Molecules (Basel, Switzerland).
2021 Mar; 26(6):. doi:
10.3390/molecules26061675
. [PMID: 33802805] - Jaemin Lee, Michaela R Elliott, Minsoo Kim, Toshihiko Yamada, Geunhwa Jung. A Rapid Molecular Detection System for SdhB and SdhC Point Mutations Conferring Differential Succinate Dehydrogenase Inhibitor Resistance in Clarireedia Populations.
Plant disease.
2021 Mar; 105(3):660-666. doi:
10.1094/pdis-04-20-0724-re
. [PMID: 32757732] - Alena A Semenova, Victor N Samartsev, Mikhail V Dubinin. The stimulation of succinate-fueled respiration of rat liver mitochondria in state 4 by α,ω-hexadecanedioic acid without induction of proton conductivity of the inner membrane. Intrinsic uncoupling of the bc1 complex.
Biochimie.
2021 Feb; 181(?):215-225. doi:
10.1016/j.biochi.2020.12.021
. [PMID: 33400934] - Yaling Lu, Xiangping Wu, Lei Yuan, Yingdi Li, Penghui Wang, Jianna Yu, Pingfang Tian, Wenjie Liu. A rapid liquid chromatography-electrospray ionization-ion mobility spectrometry method for monitoring nine representative metabolites in the seedlings of cucumber and wheat.
Journal of separation science.
2021 Feb; 44(3):709-716. doi:
10.1002/jssc.202000811
. [PMID: 33245598] - Vlad F Avram, Imen Chamkha, Eleonor Åsander-Frostner, Johannes K Ehinger, Romulus Z Timar, Magnus J Hansson, Danina M Muntean, Eskil Elmér. Cell-Permeable Succinate Rescues Mitochondrial Respiration in Cellular Models of Statin Toxicity.
International journal of molecular sciences.
2021 Jan; 22(1):. doi:
10.3390/ijms22010424
. [PMID: 33401621] - Yujiao Yang, Hong Zhang, Zhenyang Guo, Siwei Zou, Fei Long, Jiacheng Wu, Peng Li, Guo-Ping Zhao, Wei Zhao. Global Insights Into Lysine Acylomes Reveal Crosstalk Between Lysine Acetylation and Succinylation in Streptomyces coelicolor Metabolic Pathways.
Molecular & cellular proteomics : MCP.
2021; 20(?):100148. doi:
10.1016/j.mcpro.2021.100148
. [PMID: 34530157] - Dieter M Matlac, Katerina Hadrava Vanova, Nicole Bechmann, Susan Richter, Julica Folberth, Hans K Ghayee, Guang-Bo Ge, Luma Abunimer, Robert Wesley, Redouane Aherrahrou, Margo Dona, Ángel M Martínez-Montes, Bruna Calsina, Maria J Merino, Markus Schwaninger, Peter M T Deen, Zhengping Zhuang, Jiri Neuzil, Karel Pacak, Hendrik Lehnert, Stephanie M J Fliedner. Succinate Mediates Tumorigenic Effects via Succinate Receptor 1: Potential for New Targeted Treatment Strategies in Succinate Dehydrogenase Deficient Paragangliomas.
Frontiers in endocrinology.
2021; 12(?):589451. doi:
10.3389/fendo.2021.589451
. [PMID: 33776908] - Wenchan Chen, Lingling Wei, Weicheng Zhao, Bingran Wang, Huanhuan Zheng, Pengcheng Zhang, Tiancheng Lou, Yabing Duan, Yiping Hou, Mingguo Zhou, Changjun Chen. Resistance risk assessment for a novel succinate dehydrogenase inhibitor pydiflumetofen in Fusarium asiaticum.
Pest management science.
2021 Jan; 77(1):538-547. doi:
10.1002/ps.6053
. [PMID: 32816384] - Liat Oren-Young, Eugenio Llorens, Kai Bi, Mingzhe Zhang, Amir Sharon. Botrytis cinerea methyl isocitrate lyase mediates oxidative stress tolerance and programmed cell death by modulating cellular succinate levels.
Fungal genetics and biology : FG & B.
2021 01; 146(?):103484. doi:
10.1016/j.fgb.2020.103484
. [PMID: 33220429] - Isabelle Laforest-Lapointe, Allan B Becker, Piushkumar J Mandhane, Stuart E Turvey, Theo J Moraes, Malcolm R Sears, Padmaja Subbarao, Laura K Sycuro, Meghan B Azad, Marie-Claire Arrieta. Maternal consumption of artificially sweetened beverages during pregnancy is associated with infant gut microbiota and metabolic modifications and increased infant body mass index.
Gut microbes.
2021 Jan; 13(1):1-15. doi:
10.1080/19490976.2020.1857513
. [PMID: 33382954] - Christina H Hagerty, Ann M Klein, Catherine L Reardon, Duncan R Kroese, Caroline J Melle, Kaci R Graber, Christopher C Mundt. Baseline and Temporal Changes in Sensitivity of Zymoseptoria tritici Isolates to Benzovindiflupyr in Oregon, U.S.A., and Cross-Sensitivity to Other SDHI Fungicides.
Plant disease.
2021 Jan; 105(1):169-174. doi:
10.1094/pdis-10-19-2125-re
. [PMID: 33170771] - Ruixue Wang, Lianyun Lin, Yiqiang Zheng, Peng Cao, Zhiguang Yuchi, Hui-Yuan Wu. Identification of 2-PMPA as a novel inhibitor of cytosolic carboxypeptidases.
Biochemical and biophysical research communications.
2020 12; 533(4):1393-1399. doi:
10.1016/j.bbrc.2020.10.029
. [PMID: 33092792] - Ksenia N Sorokina, Yuliya V Samoylova, Nikolay V Gromov, Olga L Ogorodnikova, Valentin N Parmon. Production of biodiesel and succinic acid from the biomass of the microalga Micractinium sp. IC-44.
Bioresource technology.
2020 Dec; 317(?):124026. doi:
10.1016/j.biortech.2020.124026
. [PMID: 32866839] - Amrita Banerjee, Charles A Herring, Bob Chen, Hyeyon Kim, Alan J Simmons, Austin N Southard-Smith, Margaret M Allaman, James R White, Mary C Macedonia, Eliot T Mckinley, Marisol A Ramirez-Solano, Elizabeth A Scoville, Qi Liu, Keith T Wilson, Robert J Coffey, M Kay Washington, Jeremy A Goettel, Ken S Lau. Succinate Produced by Intestinal Microbes Promotes Specification of Tuft Cells to Suppress Ileal Inflammation.
Gastroenterology.
2020 12; 159(6):2101-2115.e5. doi:
10.1053/j.gastro.2020.08.029
. [PMID: 32828819] - Francesca Cateni, Marina Zacchigna, Giuseppe Procida. Synthesis and controlled drug delivery studies of a novel Ubiquinol-Polyethylene glycol-Vitamin E adduct.
Bioorganic chemistry.
2020 12; 105(?):104329. doi:
10.1016/j.bioorg.2020.104329
. [PMID: 33068813]