NCBI Taxonomy: 2028212
Laetiporaceae (ncbi_taxid: 2028212)
found 148 associated metabolites at family taxonomy rank level.
Ancestor: Polyporales
Child Taxonomies: Laetiporus, Kusaghiporia, Wolfiporiella, Wolfiporiopsis, environmental samples
Citric acid
Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].
Succinic acid
Succinic acid appears as white crystals or shiny white odorless crystalline powder. pH of 0.1 molar solution: 2.7. Very acid taste. (NTP, 1992) Succinic acid is an alpha,omega-dicarboxylic acid resulting from the formal oxidation of each of the terminal methyl groups of butane to the corresponding carboxy group. It is an intermediate metabolite in the citric acid cycle. It has a role as a nutraceutical, a radiation protective agent, an anti-ulcer drug, a micronutrient and a fundamental metabolite. It is an alpha,omega-dicarboxylic acid and a C4-dicarboxylic acid. It is a conjugate acid of a succinate(1-). A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawleys Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851) Succinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Succinic acid is a dicarboxylic acid. The anion, succinate, is a component of the citric acid cycle capable of donating electrons to the electron transfer chain. Succinic acid is created as a byproduct of the fermentation of sugar. It lends to fermented beverages such as wine and beer a common taste that is a combination of saltiness, bitterness and acidity. Succinate is commonly used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. Succinate plays a role in the citric acid cycle, an energy-yielding process and is metabolized by succinate dehydrogenase to fumarate. Succinate dehydrogenase (SDH) plays an important role in the mitochondria, being both part of the respiratory chain and the Krebs cycle. SDH with a covalently attached FAD prosthetic group, binds enzyme substrates (succinate and fumarate) and physiological regulators (oxaloacetate and ATP). Oxidizing succinate links SDH to the fast-cycling Krebs cycle portion where it participates in the breakdown of acetyl-CoA throughout the whole Krebs cycle. Succinate can readily be imported into the mitochondrial matrix by the n-butylmalonate- (or phenylsuccinate-) sensitive dicarboxylate carrier in exchange with inorganic phosphate or another organic acid, e.g. malate. (A3509) Mutations in the four genes encoding the subunits of succinate dehydrogenase are associated with a wide spectrum of clinical presentations (i.e.: Huntingtons disease. (A3510). Succinate also acts as an oncometabolite. Succinate inhibits 2-oxoglutarate-dependent histone and DNA demethylase enzymes, resulting in epigenetic silencing that affects neuroendocrine differentiation. A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawleys Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851) Succinic acid (succinate) is a dicarboxylic acid. It is an important component of the citric acid or TCA cycle and is capable of donating electrons to the electron transfer chain. Succinate is found in all living organisms ranging from bacteria to plants to mammals. In eukaryotes, succinate is generated in the mitochondria via the tricarboxylic acid cycle (TCA). Succinate can readily be imported into the mitochondrial matrix by the n-butylmalonate- (or phenylsuccinate-) sensitive dicarboxylate carrier in exchange with inorganic phosphate or another organic acid, e. g. malate (PMID 16143825). Succinate can exit the mitochondrial matrix and function in the cytoplasm as well as the extracellular space. Succinate has multiple biological roles including roles as a metabolic intermediate and roles as a cell signalling molecule. Succinate can alter gene expression patterns, thereby modulating the epigenetic landscape or it can exhibit hormone-like signaling functions (PMID: 26971832). As such, succinate links cellular metabolism, especially ATP formation, to the regulation of cellular function. Succinate can be broken down or metabolized into fumarate by the enzyme succinate dehydrogenase (SDH), which is part of the electron transport chain involved in making ATP. Dysregulation of succinate synthesis, and therefore ATP synthesis, can happen in a number of genetic mitochondrial diseases, such as Leigh syndrome, and Melas syndrome. Succinate has been found to be associated with D-2-hydroxyglutaric aciduria, which is an inborn error of metabolism. Succinic acid has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite. High levels of this organic acid can be found in tumors or biofluids surrounding tumors. Its oncogenic action appears to due to its ability to inhibit prolyl hydroxylase-containing enzymes. In many tumours, oxygen availability becomes limited (hypoxia) very quickly due to rapid cell proliferation and limited blood vessel growth. The major regulator of the response to hypoxia is the HIF transcription factor (HIF-alpha). Under normal oxygen levels, protein levels of HIF-alpha are very low due to constant degradation, mediated by a series of post-translational modification events catalyzed by the prolyl hydroxylase domain-containing enzymes PHD1, 2 and 3, (also known as EglN2, 1 and 3) that hydroxylate HIF-alpha and lead to its degradation. All three of the PHD enzymes are inhibited by succinate. In humans, urinary succinic acid is produced by Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis (PMID: 22292465). Succinic acid is also found in Actinobacillus, Anaerobiospirillum, Mannheimia, Corynebacterium and Basfia (PMID: 22292465; PMID: 18191255; PMID: 26360870). Succinic acid is widely distributed in higher plants and produced by microorganisms. It is found in cheeses and fresh meats. Succinic acid is a flavouring enhancer, pH control agent [DFC]. Succinic acid is also found in yellow wax bean, swamp cabbage, peanut, and abalone. An alpha,omega-dicarboxylic acid resulting from the formal oxidation of each of the terminal methyl groups of butane to the corresponding carboxy group. It is an intermediate metabolite in the citric acid cycle. