DL-Mannitol (BioDeep_00000000355)
Main id: BioDeep_00000017597
Secondary id: BioDeep_00000231048, BioDeep_00000400478
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs BioNovoGene_Lab2019
代谢物信息卡片
化学式: C6H14O6 (182.079)
中文名称: 已六醇 D-甘露密醇, D-甘露糖醇, 哌喃甘露糖, D-甘露醇, D-木蜜醇, 甘露蜜醇, 甘露醇, 虫草酸
谱图信息:
最多检出来源 Homo sapiens(plant) 12.82%
Last reviewed on 2024-07-01.
Cite this Page
DL-Mannitol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/dl-mannitol (retrieved
2025-01-07) (BioDeep RN: BioDeep_00000000355). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C(C(C(C(CO)O)O)O)O)O
InChI: InChI=1/C6H14O6/c7-1-3(9)5(11)6(12)4(10)2-8/h3-12H,1-2H2/t3-,4-,5-,6-/m1/s1
描述信息
D-mannitol appears as odorless white crystalline powder or free-flowing granules. Sweet taste. (NTP, 1992)
D-mannitol is the D-enantiomer of mannitol. It has a role as an osmotic diuretic, a sweetening agent, an antiglaucoma drug, a metabolite, an allergen, a hapten, a food bulking agent, a food anticaking agent, a food humectant, a food stabiliser, a food thickening agent, an Escherichia coli metabolite and a member of compatible osmolytes.
Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc.
Mannitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Mannitol is an Osmotic Diuretic. The mechanism of action of mannitol is as an Osmotic Activity. The physiologic effect of mannitol is by means of Increased Diuresis.
Mannitol is a natural product found in Pavetta indica, Scoparia dulcis, and other organisms with data available.
Mannitol is a naturally occurring alcohol found in fruits and vegetables and used as an osmotic diuretic. Mannitol is freely filtered by the glomerulus and poorly reabsorbed from the renal tubule, thereby causing an increase in osmolarity of the glomerular filtrate. An increase in osmolarity limits tubular reabsorption of water and inhibits the renal tubular reabsorption of sodium, chloride, and other solutes, thereby promoting diuresis. In addition, mannitol elevates blood plasma osmolarity, resulting in enhanced flow of water from tissues into interstitial fluid and plasma.
D-mannitol is a metabolite found in or produced by Saccharomyces cerevisiae.
A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity.
See also: Mannitol; sorbitol (component of); Mannitol; menthol (component of).
Mannitol, or hexan-1,2,3,4,5,6-hexol (C6H8(OH)6), is an alcohol and a sugar (sugar alcohol), or a polyol, it is a stereoisomer of sorbitol and is similar to the C5 xylitol. The structure of mannitol is made of a straight chain of six carbon atoms, each of which is substituted with a hydroxyl group. Mannitol is one of the most abundant energy and carbon storage molecules in nature, it is produced by a wide range of organisms such as bacteria, fungi and plants (PMID: 19578847). In medicine, mannitol is used as a diuretic and renal diagnostic aid. Mannitol has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. Mannitol has a tendency to lose a hydrogen ion in aqueous solutions, which causes the solution to become acidic. For this, it is not uncommon to add a weak base, such as sodium bicarbonate, to the solution to adjust its pH. Mannitol is a non-permeating molecule i.e., it cannot cross biological membranes. Mannitol is an osmotic diuretic agent and a weak renal vasodilator. Mannitol is found to be associated with cytochrome c oxidase deficiency and ribose-5-phosphate isomerase deficiency, which are inborn errors of metabolism. Mannitol is also a microbial metabolite found in Aspergillus, Candida, Clostridium, Gluconobacter, Lactobacillus, Lactococcus, Leuconostoc, Pseudomonas, Rhodobacteraceae, Saccharomyces, Streptococcus, Torulaspora and Zymomonas (PMID: 15240312; PMID: 29480337).
Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85085-15-0 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1].
DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1].
D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7].
D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.
D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7].
D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.
同义名列表
159 个代谢物同义名
Mannitol, Pharmaceutical Secondary Standard; Certified Reference Material; D-Mannitol, >=99.9999\\% (metals basis), for boron determination; Mannitol, United States Pharmacopeia (USP) Reference Standard; D-Mannitol, BioUltra, >=99.0\\% (sum of enantiomers, HPLC); Mannitol, European Pharmacopoeia (EP) Reference Standard; MANNITOL 15\\% W/ DEXTROSE 5\\% IN SODIUM CHLORIDE 0.45\\%; MANNITOL 5\\% W/ DEXTROSE 5\\% IN SODIUM CHLORIDE 0.12\\%; D-Mannitol, meets EP, FCC, USP testing specifications; D-Mannitol, ACS reagent, for microbiology, >=99.0\\%; MANNITOL 10\\% W/ DEXTROSE 5\\% IN DISTILLED WATER; LACTITOL MONOHYDRATE IMPURITY C [EP IMPURITY]; 4-01-00-02841 (Beilstein Handbook Reference); OSMITROL 15\\% IN WATER IN PLASTIC CONTAINER; rel-(2R,3R,4R,5R)-Hexane-1,2,3,4,5,6-hexaol; OSMITROL 10\\% IN WATER IN PLASTIC CONTAINER; OSMITROL 20\\% IN WATER IN PLASTIC CONTAINER; ISOMALT IMPURITY, MANNITOL- [USP IMPURITY]; OSMITROL 5\\% IN WATER IN PLASTIC CONTAINER; ISOMALT IMPURITY, MANNITOL-(USP IMPURITY); MANNITOL COMPONENT OF SORBITOL-MANNITOL; D-Mannitol, SAJ special grade, >=99.0\\%; (2R,3R,4R,5R)-Hexane-1,2,3,4,5,6-hexaol; D-Mannitol, tested according to Ph.Eur.; (2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol; D-Mannitol, plant cell culture tested; D-Mannitol, SAJ first grade, >=99.0\\%; SORBITOL-MANNITOL COMPONENT MANNITOL; ED1D1E61-FEFB-430A-AFDC-D1F4A957FC3D; Aridol Bronchial Challenge Test Kit; Mannitol 10\\% In Plastic Container; Mannitol 20\\% In Plastic Container; Mannitol 15\\% In Plastic Container; Mannitol 5\\% In Plastic Container; ISOMALT IMPURITY B [EP IMPURITY]; ISOMALT IMPURITY B (EP IMPURITY); D-Mannitol, BioXtra, >=98\\% (GC); Crystalline mannitol extra-fine; Resectisol In Plastic Container; POTASSIUMNONAFLUORO-T-BUTOXIDE; D-Mannitol, p.a., 96.0-101.5\\%; D-Mannitol, Biochemical grade; Crystalline mannitol standard; Isomalt impurity, mannitol-; FBPFZTCFMRRESA-KVTDHHQDSA-N; Crystalline mannitol fine; MANNITOLUM [WHO-IP LATIN]; CURESTEM CELL HEALER C20; MANNITOL (USP MONOGRAPH); MANNITOL [USP MONOGRAPH]; MANNITOL [EP MONOGRAPH]; D-Mannitol, ACS reagent; 1,2,3,4,5,6-Hexanehexol; MANNITOL (EP MONOGRAPH); MANNITOL [EP IMPURITY]; MANNITOL [ORANGE BOOK]; Osmitrol 10\\% In Water; Osmitrol 15\\% In Water; MANNITOL (EP IMPURITY); Osmitrol 20\\% In Water; D-Mannitol, AR, >=99\\%; D-Mannitol, LR, >=99\\%; Osmitrol 5\\% In Water; D-Mannitol (Osmitrol); D-MANNITOL [WHO-IP]; D-Mannitol, >=98\\%; MANNITOL [USP-RS]; MANNITOL [WHO-DD]; D-Mannitol (JP17); Hexahydroxyhexane; MANNITOL (USP-RS); MANNITOL [VANDF]; MANNITOL (MART.); MANNITOL [MART.]; D-MANNITOL [JAN]; Mannitol;Mannite; MANNITOL [INCI]; MANNITOL [HSDB]; Mannitol [USAN]; UNII-3OWL53L36A; Bronchitol (TN); Cordycepic acid; D-mitobronitol; D-(-)-Mannitol; Mannitol [USP]; Marine Crystal; MANNITOL [FCC]; Pearlitol 50 c; Tox21_112092_1; Mannitol (USP); GD11 Rx SCM C5; Mannitol (VAN); Pearlitol 25 c; Mushroom sugar; Mannogem 2080; Mannitol 10\\%; Mannitol 20\\%; Mannitol 15\\%; MANNITOL [MI]; MANNITOL (II); MANNITOL [II]; Osmitrol (TN); MANNITOL 25\\%; Tox21_112092; Mannitol 5\\%; Mannitol, D-; (D)-mannitol; (L)-Mannitol; Tox21_300483; D(-)Mannitol; Mannitol,(S); Tox21_201487; Mannazucker; Manna sugar; Mannitol 60; Mannitol 25; CAS-69-65-8; DL-Mannitol; Cordycepate; Mannitol 35; D-?Mannitol; SDM No. 35; Resectisol; Mannitolum; 3OWL53L36A; Bronchitol; ARIDOL KIT; mannitol-d; Osmofundin; Hexanhexol; D-mannitol; Maniton-S; Maniton s; AI3-19511; Mannistol; Mannitol; Mannigen; Mannit p; D-Mannit; Osmitrol; Mannidex; Invenex; Diosmol; Manitol; Mannite; Manicol; Osmosal; dulcite; manita; Aridol; Tobrex; Isotol; Mannit; e 421; e-421; e421; MTL; Mannitol; Mannitol; Mannitol
数据库引用编号
37 个数据库交叉引用编号
- ChEBI: CHEBI:29864
- ChEBI: CHEBI:16899
- KEGG: C00392
- KEGGdrug: D00062
- PubChem: 6251
- HMDB: HMDB0000765
- Metlin: METLIN142
- DrugBank: DB00742
- ChEMBL: CHEMBL689
- Wikipedia: Mannitol
- MeSH: Mannitol
- ChemIDplus: 0000069658
- MetaCyc: MANNITOL
- KNApSAcK: C00001165
- foodb: FDB112364
- chemspider: 6015
- CAS: 85085-15-0
- CAS: 133-43-7
- CAS: 69-65-8
- CAS: 87-78-5
- MoNA: PS119601
- MoNA: PR100904
- MoNA: PS119607
- medchemexpress: HY-N0378
- MetaboLights: MTBLC16899
- PDB-CCD: MTL
- 3DMET: B04676
- NIKKAJI: J2.369H
- RefMet: Mannitol
- medchemexpress: HY-N6618
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-546
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-733
- PubChem: 3682
- KNApSAcK: 16899
- LOTUS: LTS0204266
- wikidata: Q27117350
- LOTUS: LTS0199986
分类词条
相关代谢途径
Reactome(0)
BioCyc(6)
PlantCyc(0)
代谢反应
141 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(7)
- mannitol cycle:
D-mannitol + NAD+ ⟶ keto-D-fructose + H+ + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
- mannitol degradation II:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
- mannitol biosynthesis:
NADP+ + mannitol-1-phosphate ⟶ D-mannose 6-phosphate + H+ + NADPH
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(133)
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
COVID-19 Disease Map(0)
PathBank(1)
- Glycolysis and Pyruvate Dehydrogenase:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
PharmGKB(0)
534 个相关的物种来源信息
- 182998 - Acanthospermum: LTS0199986
- 182999 - Acanthospermum hispidum: 10.1016/0378-8741(90)90067-4
- 182999 - Acanthospermum hispidum: LTS0199986
- 59969 - Aegiceras: LTS0199986
- 59970 - Aegiceras corniculatum: 10.1016/S0044-328X(84)80097-5
- 59970 - Aegiceras corniculatum: LTS0199986
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 5339 - Agaricaceae: LTS0199986
- 155619 - Agaricomycetes: LTS0199986
- 5340 - Agaricus: LTS0199986
- 83518 - Agaricus xanthodermus: 10.1002/ANIE.198510631
- 83518 - Agaricus xanthodermus: LTS0199986
- 23809 - Ailanthus: LTS0199986
- 2888 - Alaria: LTS0199986
- 2887 - Alariaceae: LTS0199986
- 4678 - Allium: LTS0199986
- 4683 - Allium tuberosum: 10.1016/S0031-9422(01)00216-3
- 4683 - Allium tuberosum: LTS0199986
- 5598 - Alternaria: LTS0199986
- 283358 - Alternaria cucumerina: 10.1016/S0031-9422(00)86666-2
- 283358 - Alternaria cucumerina: LTS0199986
- 3563 - Amaranthaceae: LTS0199986
- 4668 - Amaryllidaceae: LTS0199986
- 48025 - Ammi: LTS0199986
- 48026 - Ammi majus: 10.1016/0031-9422(93)85365-X
- 48026 - Ammi majus: LTS0199986
- 4037 - Apiaceae: LTS0199986
- 4454 - Araceae: LTS0199986
- 13340 - Aralia: LTS0199986
- 1603692 - Aralia decaisneana: 10.4268/CJCMM20150419
- 1603692 - Aralia decaisneana: LTS0199986
- 4050 - Araliaceae: LTS0199986
- 4710 - Arecaceae: LTS0199986
- 50230 - Arisaema: LTS0199986
- 227494 - Arisaema amurense: 10.4268/CJCMM20111611
- 227494 - Arisaema amurense: LTS0199986
- 6656 - Arthropoda: LTS0199986
- 4890 - Ascomycota: LTS0199986
- 52968 - Ascophyllum: LTS0199986
- 52969 - Ascophyllum nodosum:
- 52969 - Ascophyllum nodosum: 10.1016/S0031-9422(00)80808-0
- 52969 - Ascophyllum nodosum: 10.1021/NP50036A025
- 52969 - Ascophyllum nodosum: LTS0199986
- 76829 - Ascoseira: LTS0199986
- 76830 - Ascoseira mirabilis: 10.1016/S0031-9422(00)85498-9
- 76830 - Ascoseira mirabilis: LTS0199986
- 1131492 - Aspergillaceae: LTS0199986
- 5052 - Aspergillus: LTS0199986
- 1810909 - Aspergillus desertorum: 10.1039/P19870001735
- 1810909 - Aspergillus desertorum: LTS0199986
- 5061 - Aspergillus niger: 10.1016/0031-9422(88)80021-9
- 5061 - Aspergillus niger: LTS0199986
- 41735 - Aspergillus quadrilineatus: 10.1515/ZNB-1985-0230
- 41735 - Aspergillus quadrilineatus: LTS0199986
- 4210 - Asteraceae: LTS0199986
- 91061 - Bacilli: LTS0199986