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID S004 Succinic acid is a potent and orally active anxiolytic agent. Succinic acid is an intermediate product of the tricarboxylic acid cycle. Succinic acid can be used as a precursor of many industrially important chemicals in food, chemical and pharmaceutical industries[1][2]. Succinic acid is a potent and orally active anxiolytic agent. Succinic acid is an intermediate product of the tricarboxylic acid cycle. Succinic acid can be used as a precursor of many industrially important chemicals in food, chemical and pharmaceutical industries[1][2].
Trehalose
C12H22O11 (342.11620619999997)
Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.
Coenzyme Q9
Coenzyme Q9 (CoQ9) is a normal constituent of human plasma. CoQ9 in human plasma may originate as a product of incomplete CoQ10 biosynthesis or from the diet. The estimated dietary CoQ9 intake is 0 to 1.3 umol/day, primarily from cereals and fats, but this is unreliable because many food items contain levels below the detection limit. Plasma CoQ9 increases after supplementation with CoQ10, and CoQ9 and CoQ10 are significantly correlated. (PMID: 17405953). D020011 - Protective Agents > D000975 - Antioxidants Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2]. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2].
Hexane
Hexane, also known as hexan or CH3-[CH2]4-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, hexane is considered to be a hydrocarbon lipid molecule. Hexane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hexane is an gasoline tasting compound. Hexane can be found, on average, in the highest concentration within kohlrabis. Hexane has also been detected, but not quantified, in several different foods, such as pomes, nuts, fruits, mushrooms, and corns. Exposure to hexane may also damage the lungs and reproductive system. Hexane is a potentially toxic compound. It causes degeneration of the peripheral nervous system (and eventually the central nervous system), starting with damage to the nerve axons. The initial reaction is oxidation by cytochrome P-450 isozymes to hexanols, predominantly 2-hexanol. Inhalation of high concentrations produces first a state of mild euphoria, followed by somnolence with headaches and nausea. 2,5-Hexanedione also reacts with lysine side-chain amino groups in axonal cytoskeletal proteins to form pyrroles. Continued exposure may lead to paralysis of the arms and legs. Extraction solvent used in food production Present in volatile fractions of various plant subspecies e.g. apples, orange juice, guava fruit, roasted filberts, porcini (Boletus edulis), shiitake (Lentinus edodes), heated sweet potato and sageand is also present in scallops. Hexane is found in many foods, some of which are citrus, pomes, mushrooms, and herbs and spices.
Ribitol
Xylitol is a pentitol (five-carbon sugar alcohol) having meso-configuration, being derived from xylose by reduction of the carbonyl group. It has a role as a sweetening agent, an allergen, a hapten, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Xylitol is a naturally occurring five-carbon sugar alcohol found in most plant material, including many fruits and vegetables. Xylitol-rich plant materials include birch and beechwood. It is widely used as a sugar substitute and in "sugar-free" food products. The effects of xylitol on dental caries have been widely studied, and xylitol is added to some chewing gums and other oral care products to prevent tooth decay and dry mouth. Xylitol is a non-fermentable sugar alcohol by most plaque bacteria, indicating that it cannot be fermented into cariogenic acid end-products. It works by inhibiting the growth of the microorganisms present in plaque and saliva after it accummulates intracellularly into the microorganism. The recommended dose of xylitol for dental caries prevention is 6–10 g/day, and most adults can tolerate 40 g/day without adverse events. Ribitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Xylitol is a natural product found in Rubus parvifolius with data available. Xylitol is a metabolite found in or produced by Saccharomyces cerevisiae. A five-carbon sugar alcohol derived from XYLOSE by reduction of the carbonyl group. It is as sweet as sucrose and used as a noncariogenic sweetener. A pentitol (five-carbon sugar alcohol) having meso-configuration, being derived from ribose by reduction of the carbonyl group. It occurs naturally in the plant Adonis vernalis. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Xylitol can be classified as polyols and sugar alcohols. Xylitol can be classified as polyols and sugar alcohols.