- 2 - Bacteria: LTS0199986
- 318051 - Bambusa textilis McClure,Schizostachyum chinense Rendle: -
- 5204 - Basidiomycota: LTS0199986
- 74096 - Bifurcaria: LTS0199986
- 74462 - Bifurcaria bifurcata: 10.1016/S0031-9422(00)80808-0
- 74462 - Bifurcaria bifurcata: LTS0199986
- 255882 - Brandisia: LTS0199986
- 255883 - Brandisia hancei: 10.1016/0031-9422(91)83759-E
- 255883 - Brandisia hancei: LTS0199986
- 26473 - Buddleja: LTS0199986
- 714454 - Buddleja officinalis: 10.1016/S0969-2126(98)00029-X
- 714454 - Buddleja officinalis: LTS0199986
- 168504 - Buddleja scordioides: 10.1016/S0305-1978(02)00032-7
- 168504 - Buddleja scordioides: LTS0199986
- 3820 - Cajanus: LTS0199986
- 3821 - Cajanus cajan: 10.1002/JSFA.2740500106
- 3821 - Cajanus cajan: LTS0199986
- 255853 - Campylanthus: 10.1016/S0305-1978(02)00061-3
- 255853 - Campylanthus: LTS0199986
- 255854 - Campylanthus salsoloides: 10.1016/S0305-1978(02)00061-3
- 255854 - Campylanthus salsoloides: LTS0199986
- 5475 - Candida: LTS0199986
- 5476 - Candida albicans: 10.1007/S11306-016-1134-2
- 5476 - Candida albicans: LTS0199986
- 3425 - Canella: LTS0199986
- 3426 - Canella winterana: 10.1021/NP50071A041
- 3426 - Canella winterana: LTS0199986
- 3424 - Canellaceae: LTS0199986
- 3481 - Cannabaceae: LTS0199986
- 3482 - Cannabis: LTS0199986
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0199986
- 48031 - Carum: LTS0199986
- 48032 - Carum carvi: 10.1016/S0031-9422(02)00288-1
- 48032 - Carum carvi: LTS0199986
- 136893 - Catunaregam: LTS0199986
- 136894 - Catunaregam spinosa:
- 136894 - Catunaregam spinosa: 10.1016/0031-9422(89)85058-7
- 136894 - Catunaregam spinosa: 10.1021/NP50062A026
- 136894 - Catunaregam spinosa: LTS0199986
- 1804623 - Chenopodiaceae: LTS0199986
- 25066 - Chiococca: LTS0199986
- 28527 - Chiococca alba: 10.1016/0031-9422(91)85062-5
- 28527 - Chiococca alba: LTS0199986
- 45033 - Chorda: 10.1007/BF00697055
- 45033 - Chorda: LTS0199986
- 64905 - Chorda filum: 10.1007/BF00697055
- 64905 - Chorda filum: LTS0199986
- 3024 - Chordaceae: LTS0199986
- 66220 - Chordariaceae: LTS0199986
- 30102 - Cicadellidae: LTS0199986
- 132964 - Cinnamosma: LTS0199986
- 1602317 - Cinnamosma fragrans: 10.1021/NP0601298
- 1602317 - Cinnamosma fragrans: LTS0199986
- 132965 - Cinnamosma madagascariensis: 10.1021/NP070474C
- 132965 - Cinnamosma madagascariensis: LTS0199986
- 87753 - Cistanche: LTS0199986
- 87754 - Cistanche phelypaea: 10.1248/CPB.54.669
- 161396 - Cistanche salsa: 10.1248/CPB.32.1729
- 161396 - Cistanche salsa: LTS0199986
- 161397 - Cistanche tubulosa: 10.1248/CPB.54.669
- 161397 - Cistanche tubulosa: LTS0199986
- 5199 - Cladonia: LTS0199986
- 184092 - Cladonia convoluta: 10.1055/S-2004-827240
- 184092 - Cladonia convoluta: LTS0199986
- 184101 - Cladonia foliacea: 10.1055/S-2004-827240
- 184101 - Cladonia foliacea: LTS0199986
- 5198 - Cladoniaceae: LTS0199986
- 74469 - Cladostephaceae: LTS0199986
- 74470 - Cladostephus: LTS0199986
- 2661694 - Cladostephus spongiosus: LTS0199986
- 6073 - Cnidaria: LTS0199986
- 48110 - Cnidium: LTS0199986
- 94007 - Cnidium monnieri: 10.1016/S0031-9422(01)00238-2
- 94007 - Cnidium monnieri: LTS0199986
- 13893 - Cocos: LTS0199986
- 13894 - Cocos nucifera: 10.1111/J.1365-2621.1985.TB13790.X
- 13894 - Cocos nucifera: LTS0199986
- 3954 - Combretaceae: LTS0199986
- 1570991 - Cordiera: LTS0199986
- 136663 - Cordiera sessilis: 10.1590/S0103-50532007000700017
- 136663 - Cordiera sessilis: LTS0199986
- 45234 - Cordyceps: -
- 45234 - Cordyceps: LTS0199986
- 218633 - Cordyceps cicadae: 10.1177/1934578X1501001233
- 218633 - Cordyceps cicadae: LTS0199986
- 474943 - Cordycipitaceae: LTS0199986
- 4046 - Coriandrum: LTS0199986
- 4047 - Coriandrum sativum: 10.1248/CPB.51.32
- 4047 - Coriandrum sativum: LTS0199986
- 3650 - Cucurbitaceae: LTS0199986
- 52461 - Cuminum: LTS0199986
- 52462 - Cuminum cyminum: 10.1016/S0031-9422(03)00103-1
- 52462 - Cuminum cyminum: LTS0199986
- 3929 - Cuphea: LTS0199986
- 312560 - Cuphea appendiculata: 10.1055/S-2006-959585
- 312560 - Cuphea appendiculata: LTS0199986
- 312566 - Cuphea carthagenensis: 10.1055/S-2006-959585
- 312566 - Cuphea carthagenensis: LTS0199986
- 312572 - Cuphea epilobiifolia: 10.1055/S-2006-959585
- 312572 - Cuphea epilobiifolia: LTS0199986
- 35942 - Cuphea wrightii: 10.1016/S0305-1978(02)00159-X
- 35942 - Cuphea wrightii: LTS0199986
- 74094 - Cystoseira: 10.1016/S0031-9422(00)80808-0
- 74094 - Cystoseira: LTS0199986
- 590725 - Cystoseira barbata: 10.1007/BF00697055
- 590725 - Cystoseira barbata: LTS0199986
- 590109 - Cystoseira foeniculacea: 10.1016/S0031-9422(00)80808-0
- 590109 - Cystoseira foeniculacea: LTS0199986
- 766764 - Debaryomycetaceae: LTS0199986
- 46246 - Delphinium: 10.1007/BF00568227
- 46246 - Delphinium: LTS0199986
- 1127163 - Delphinium freynii: 10.1007/BF00568227
- 1127163 - Delphinium freynii: LTS0199986
- 2949522 - Delphinium schmalhausenii: LTS0199986
- 99499 - Deverra: LTS0199986
- 489439 - Deverra tortuosa: 10.1590/S0103-50532003000100008
- 489439 - Deverra tortuosa: LTS0199986
- 2875 - Dictyota: LTS0199986
- 2876 - Dictyota dichotoma: 10.1016/S0031-9422(00)80808-0
- 2876 - Dictyota dichotoma: LTS0199986
- 2874 - Dictyotaceae: LTS0199986
- 147541 - Dothideomycetes: LTS0199986
- 57121 - Dystaenia: LTS0199986
- 50304 - Eleutherococcus: LTS0199986
- 265763 - Eleutherococcus giraldii: 10.1016/J.BSE.2012.02.004
- 265763 - Eleutherococcus giraldii: LTS0199986
- 698475 - Endarachne: LTS0199986
- 698476 - Endarachne binghamiae: 10.1515/BOTM.1987.30.5.371
- 698476 - Endarachne binghamiae: LTS0199986
- 543 - Enterobacteriaceae: LTS0199986
- 4345 - Ericaceae: LTS0199986
- 561 - Escherichia: LTS0199986
- 562 - Escherichia coli: LTS0199986
- 2759 - Eukaryota: LTS0199986
- 3990 - Euphorbia: LTS0199986
- 212961 - Euphorbia plumerioides: 10.1016/0031-9422(91)84139-J
- 212961 - Euphorbia plumerioides: LTS0199986
- 3977 - Euphorbiaceae: LTS0199986
- 147545 - Eurotiomycetes: LTS0199986
- 87256 - Evernia: LTS0199986
- 87257 - Evernia prunastri: 10.1016/S0021-9673(01)88498-3
- 87257 - Evernia prunastri: LTS0199986
- 3803 - Fabaceae: LTS0199986
- 48037 - Foeniculum: LTS0199986
- 48038 - Foeniculum vulgare: 10.1248/CPB.47.988
- 1769247 - Fomitopsidaceae: LTS0199986
- 38871 - Fraxinus: LTS0199986
- 490840 - Fraxinus floribunda: 10.1016/S0031-9422(00)91068-9
- 490840 - Fraxinus floribunda: LTS0199986
- 38874 - Fraxinus ornus: 10.1016/S0031-9422(00)91068-9
- 490848 - Fraxinus raibocarpa: 10.1007/BF00570205
- 490848 - Fraxinus raibocarpa: LTS0199986
- 3010 - Fucaceae: LTS0199986
- 3011 - Fucus: LTS0199986
- 1086085 - Fucus guiryi: 10.1016/S0031-9422(00)80808-0
- 87148 - Fucus serratus: 10.1016/S0031-9422(00)80808-0
- 87148 - Fucus serratus: LTS0199986
- 87149 - Fucus spiralis: 10.1016/S0031-9422(00)80808-0
- 87149 - Fucus spiralis: LTS0199986
- 49266 - Fucus vesiculosus: 10.1016/S0031-9422(00)80808-0
- 49266 - Fucus vesiculosus: LTS0199986
- 4751 - Fungi: LTS0199986
- 1236 - Gammaproteobacteria: LTS0199986
- 5314 - Ganoderma: LTS0199986
- 5315 - Ganoderma lucidum: 10.1248/CPB.33.1367
- 5315 - Ganoderma lucidum: LTS0199986
- 5315 - Ganoderma Lucidum seu Japonicum: -
- 43486 - Gardenia: LTS0199986
- 1623618 - Gardenia erubescens: 10.3109/13880209109082857
- 1623618 - Gardenia erubescens: LTS0199986
- 114476 - Gardenia jasminoides: 10.1248/CPB.40.942
- 114476 - Gardenia jasminoides: LTS0199986
- 114476 - Gardenia jasminoides Ellis: -
- 58485 - Genipa: LTS0199986
- 58486 - Genipa americana: 10.1007/BF01185929
- 58486 - Genipa americana: LTS0199986
- 308575 - Halopterididae: LTS0199986
- 91053 - Halopteris: 10.1016/S0031-9422(00)80808-0
- 91053 - Halopteris: LTS0199986
- 2725949 - Hedophyllum bongardianum: 10.1007/BF00697055
- 1898717 - Himalrandia: LTS0199986
- 74477 - Himanthalia: LTS0199986
- 74478 - Himanthalia elongata: 10.1016/S0031-9422(00)80808-0
- 74478 - Himanthalia elongata: LTS0199986
- 74476 - Himanthaliaceae: LTS0199986
- 235503 - Himantormia: LTS0199986
- 235504 - Himantormia lugubris: 10.1016/S0021-9673(01)88498-3
- 235504 - Himantormia lugubris: LTS0199986
- 9606 - Homo sapiens: -
- 6074 - Hydrozoa: LTS0199986
- 40424 - Hymenochaetaceae: LTS0199986
- 162809 - Inga: LTS0199986
- 486084 - Inga spectabilis: 10.1016/0378-8741(90)90067-4
- 486084 - Inga spectabilis: LTS0199986
- 40468 - Inonotus: LTS0199986
- 167356 - Inonotus obliquus: 10.4268/CJCMM20111611
- 167356 - Inonotus obliquus: LTS0199986
- 50557 - Insecta: LTS0199986
- 72232 - Isaria: LTS0199986
- 233770 - Ishige: LTS0199986
- 233772 - Ishige okamurae: 10.4268/CJCMM20150722
- 233768 - Ishigeaceae: LTS0199986
- 4147 - Jasminum: LTS0199986
- 1239738 - Jasminum azoricum: 10.21608/BFSA.1984.89861
- 1239738 - Jasminum azoricum: LTS0199986
- 84810 - Jasminum fluminense: 10.21608/BFSA.1984.89861
- 84810 - Jasminum fluminense: LTS0199986
- 660624 - Jasminum sambac: 10.21608/BFSA.1984.89861
- 660624 - Jasminum sambac: LTS0199986
- 206141 - Kali: LTS0199986
- 2116407 - Kali collina: 10.1007/BF00630328
- 2116407 - Kali collinum: 10.1007/BF00630328
- 313966 - Laggera: LTS0199986
- 441199 - Laggera crispata: 10.1021/NP960456N
- 441199 - Laggera crispata: LTS0199986
- 313968 - Laggera pterodonta: 10.1021/NP960456N
- 313968 - Laggera pterodonta: LTS0199986
- 4136 - Lamiaceae: LTS0199986
- 33637 - Laminaria: LTS0199986
- 80365 - Laminaria digitata: 10.1016/S0031-9422(00)80808-0
- 80365 - Laminaria digitata: LTS0199986
- 33636 - Laminariaceae: LTS0199986
- 3433 - Lauraceae: LTS0199986
- 85222 - Laurus: LTS0199986
- 85223 - Laurus nobilis: 10.1021/NP50010A016
- 85223 - Laurus nobilis: LTS0199986
- 147547 - Lecanoromycetes: LTS0199986
- 128634 - Licaria: LTS0199986
- 13596 - Ligustrum: LTS0199986
- 178760 - Ligustrum obtusifolium: 10.1248/YAKUSHI1947.104.4_390
- 178760 - Ligustrum obtusifolium: LTS0199986
- 4447 - Liliopsida: LTS0199986
- 105884 - Lonicera japonica: -
- 3867 - Lotus: LTS0199986
- 47247 - Lotus corniculatus: LTS0199986
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0199986
- 34305 - Lotus japonicus:
- 99436 - Lumnitzera: LTS0199986
- 99437 - Lumnitzera littorea: 10.1016/S0044-328X(84)80097-5
- 99437 - Lumnitzera littorea: LTS0199986
- 99438 - Lumnitzera racemosa: 10.1016/S0044-328X(84)80097-5
- 99438 - Lumnitzera racemosa: LTS0199986
- 3928 - Lythraceae: LTS0199986
- 3398 - Magnoliopsida: LTS0199986
- 33208 - Metazoa: LTS0199986
- 43521 - Morinda: LTS0199986
- 43522 - Morinda citrifolia:
- 43522 - Morinda citrifolia: 10.1021/NP0495985
- 43522 - Morinda citrifolia: 10.1021/NP0495985.S001
- 43522 - Morinda citrifolia: LTS0199986
- 159030 - Murraya koenigii: 10.1080/15592324.2016.1249080
- 43711 - Murraya paniculata: 10.1080/15592324.2016.1249080
- 2024004 - Mycenaceae: LTS0199986
- 63800 - Nectandra: LTS0199986
- 883797 - Nectandra hihua: 10.1016/S0031-9422(00)97906-8
- 883797 - Nectandra hihua: LTS0199986
- 144307 - Nierembergia: LTS0199986
- 144308 - Nierembergia hippomanica: 10.1016/0031-9422(95)00731-8
- 144308 - Nierembergia hippomanica: LTS0199986
- 274375 - Nierembergia linariifolia: 10.1016/0031-9422(95)00731-8
- 274375 - Nierembergia linariifolia: LTS0199986
- 2696291 - Ochrophyta: LTS0199986
- 4145 - Olea: LTS0199986
- 4146 - Olea europaea:
- 4146 - Olea europaea: 10.1007/BF00198210
- 4146 - Olea europaea: 10.1016/S0308-8146(00)00268-5
- 4146 - Olea europaea: LTS0199986
- 129566 - Olea europaea subsp. cuspidata: 10.1007/BF00629879
- 129566 - Olea europaea subsp. cuspidata: LTS0199986
- 4144 - Oleaceae: LTS0199986
- 474995 - Ophiocordyceps: LTS0199986
- 72228 - Ophiocordyceps sinensis:
- 72228 - Ophiocordyceps sinensis: 10.1021/NP100902F
- 72228 - Ophiocordyceps sinensis: 10.21767/2172-0479.100132