Ribitol
Ribitol is a pentose alcohol formed by the reduction of ribose. It occurs naturally in plants as well as in the cell walls of some Gram-positive bacteria. Ribitol forms part of the chemical structure of riboflavin and flavin mononucleotide (FMN). It is also a metabolic end product formed by the reduction of ribose in human fibroblasts and erythrocytes. In this regard ribitol is found in all organisms from bacteria to plants to humans. Ribitol is a normal constituent of human urine (PMID: 2736321). Elevated levels of ribitol in the serum or urine can be found in patients with transaldolase deficiency (PMID: 11283793). Transaldolase is an important enzyme in the pentose phosphate pathway (PPP). Elevated levels of ribitol in the serum or urine can be found in patients with Ribose-5-phosphate isomerase deficiency (PMID: 14988808). Ribose-5-phosphate isomerase is an important enzyme in the pentose phosphate pathway (PPP). Export of ribitol across the cell membrane indicates that can be cleared from the body without metabolic conversion (PMID 15234337). Ribitol is normally absent in Breast milk (PMID 16456418). Ribitol is a metabolic end product formed by the reduction of ribose in human fibroblasts and erythrocytes (pentitol, sugar alcohol, polyol). Export of ribitol across the cell membrane indicates that can be cleared from the body without metabolic conversion. (PMID 15234337) D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Xylitol can be classified as polyols and sugar alcohols. Xylitol can be classified as polyols and sugar alcohols.
Ergosterol peroxide
Ergosterol peroxide is found in fruits. Ergosterol peroxide is obtained from leaves of Ananas comosus (pineapple obtained from leaves of Ananas comosus (pineapple). Ergosterol peroxide is found in pineapple and fruits.
Egonol gentiobioside
Egonol gentiobioside is found in mushrooms. Egonol gentiobioside is produced by Laetiporus sulphureus var. miniatu Production by Laetiporus sulphureus variety miniatus. Egonol gentiobioside is found in mushrooms.
Matsutakic acid A
Matsutakic acid A is found in mushrooms. Matsutakic acid A is isolated from the fungus Laetiporus sulphureus var. miniatus. Isolated from the fungus Laetiporus sulphureus variety miniatus. Matsutakic acid A is found in mushrooms.
Egonol glucoside
C25H28O10 (488.16823880000004)
Egonol glucoside is found in mushrooms. Egonol glucoside is produced by Laetiporus sulphureus var. miniatu Production by Laetiporus sulphureus variety miniatus. Egonol glucoside is found in mushrooms.
Matsutakeside I
Matsutakeside I is found in mushrooms. Matsutakeside I is isolated from the fungus Laetiporus sulphureus var. miniatus. Isolated from the fungus Laetiporus sulphureus variety miniatus. Matsutakeside I is found in mushrooms.
Egonol
Egonol is found in mushrooms. Egonol is produced by Laetiporus sulphureus var. miniatu Production by Laetiporus sulphureus variety miniatus. Egonol is found in mushrooms.
Demethoxyegonol
Demethoxyegonol is found in mushrooms. Demethoxyegonol is produced by Laetiporus sulphureus var. miniatu
Ubiquinone Q9;CoQ9;Ubiquinone 9
Citric Acid
A - Alimentary tract and metabolism > A09 - Digestives, incl. enzymes > A09A - Digestives, incl. enzymes > A09AB - Acid preparations D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents D006401 - Hematologic Agents > D000925 - Anticoagulants C26170 - Protective Agent > C275 - Antioxidant COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].
Cerevisterol
An ergostanoid that is (22E)-ergosta-7,22-diene substituted by hydroxy groups at positions 3, 5 and 6 (the 3beta,5alpha,6beta stereoisomer). It has been isolated from the fungus, Xylaria species. Cerevisterol is a steroid isolated from the fruiting bodies of Agaricus blazei[1]. Cerevisterol is a steroid isolated from the fruiting bodies of Agaricus blazei[1].