- 72228 - Ophiocordyceps sinensis: LTS0199986
- 474942 - Ophiocordycipitaceae: LTS0199986
- 91896 - Orobanchaceae: LTS0199986
- 36747 - Orobanche: LTS0199986
- 321418 - Orobanche pycnostachya: LTS0199986
- 321418 - Orobanche pycnostachya: NA
- 93976 - Osmanthus: LTS0199986
- 126555 - Osmanthus heterophyllus: 10.1248/YAKUSHI1947.105.5_442
- 126555 - Osmanthus heterophyllus: LTS0199986
- 426076 - Osmanthus × fortunei: 10.1248/YAKUSHI1947.105.6_542
- 114518 - Oxyceros: LTS0199986
- 1489763 - Oxyceros horridus: 10.1007/BF02855699
- 1489763 - Oxyceros horridus: LTS0199986
- 157004 - Padina: LTS0199986
- 659328 - Padina antillarum: 10.1016/S0031-9422(00)84092-3
- 659328 - Padina antillarum: LTS0199986
- 1111689 - Padina tetrastromatica: 10.1016/S0031-9422(00)84092-3
- 1111689 - Padina tetrastromatica: LTS0199986
- 5635 - Panellus: LTS0199986
- 78060 - Parmeliaceae: LTS0199986
- 155891 - Paulowniaceae: LTS0199986
- 58461 - Pavetta: LTS0199986
- 1008962 - Pavetta indica: 10.1016/S0031-9422(00)97305-9
- 1008962 - Pavetta indica: LTS0199986
- 5394 - Paxillaceae: LTS0199986
- 5395 - Paxillus: LTS0199986
- 71150 - Paxillus involutus: 10.1002/CHIN.200331232
- 71150 - Paxillus involutus: LTS0199986
- 43174 - Pedicularis: LTS0199986
- 65041 - Pedicularis chamissonis: 10.1248/YAKUSHI1947.91.1_137
- 65041 - Pedicularis chamissonis: LTS0199986
- 1348741 - Pedicularis muscicola: 10.1515/ZNB-2011-0613
- 1348741 - Pedicularis muscicola: LTS0199986
- 48071 - Pelvetia: LTS0199986
- 74467 - Pelvetia canaliculata: 10.1016/S0031-9422(00)80808-0
- 74467 - Pelvetia canaliculata: LTS0199986
- 49562 - Peucedanum: LTS0199986
- 2927891 - Peucedanum mashanense: 10.1055/S-0036-1596440
- 2927891 - Peucedanum mashanense: LTS0199986
- 2870 - Phaeophyceae: LTS0199986
- 233880 - Phyllanthaceae: LTS0199986
- 58880 - Phyllanthus: LTS0199986
- 130732 - Phyllariaceae: LTS0199986
- 40958 - Pimpinella: LTS0199986
- 271192 - Pimpinella anisum: 10.1016/S0031-9422(03)00179-1
- 271192 - Pimpinella anisum: LTS0199986
- 227329 - Pisolithaceae: LTS0199986
- 37467 - Pisolithus: LTS0199986
- 80664 - Pisolithus arhizus: 10.1016/0031-9422(88)80770-2
- 80664 - Pisolithus arhizus: LTS0199986
- 37468 - Pisolithus tinctorius: 10.1016/0031-9422(88)80770-2
- 37468 - Pisolithus tinctorius: LTS0199986
- 156152 - Plantaginaceae: LTS0199986
- 33090 - Plants: -
- 28556 - Pleosporaceae: LTS0199986
- 104366 - Pleurotaceae: LTS0199986
- 5320 - Pleurotus: LTS0199986
- 5322 - Pleurotus ostreatus: 10.3136/NSKKK1962.32.338
- 5322 - Pleurotus ostreatus: LTS0199986
- 36657 - Pluteaceae: LTS0199986
- 4544 - Poa: LTS0199986
- 93036 - Poa annua: 10.1016/S0031-9422(00)84808-6
- 93036 - Poa annua: LTS0199986
- 289064 - Poa supina: 10.1016/S0031-9422(00)84808-6
- 4479 - Poaceae: LTS0199986
- 183300 - Podanthus: LTS0199986
- 183301 - Podanthus mitiqui: 10.1016/S0140-6736(01)46204-0
- 183301 - Podanthus mitiqui: LTS0199986
- 5317 - Polyporaceae: LTS0199986
- 81051 - Poria: -
- 4335 - Primulaceae: LTS0199986
- 119083 - Psydrax: LTS0199986
- 2708958 - Psydrax subcordata: 10.1351/PAC198658050653
- 2708958 - Psydrax subcordata: LTS0199986
- 22662 - Punica: LTS0199986
- 22663 - Punica granatum: 10.1016/S0031-9422(00)83125-8
- 22663 - Punica granatum: LTS0199986
- 56479 - Ramalina: LTS0199986
- 157169 - Ramalina fraxinea: 10.5586/ASBP.1979.002
- 157169 - Ramalina fraxinea: LTS0199986
- 56478 - Ramalinaceae: LTS0199986
- 3440 - Ranunculaceae: LTS0199986
- 99299 - Rehmannia: LTS0199986
- 99300 - Rehmannia glutinosa:
- 99300 - Rehmannia glutinosa: 10.1248/YAKUSHI1947.115.12_992
- 99300 - Rehmannia glutinosa: 10.1248/YAKUSHI1947.91.1_137
- 99300 - Rehmannia glutinosa: LTS0199986
- 99300 - Rehmannia glutinosa Libosch: -
- 3745 - Rosaceae: LTS0199986
- 58452 - Rothmannia: LTS0199986
- 58453 - Rothmannia longiflora: 10.1016/S0031-9422(98)00752-3
- 58453 - Rothmannia longiflora: LTS0199986
- 24966 - Rubiaceae: LTS0199986
- 23216 - Rubus: LTS0199986
- 32247 - Rubus idaeus: 10.1111/J.1365-2621.1980.TB02616.X
- 32247 - Rubus idaeus: LTS0199986
- 309357 - Saccharina: LTS0199986
- 416834 - Saccharina cichorioides: 10.1007/BF00697055
- 309358 - Saccharina latissima: 10.1016/S0031-9422(00)80808-0
- 309358 - Saccharina latissima: LTS0199986
- 4891 - Saccharomycetes: LTS0199986
- 45364 - Saccorhiza: LTS0199986
- 45365 - Saccorhiza polyschides: 10.1016/S0031-9422(00)80808-0
- 45365 - Saccorhiza polyschides: LTS0199986
- 151233 - Salsola: LTS0199986
- 525237 - Salsola collina: 10.1007/BF00630328
- 525237 - Salsola collina: LTS0199986
- 21880 - Salvia: LTS0199986
- 342061 - Salvia deserta: 10.4197/SCI.16-1.4
- 342061 - Salvia deserta: LTS0199986
- 1520021 - Salvia deserti: 10.4197/SCI.16-1.4
- 203716 - Saposhnikovia: LTS0199986
- 203717 - Saposhnikovia divaricata: 10.4268/CJCMM20101214
- 203717 - Saposhnikovia divaricata: LTS0199986
- 3014 - Sargassaceae: LTS0199986
- 3015 - Sargassum: LTS0199986
- 74468 - Sargassum muticum: 10.1016/S0031-9422(00)80808-0
- 74468 - Sargassum muticum: LTS0199986
- 114489 - Schumanniophyton: LTS0199986
- 114490 - Schumanniophyton magnificum: 10.1055/S-2006-962416
- 114490 - Schumanniophyton magnificum: LTS0199986
- 37466 - Sclerodermataceae: LTS0199986
- 107239 - Scoparia: LTS0199986
- 107240 - Scoparia dulcis: 10.1007/978-3-642-58439-8_19
- 107240 - Scoparia dulcis: LTS0199986
- 4149 - Scrophulariaceae: LTS0199986
- 86993 - Scyphiphora: LTS0199986
- 86994 - Scyphiphora hydrophyllacea: 10.1016/S0044-328X(84)80097-5
- 86994 - Scyphiphora hydrophyllacea: LTS0199986
- 2891 - Scytosiphonaceae: LTS0199986
- 91146 - Sedum sarmentosum Bunge: -
- 40951 - Seseli: 10.1007/BF00564007
- 40951 - Seseli: LTS0199986
- 23808 - Simaroubaceae: LTS0199986
- 190522 - Siraitia: LTS0199986
- 190515 - Siraitia grosvenorii: 10.1016/0378-8741(90)90067-4
- 190515 - Siraitia grosvenorii: LTS0199986
- 190515 - Siraitia grosvenorii (Swingle) C.Jeffery ex A.M.Lu et Z.Y. Zhang: -
- 4070 - Solanaceae: LTS0199986
- 122811 - Sonneratia: LTS0199986
- 122812 - Sonneratia alba: 10.1016/S0044-328X(84)80097-5
- 122812 - Sonneratia alba: LTS0199986
- 23222 - Sorbus: LTS0199986
- 36599 - Sorbus aucuparia: 10.1111/J.1365-2621.1980.TB02616.X
- 36599 - Sorbus aucuparia: LTS0199986
- 147550 - Sordariomycetes: LTS0199986
- 86905 - Sphaerotrichia: LTS0199986
- 86906 - Sphaerotrichia divaricata: 10.1007/BF00697055
- 86906 - Sphaerotrichia divaricata: LTS0199986
- 90964 - Staphylococcaceae: LTS0199986
- 1279 - Staphylococcus: LTS0199986
- 1280 - Staphylococcus aureus: LTS0199986
- 50937 - Stereocaulaceae: LTS0199986
- 50938 - Stereocaulon: LTS0199986
- 51976 - Stereocaulon ramulosum: 10.1016/0008-6215(88)85057-2
- 51976 - Stereocaulon ramulosum: LTS0199986
- 1883 - Streptomyces: LTS0199986
- 67294 - Streptomyces filamentosus: 10.1080/14786419.2018.1484457
- 67294 - Streptomyces filamentosus: LTS0199986
- 2062 - Streptomycetaceae: LTS0199986
- 35493 - Streptophyta: LTS0199986
- 116061 - Stypocaulaceae: LTS0199986
- 117524 - Stypocaulon: 10.1016/S0031-9422(00)80808-0
- 117524 - Stypocaulon: LTS0199986
- 149060 - Swertia chinensis: -
- 5094 - Talaromyces: LTS0199986
- 198730 - Talaromyces verruculosus: 10.1055/S-2006-957645
- 198730 - Talaromyces verruculosus: LTS0199986
- 136914 - Tamilnadia: LTS0199986
- 136915 - Tamilnadia uliginosa: 10.1055/S-2006-962751
- 136915 - Tamilnadia uliginosa: LTS0199986
- 58440 - Tarenna: LTS0199986
- 1547794 - Tarenna gracilipes: 10.1248/CPB.56.1153
- 1547794 - Tarenna gracilipes: LTS0199986
- 40890 - Torilis: LTS0199986
- 49576 - Torilis japonica: 10.1248/CPB.46.1583
- 49576 - Torilis japonica: LTS0199986
- 58023 - Tracheophyta: LTS0199986
- 28568 - Trichocomaceae: LTS0199986
- 13749 - Vaccinium: LTS0199986
- 516948 - Vaccinium oxycoccos: 10.1111/J.1365-2621.1980.TB02616.X
- 516948 - Vaccinium oxycoccos: LTS0199986
- 4173 - Veronica: 10.1248/YAKUSHI1947.91.1_137
- 4173 - Veronica: LTS0199986
- 195129 - Veronica japonensis: 10.1248/YAKUSHI1947.91.1_137
- 195129 - Veronica japonensis: LTS0199986
- 1461186 - Veronica kiusiana: 10.1248/YAKUSHI1947.91.1_137
- 124267 - Veronica lavaudiana: 10.1021/NP200233P
- 124267 - Veronica lavaudiana: LTS0199986
- 303437 - Veronica ovata: LTS0199986
- 1461186 - Veronica ovata subsp. kiusiana: LTS0199986
- 74694 - Veronicastrum: LTS0199986
- 74695 - Veronicastrum sibiricum: 10.1248/YAKUSHI1947.91.1_137
- 74695 - Veronicastrum sibiricum: LTS0199986
- 33090 - Viridiplantae: LTS0199986
- 36658 - Volvariella: LTS0199986
- 36659 - Volvariella volvacea: 10.1021/JF9703314
- 36659 - Volvariella volvacea: LTS0199986
- 81055 - Wolfiporia: LTS0199986
- 81056 - Wolfiporia cocos: LTS0199986
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Wei-Bo Xu, Qian-Huan Guo, Peng Liu, Shuang Dai, Chang-Ai Wu, Guo-Dong Yang, Jin-Guang Huang, Shi-Zhong Zhang, Jian-Min Song, Cheng-Chao Zheng, Kang Yan. A long non-coding RNA functions as a competitive endogenous RNA to modulate TaNAC018 by acting as a decoy for tae-miR6206.
Plant molecular biology.
2024 Apr; 114(3):36. doi:
10.1007/s11103-024-01448-7
. [PMID: 38598012] - Samilly A Ribeiro, Enock Lr Braga, Marcus L Queiroga, Marco A Clementino, Xhaulla Mqc Fonseca, Mônica O Belém, Lyvia Mvc Magalhães, José K de Sousa, Thiago M de Freitas, Herlice N Veras, Cristiane C de Aquino, Alan Dc Santos, Flávio Rm de Moura, Armênio A Dos Santos, Alexandre Havt, Bruna Ll Maciel, Aldo Am Lima. A New Murine Undernutrition Model Based on Complementary Feeding of Undernourished Children Causes Damage to the Morphofunctional Intestinal Epithelium Barrier.
The Journal of nutrition.
2024 Apr; 154(4):1232-1251. doi:
10.1016/j.tjnut.2024.02.001
. [PMID: 38346539] - Shirong Li, He Xiao, Mingfei Liu, Qingguo Wang, Chenghong Sun, Jingchun Yao, Ningning Cao, Haifang Zhang, Guimin Zhang, Xuefeng Xiao. Network pharmacology and experimental verification to explore the anti-superficial thrombophlebitis mechanism of Mailuo shutong pill.
Journal of ethnopharmacology.
2024 Mar; 322(?):117668. doi:
10.1016/j.jep.2023.117668
. [PMID: 38159829] - Zhe Li, Xiaosui Luo, Qiong Li, Zhengji Jin, Abid Naeem, Weifeng Zhu, Lihua Chen, Yi Feng, Liangshan Ming. The Fabrication, Drug Loading, and Release Behavior of Porous Mannitol.
Molecules (Basel, Switzerland).
2024 Feb; 29(3):. doi:
10.3390/molecules29030715
. [PMID: 38338458] - Valeria Cornelius, Linda Droessler, Salah Amasheh. Quercetin Improves Barrier Properties in Porcine Small Intestine but Not in Peyer's Patches.
International journal of molecular sciences.
2024 Jan; 25(3):. doi:
10.3390/ijms25031530
. [PMID: 38338808] - Sandhya Neupane, Lisa Alexander, Fulya Baysal-Gurel. Evaluation of Hydrangea Cultivars for Tolerance Against Root Rot Caused by Fusarium oxysporum.
Plant disease.
2023 Dec; 107(12):3967-3974. doi:
10.1094/pdis-11-22-2712-re
. [PMID: 37392028] - Leru Liu, Shaoming Xu, Lu Tian, Xuelian Qin, Guojiang Wu, Huawu Jiang, Yaping Chen. Functional characterization of polyol/monosaccharide transporter 1 in Lotus japonicus.
Journal of plant physiology.
2023 Nov; 292(?):154146. doi:
10.1016/j.jplph.2023.154146
. [PMID: 38043244] - Hai-Zhen Duan, Xin Zhou, Quan Hu, Meng-Long Liu, Shu-Hong Wang, Ji Zhang, Xu-Heng Jiang, Tian-Xi Zhang, An-Yong Yu. Mannitol inhibits the proliferation of neural stem cell by a p38 mitogen-activated protein kinase-dependent signaling pathway.
Chinese journal of traumatology = Zhonghua chuang shang za zhi.
2023 Nov; ?(?):. doi:
10.1016/j.cjtee.2023.10.004
. [PMID: 37953130] - Hye-Yeon Seok, Sun-Young Lee, Swarnali Sarker, Md Bayzid, Yong-Hwan Moon. Genome-Wide Analysis of Stress-Responsive Genes and Alternative Splice Variants in Arabidopsis Roots under Osmotic Stresses.
International journal of molecular sciences.