Malic acid
(S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods.
Trehalose
C12H22O11 (342.11620619999997)
Trehalose, also known as alpha,alpha-trehalose or D-(+)-trehalose, is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Trehalose is soluble (in water) and a very weakly acidic compound (based on its pKa). Trehalose can be found in a number of food items such as european chestnut, chicory, wild celery, and shallot, which makes trehalose a potential biomarker for the consumption of these food products. Trehalose can be found primarily in feces and urine, as well as throughout most human tissues. Trehalose exists in all living species, ranging from bacteria to humans. In humans, trehalose is involved in the trehalose degradation. Acquisition and generation of the data is financially supported by the Max-Planck-Society D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.
L-Malic acid
An optically active form of malic acid having (S)-configuration. Occurs naturally in apples and various other fruits. Flavour enhancer, pH control agent. L-Malic acid is found in many foods, some of which are mulberry, black cabbage, european plum, and fig. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive.
Citric Acid
Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].
Succinic acid
Succinic acid is a potent and orally active anxiolytic agent. Succinic acid is an intermediate product of the tricarboxylic acid cycle. Succinic acid can be used as a precursor of many industrially important chemicals in food, chemical and pharmaceutical industries[1][2]. Succinic acid is a potent and orally active anxiolytic agent. Succinic acid is an intermediate product of the tricarboxylic acid cycle. Succinic acid can be used as a precursor of many industrially important chemicals in food, chemical and pharmaceutical industries[1][2].
ribitol
D-Arabitol is a polyol and its accumulation may cause a neurotoxic effect in human. D-Arabitol is a polyol and its accumulation may cause a neurotoxic effect in human. Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.
malonic acid
An alpha,omega-dicarboxylic acid in which the two carboxy groups are separated by a single methylene group.
Egonol
A member of the class of 1-benzofurans that is 1-benzofuran substituted by a methoxy group at position 7, a 1,3-benzodioxol-5-yl group at position 2 and a 3-hydroxypropyl group at position 5. It has been isolated from Styrax agrestis.
Egonol glucoside
C25H28O10 (488.16823880000004)
Trametenolic acid
Trametenolic acid is a lanostanol glycoside that isolated from the EtOH extract of the fruit bodies of Laetiporus versisporus[1]. Trametenolic acid is a lanostanol glycoside that isolated from the EtOH extract of the fruit bodies of Laetiporus versisporus[1].
Matsutakeside I
Coenzyme Q9
D020011 - Protective Agents > D000975 - Antioxidants Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2]. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2].
HISPIDIN
Fungal metabolite first found in basidiomycete Inonotus hispidus (formerly Polyporus hispidus). Hispidin, a PKC inhibitor and a phenolic compound from Phellinus linteus, has been shown to possess strong anti-oxidant, anti-cancer, anti-diabetic, and anti-dementia properties[1].
ubiquinone-9
Coenzyme Q9 (CoQ9) is a normal constituent of human plasma. CoQ9 in human plasma may originate as a product of incomplete CoQ10 biosynthesis or from the diet. The estimated dietary CoQ9 intake is 0 to 1.3 umol/day, primarily from cereals and fats, but this is unreliable because many food items contain levels below the detection limit. Plasma CoQ9 increases after supplementation with CoQ10, and CoQ9 and CoQ10 are significantly correlated. (PMID: 17405953). Ubiquinone 9 is found in safflower. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2]. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2].
7-demethoxyegonol
A member of the class of 1-benzofurans that is egonol in which the methoxy group at position 7 is replaced by a hydrogen. It has been isolated from the fruits of Styrax agrestis.
2,3-Dihydroxybutanedioic acid
A tetraric acid that is butanedioic acid substituted by hydroxy groups at positions 2 and 3.