2023 Sep; 24(19):. doi:
10.3390/ijms241914580
. [PMID: 37834024] - Ashish Sarode, Priyal Patel, Natalia Vargas-Montoya, Ayed Allawzi, Alisa Zhilin-Roth, Saswata Karmakar, Lianne Boeglin, Hongfeng Deng, Shrirang Karve, Frank DeRosa. Inhalable dry powder product (DPP) of mRNA lipid nanoparticles (LNPs) for pulmonary delivery.
Drug delivery and translational research.
2023 Aug; ?(?):. doi:
10.1007/s13346-023-01402-y
. [PMID: 37526881] - Maria Belikova, Mamdoh Al-Ameri, Ann-Charlotte Orre, Jesper Säfholm. Defining the contractile prostanoid component in hyperosmolar-induced bronchoconstriction in human small airways.
Prostaglandins & other lipid mediators.
2023 Jun; ?(?):106761. doi:
10.1016/j.prostaglandins.2023.106761
. [PMID: 37336434] - Michele Linsalata, Francesco Russo, Giuseppe Riezzo, Benedetta D'Attoma, Laura Prospero, Antonella Orlando, Antonia Ignazzi, Martina Di Chito, Annamaria Sila, Sara De Nucci, Roberta Rinaldi, Gianluigi Giannelli, Giovanni De Pergola. The Effects of a Very-Low-Calorie Ketogenic Diet on the Intestinal Barrier Integrity and Function in Patients with Obesity: A Pilot Study.
Nutrients.
2023 May; 15(11):. doi:
10.3390/nu15112561
. [PMID: 37299524] - Benshuai Liang, Jiahui Cao, Ruilin Wang, Chenjie Fan, Wei Wang, Xiuli Hu, Rui He, Fuju Tai. ZmCIPK32 positively regulates germination of stressed seeds via gibberellin signal.
Plant physiology and biochemistry : PPB.
2023 Apr; 199(?):107716. doi:
10.1016/j.plaphy.2023.107716
. [PMID: 37116226] - Venkateswarlu Korthikunta, Rohit Singh, Rohit Srivastava, Jyotsana Pandey, Atul Srivastava, Upma Chaturvedi, Akansha Mishra, Arvind K Srivastava, Akhilesh K Tamrakar, Narender Tadigoppula. Design, synthesis, and evaluation of benzofuran-based chromenochalcones for antihyperglycemic and antidyslipidemic activities.
RSC medicinal chemistry.
2023 Mar; 14(3):470-481. doi:
10.1039/d2md00341d
. [PMID: 36970150] - Frank B Lake, Leo S van Overbeek, Johan J P Baars, Tjakko Abee, Heidy M W den Besten. Variability in growth and biofilm formation of Listeria monocytogenes in Agaricus bisporus mushroom products.
Food research international (Ottawa, Ont.).
2023 03; 165(?):112488. doi:
10.1016/j.foodres.2023.112488
. [PMID: 36869500] - Sara Sangi, Geovanna Vitória Olimpio, Fernanda Silva Coelho, Camilla R Alexandrino, Maura Da Cunha, Clícia Grativol. Flagellin and mannitol modulate callose biosynthesis and deposition in soybean seedlings.
Physiologia plantarum.
2023 Feb; ?(?):e13877. doi:
10.1111/ppl.13877
. [PMID: 36811487] - Arun Narota, Ranjit Singh, Ranju Bansal, Ashwani Kumar, Amarjit S Naura. Isolation & identification of anti-inflammatory constituents of Randia dumetorum lamk. fruit: Potential beneficial effects against acute lung injury.
Journal of ethnopharmacology.
2023 Jan; 301(?):115759. doi:
10.1016/j.jep.2022.115759
. [PMID: 36216197] - Qian Chen, Lu Peng, Anhu Wang, Lingzhi Yu, Yu Liu, Xinrong Zhang, Ruolin Wang, Xiaoyi Li, Yi Yang, Xufeng Li, Jianmei Wang. An R2R3-MYB FtMYB11 from Tartary buckwheat has contrasting effects on abiotic tolerance in Arabidopsis.
Journal of plant physiology.
2023 Jan; 280(?):153842. doi:
10.1016/j.jplph.2022.153842
. [PMID: 36434991] - Hao Zhang, Ke Zhang, Tongtong Liu, Ying Zhang, Ziyan Tang, Jingao Dong, Fengru Wang. The characterization and expression analysis under stress conditions of PCST1 in Arabidopsis.
Plant signaling & behavior.
2022 Dec; 17(1):2134675. doi:
10.1080/15592324.2022.2134675
. [PMID: 36281762] - Vinay Kumar Bari, Dharmendra Singh, Jackline Abu Nassar, Radi Aly. Silencing of a mannitol transport gene in Phelipanche aegyptiaca by the tobacco rattle virus system reduces the parasite germination on the host root.
Plant signaling & behavior.
2022 12; 17(1):2139115. doi:
10.1080/15592324.2022.2139115
. [PMID: 36420997] - Kelly M Winter, Rachel G Webb, Denese C Marks. Red cells manufactured from lipaemic whole blood donations: Do they have higher haemolysis?.
Vox sanguinis.
2022 Dec; 117(12):1351-1359. doi:
10.1111/vox.13366
. [PMID: 36214384] - Ying-Ying Liu, Wen-Sen Shi, Yu Liu, Xue-Meng Gao, Bo Hu, Hao-Ran Sun, Xiao-Yi Li, Yi Yang, Xu-Feng Li, Zhi-Bin Liu, Jian-Mei Wang. MdPP2C24/37, Protein Phosphatase Type 2Cs from Apple, Interact with MdPYL2/12 to Negatively Regulate ABA Signaling in Transgenic Arabidopsis.
International journal of molecular sciences.
2022 Nov; 23(22):. doi:
10.3390/ijms232214375
. [PMID: 36430851] - María Del Mar Contreras, Irene Gómez-Cruz, Anouar Feriani, Saleh Alwasel, Abdel Halim Harrath, Inmaculada Romero, Eulogio Castro, Nizar Tlili. Hepatopreventive properties of hydroxytyrosol and mannitol-rich extracts obtained from exhausted olive pomace using green extraction methods.
Food & function.
2022 Nov; 13(22):11915-11928. doi:
10.1039/d2fo00888b
. [PMID: 36321712] - Nicoline Dorothea Jakobsen, Katharina Kaiser, Morten Frendø Ebbesen, Line Lauritsen, Morten Frier Gjerstorff, Judith Kuntsche, Jonathan R Brewer. The ROC skin model: A robust skin equivalent for permeation and live cell imaging studies.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2022 Nov; 178(?):106282. doi:
10.1016/j.ejps.2022.106282
. [PMID: 35995349] - Weijia Shi, Xiaojing Wang, Huan Liu, Zian Cai, Cunfu Lu, Yuzhen Chen. A novel ABA-insensitive mutant in Arabidopsis reveals molecular network of ABA-induced anthocyanin accumulation and abiotic stress tolerance.
Journal of plant physiology.
2022 Nov; 278(?):153810. doi:
10.1016/j.jplph.2022.153810
. [PMID: 36162212] - Wenliang Feng, Xuebin Jiang, Rujiang Zhang, Zhendong Guo, Daiquan Gao. Diagnosis of an Acinetobacter pittii from a patient in China with a multiplex PCR-based targeted gene sequencing platform of the cerebrospinal fluid: A case report with literature review.
Medicine.
2022 Oct; 101(42):e31130. doi:
10.1097/md.0000000000031130
. [PMID: 36281177] - Modou Jobe, Schadrac C Agbla, Marijana Todorcevic, Bakary Darboe, Ebrima Danso, Jean-Paul Pais de Barros, Laurent Lagrost, Fredrik Karpe, Andrew M Prentice. Possible mediators of metabolic endotoxemia in women with obesity and women with obesity-diabetes in The Gambia.
International journal of obesity (2005).
2022 10; 46(10):1892-1900. doi:
10.1038/s41366-022-01193-1
. [PMID: 35933445] - Maya Giridhar, Bastian Meier, Jafargholi Imani, Karl-Heinz Kogel, Edgar Peiter, Ute C Vothknecht, Fatima Chigri. Comparative analysis of stress-induced calcium signals in the crop species barley and the model plant Arabidopsis thaliana.
BMC plant biology.