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r)-2-[(1r,3s,3ar,5ar,7s,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate
(2r)-2-[(1s,3r,3ar,6s,7s,9br)-1-hydroxy-6-(3-methoxy-3-oxopropyl)-3a,6,9b-trimethyl-7-(prop-1-en-2-yl)-1h,2h,3h,4h,5h,7h,8h,9h-cyclopenta[a]naphthalen-3-yl]-6-methylhept-5-enoic acid
(2r)-2-[(1r,3ar,5ar,7r,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
2-[3-(acetyloxy)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
2-(3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl)-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3ar,4r,7s,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3s,3ar,9as,11ar)-3-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
2-[6-(2-carboxyethyl)-1-hydroxy-3a,6,9b-trimethyl-7-(prop-1-en-2-yl)-1h,2h,3h,4h,5h,7h,8h,9h-cyclopenta[a]naphthalen-3-yl]-6-methylhept-5-enoic acid
1,2-bis(hydroxymethyl)-6,8a-dimethyl-5-methylidene-hexahydro-1h-naphthalen-2-ol
(2r,5z)-2-[(1r,3s,3ar,5ar,7s,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-enoic acid
6-[2-(3,4-dihydroxyphenyl)ethenyl]-3-(1-{6-[2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-2-oxopyran-3-yl}-3-methylbutyl)-4-hydroxypyran-2-one
(5e,7e,9e,11e,13e,15e,17e,19z,21e,23e)-3-hydroxy-24-methyl-25-oxohexacosa-5,7,9,11,13,15,17,19,21,23-decaenoic acid
(2r)-2-[(1r,3s,3ar,5ar,7s,9as,11ar)-3-(acetyloxy)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
2-{3-hydroxy-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl}-6-methyl-5-methylideneheptanoic acid
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r)-2-[(1r,3s,3ar,5as,7s,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r)-2-[(1r,3s,3ar,7s,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate
2-(3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl)-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1s,3s,3ar,5ar,7r,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3ar,4r,5ar,7s,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
7-hydroxy-6,6,9a-trimethyl-octahydro-3h-naphtho[1,2-c]furan-1-one
(2r)-2-[(1r,3ar,4r,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
6-[2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-3-(5-hydroxy-3,4-dihydro-2h-pyrrol-3-yl)pyran-2-one
(2r,5z)-2-[(1r,3s,3ar,7s,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-enoic acid
(2r,3r,4s,5s,6r)-2-{3-[2-(2h-1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]propoxy}-6-({[(2r,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
(2r)-2-[(1r,3s,3ar,4r,7s,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1s,3r,3ar,6s,7s,9br)-6-(2-carboxyethyl)-1-hydroxy-3a,6,9b-trimethyl-7-(prop-1-en-2-yl)-1h,2h,3h,4h,5h,7h,8h,9h-cyclopenta[a]naphthalen-3-yl]-6-methylhept-5-enoic acid
(2r)-2-[(1r,3ar,4s,5as,7s,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
(2r)-2-[(1r,3ar,5ar,7s,9as,11ar)-7-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
(2r)-2-[(1r,3ar,5ar,7s,9as,11ar)-7-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-3-(1-{6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-2-oxopyran-3-yl}ethyl)-4-hydroxypyran-2-one
(2r)-2-[(1r,3ar,5as,7s,9as,11ar)-7-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3ar,4r,5ar,7s,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3ar,4r,7s,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
(2r)-2-[(1r,3ar,5ar,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r,3r,4s,5r,6r)-2-{3-[2-(2h-1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]propoxy}-6-(hydroxymethyl)oxane-3,4,5-triol
C25H28O10 (488.16823880000004)
(2r)-2-[(1r,3s,3ar,9as,11ar)-3-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
4,4-bis({6-[2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-2-oxopyran-3-yl})butanoic acid
6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-3-(1-{6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-2-oxopyran-3-yl}-2-methylpropyl)-4-hydroxypyran-2-one
2-{3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl}-6-methyl-5-methylideneheptanoic acid
2-[1-hydroxy-6-(3-methoxy-3-oxopropyl)-3a,6,9b-trimethyl-7-(prop-1-en-2-yl)-1h,2h,3h,4h,5h,7h,8h,9h-cyclopenta[a]naphthalen-3-yl]-6-methylhept-5-enoic acid
methyl 4,4-bis({6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-2-oxopyran-3-yl})butanoate
2-{7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl}-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3ar,4s,5ar,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
(2r)-2-[(1r,3ar,4r,7s,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3s,3ar,5ar,7s,9as,11ar)-3,7-bis(acetyloxy)-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,5a,7-triol
(2r)-2-[(1r,3s,3ar,5ar,9as,11ar)-3-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
5,6-bis(hydroxymethyl)-1,1,4a-trimethyl-octahydronaphthalen-2-ol
(2r)-2-[(1r,3ar,4r,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r,3r,4s,5r,6r)-2-{3-[2-(2h-1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]propoxy}-6-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol
(9e,11e,13e,15e,17e)-3-hydroxy-24-methyl-25-oxohexacosa-5,7,9,11,13,15,17,19,21,23-decaenoic acid
(2r)-2-[(1r,3s,3ar,5ar,9as,11ar)-3-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
(2r,3r,4s,5s,6r)-2-{3-[2-(2h-1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]propoxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol
2-[3,7-bis(acetyloxy)-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
3a,7-dihydroxy-6,6,9a-trimethyl-octahydronaphtho[1,2-c]furan-1-one
(5e,7e,9e,11e,13e,15e,17e,19e,21e,23z)-3-hydroxy-24-methyl-25-oxohexacosa-5,7,9,11,13,15,17,19,21,23-decaenoic acid
24-methyl-25-oxohexacosa-2,5,7,9,11,13,15,17,19,21,23-undecaenoic acid
(2r)-2-[(1r,3ar,4r,5as,7s,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
2-[3-(acetyloxy)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3s,3ar,5ar,9as,11ar)-3-hydroxy-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(5e,7z,9e,11e,13e,15e,17e,19z,21e,23e)-3-hydroxy-24-methyl-25-oxohexacosa-5,7,9,11,13,15,17,19,21,23-decaenoic acid
(2r)-2-[(1r,3ar,4r,5ar,7s,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3ar,5ar,7s,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
2-(7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl)-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3r,3ar,7s,9as,11ar)-7-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-3-(2-oxopropyl)-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
(2r)-2-[(1r,3s,3ar,5ar,7s,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
4,4-bis({6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-2-oxopyran-3-yl})butanoic acid
(1r,3ar,5r,5ar,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,5a,7-triol
2-(7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl)-6-methylhept-5-enoic acid
(2r)-2-[(1r,3s,3ar,5ar,7s,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3ar,4s,5ar,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
2-[3-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
2-[(3ar,5as,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
2-[7-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-3-(2-oxopropyl)-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
6-[2-(3,4-dihydroxyphenyl)ethenyl]-3-(1-{6-[2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-2-oxopyran-3-yl}-2-methylpropyl)-4-hydroxypyran-2-one
2-{7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl}-6-methylhept-5-enoic acid
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-{3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl}-6-methyl-5-methylideneheptanoate
1-[(1r)-10,13,13-tris(5-acetyl-6-hydroxy-1-benzofuran-2-yl)-5-hydroxy-8-oxatricyclo[7.4.0.0²,⁷]trideca-2(7),3,5,9-tetraen-4-yl]ethanone
6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-3-(1-{6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-2-oxopyran-3-yl}-3-methylbutyl)-4-hydroxypyran-2-one
(2r)-2-[(1r,3s,3ar,7s,9as,11ar)-3-(acetyloxy)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3s,3ar,5as,9as,11ar)-3-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
2-[3-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
(5e,7e,15e,17e)-24-methyl-25-oxohexacosa-2,5,7,9,11,13,15,17,19,21,23-undecaenoic acid
(2r)-2-[(1r,3s,3ar,5as,9as,11ar)-3-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
2-{3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl}-6-methylhept-5-enoic acid
(2e,5e,7e,9z,11e,13z,15e,17e,19z,21e,23e)-24-methyl-25-oxohexacosa-2,5,7,9,11,13,15,17,19,21,23-undecaenoic acid
(2r)-2-[(1r,3ar,4r,5ar,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid
6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-3-(5-hydroxy-3,4-dihydro-2h-pyrrol-3-yl)pyran-2-one
(2r,5z)-2-[(1r,3s,3ar,5as,7s,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-enoic acid
2-{7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl}-6-methyl-5-methylideneheptanoic acid
methyl 4,4-bis({6-[2-(3,4-dihydroxyphenyl)ethenyl]-4-hydroxy-2-oxopyran-3-yl})butanoate
(2r)-2-[(1r,3ar,4s,5as,7s,9as,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r)-2-[(1r,3s,3ar,4r,5ar,7s,9as,11ar)-3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoic acid
(2r,3r,4s,5s,6r)-2-{3-[2-(2h-1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]propoxy}-6-(hydroxymethyl)oxane-3,4,5-triol
C25H28O10 (488.16823880000004)
2-{3,7-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl}-7-hydroxy-6-methylhept-5-enoic acid
2-(3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl)-6-methylhept-5-enoic acid
(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol
C12H22O11 (342.11620619999997)