2022 Sep; 22(1):447. doi:
10.1186/s12870-022-03820-5
. [PMID: 36114461] - Hongzhi Liu, Long Yuan, Wei Guo, Wei Wu. Transcription factor TERF1 promotes seed germination under osmotic conditions by activating gibberellin acid signaling.
Plant science : an international journal of experimental plant biology.
2022 Sep; 322(?):111350. doi:
10.1016/j.plantsci.2022.111350
. [PMID: 35709980] - Cíntia Tomaz Sant'Ana, Ariane Dias de Amorim, Ana Paula Gava, Carla Mora Aguilar, Nayana Garcia Silva, Líllian Duarte Machado, Mirelle Lomar Viana, Daniela da Silva Oliveira, Pollyanna Ibrahim Silva, Neuza Maria Brunoro Costa, André Gustavo Vasconcelos Costa. Brown and golden flaxseed reduce intestinal permeability and endotoxemia, and improve the lipid profile in perimenopausal overweight women.
International journal of food sciences and nutrition.
2022 Sep; 73(6):829-840. doi:
10.1080/09637486.2022.2052820
. [PMID: 35311432] - Pedro García-Caparrós, Lara Vogelsang, Marcus Persicke, Markus Wirtz, Vijay Kumar, Karl-Josef Dietz. Differential sensitivity of metabolic pathways in sugar beet roots to combined salt, heat, and light stress.
Physiologia plantarum.
2022 Sep; 174(5):e13786. doi:
10.1111/ppl.13786
. [PMID: 36169530] - Kristin D Gerson, Nancy Yang, Lauren Anton, Maayan Levy, Jacques Ravel, Michal A Elovitz, Heather H Burris. Second trimester short cervix is associated with decreased abundance of cervicovaginal lipid metabolites.
American journal of obstetrics and gynecology.
2022 08; 227(2):273.e1-273.e18. doi:
10.1016/j.ajog.2022.04.031
. [PMID: 35469813] - Jinzhi Li, Zhe Li, Hongsheng Ruan, Yating Gao, Yanlong Hong, Lan Shen, Xiao Lin. Improved direct compression properties of Gardeniae fructus water extract powders via fluid bed-mediated surface engineering.
Pharmaceutical development and technology.
2022 Jul; 27(6):725-739. doi:
10.1080/10837450.2022.2109671
. [PMID: 35920696] - Jaswin S Sawhney, George Kasotakis, Anna Goldenberg, Stuart Abramson, Christopher Dodgion, Nimitt Patel, Mansoor Khan, John J Como. Management of rhabdomyolysis: A practice management guideline from the Eastern Association for the Surgery of Trauma.
American journal of surgery.
2022 07; 224(1 Pt A):196-204. doi:
10.1016/j.amjsurg.2021.11.022
. [PMID: 34836603] - Ozkan Ates, Ibrahim Yilmaz, Numan Karaarslan, Emel Ersoz, Fatma Bahar Hacioglu Kasim, Mustafa Dogan, Hanefi Ozbek. Coexistence of SARS-CoV-2 and cerebrovascular diseases: does COVID-19 positivity trigger cerebrovascular pathologies?.
Journal of infection in developing countries.
2022 Jun; 16(6):981-992. doi:
10.3855/jidc.15800
. [PMID: 35797292] - João Francisco Câmara Neto, Matheus da Silva Campelo, Gilberto Santos Cerqueira, João Antônio Leal de Miranda, Jhonyson Arruda Carvalho Guedes, Raimundo Rafael de Almeida, Sandra de Aguiar Soares, Nilce Viana Gramosa, Guilherme Julião Zocolo, Ícaro Gusmão Pinto Vieira, Nágila Maria Pontes Silva Ricardo, Maria Elenir Nobre Pinho Ribeiro. Gastroprotective effect of hydroalcoholic extract from Agaricus blazei Murill against ethanol-induced gastric ulcer in mice.
Journal of ethnopharmacology.
2022 Jun; 292(?):115191. doi:
10.1016/j.jep.2022.115191
. [PMID: 35292374] - Yuzhu Wang, Yeling Zhou, Jiansheng Liang. Characterization of Organellar-Specific ABA Responses during Environmental Stresses in Tobacco Cells and Arabidopsis Plants.
Cells.
2022 06; 11(13):. doi:
10.3390/cells11132039
. [PMID: 35805123] - Amanpreet Kaur, Gurudutt Dubey, Nisha Sharma, Rajat Pant, Prasad V Bharatam, Kulbhushan Tikoo, Arvind K Bansal. High dose nanocrystalline solid dispersion powder of voriconazole for inhalation.
International journal of pharmaceutics.
2022 Jun; 622(?):121827. doi:
10.1016/j.ijpharm.2022.121827
. [PMID: 35589006] - Iveta Pleyerová, Jaromír Hamet, Hana Konrádová, Helena Lipavská. Versatile roles of sorbitol in higher plants: luxury resource, effective defender or something else?.
Planta.
2022 Jun; 256(1):13. doi:
10.1007/s00425-022-03925-z
. [PMID: 35713726] - Matheus Garbuio, Lucas D Dias, Larissa M de Souza, Thaila Q Corrêa, Natasha F Mezzacappo, Kate C Blanco, Kleber T de Oliveira, Natalia M Inada, Vanderlei S Bagnato. Formulations of curcumin and d-mannitol as a photolarvicide against Aedes aegypti larvae: Sublethal photolarvicidal action, toxicity, residual evaluation, and small-scale field trial.
Photodiagnosis and photodynamic therapy.
2022 Jun; 38(?):102740. doi:
10.1016/j.pdpdt.2022.102740
. [PMID: 35101624] - Juan P Ortiz Fragola, Gabriel Cao, Mariano Tumarkin, Marisa Moriondo, Angélica Muller, Martin Sangiorgio, Francisco Azzato, Giuseppe Ambrosio, José Milei. Bretschneider Solution and Two Antianginal Drugs Protect Peripheral Tissue in an Animal Model of Hemorrhagic Shock.
Journal of cardiovascular pharmacology.
2022 Jun; 79(6):896-903. doi:
10.1097/fjc.0000000000001253
. [PMID: 35249963] - Juan Gilberto Martínez-Miranda, Isaac Chairez, Enrique Durán-Páramo. Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review.
Applied biochemistry and biotechnology.
2022 Jun; 194(6):2762-2795. doi:
10.1007/s12010-022-03836-5
. [PMID: 35195836] - Hao Kong, Yu-Xiu Zhang, Peng-Cheng Ye, Jia-Hui Ma, Jian Gao, Jie Guan. Intraoperative Intravenous Mannitol Administration Failed to Provide Added Value on Renal Functional Preservation After Partial Nephrectomy in Patients with Chronic Kidney Disease: A Matched Cohort Study.
Journal of endourology.
2022 05; 36(5):626-633. doi:
10.1089/end.2021.0620
. [PMID: 34913722] - S V Popov, R G Guseynov, O N Skryabin, K V Sivak, V V Perepelitsa, A V Davydov, R S Barhitdinov, A S Katunin, M M Mirzabekov. [Evaluation of the results of sodium fumarate, furosemide, and mannitol on the initiation and outcome of renal warm ischemia in an experimental study].
Urologiia (Moscow, Russia : 1999).
2022 May; ?(2):18-26. doi:
. [PMID: 35485810]
- Ivana R Sequeira, Marlena C Kruger, Roger D Hurst, Roger G Lentle. A Simple, Robust, and Convenient HPLC Assay for Urinary Lactulose and Mannitol in the Dual Sugar Absorption Test.
Molecules (Basel, Switzerland).
2022 Apr; 27(9):. doi:
10.3390/molecules27092677
. [PMID: 35566024] - Andhika Rachman, Syahidatul Wafa, Pringgodigdo Nugroho, Sukamto Koesnoe. The effect of mannitol addition to hydration on acute kidney injury event after high dose cisplatin chemotherapy: an ambispective cohort study.
BMC cancer.
2022 Apr; 22(1):395. doi:
10.1186/s12885-022-09456-w
. [PMID: 35413808] - Panot Sainamthip, Siriwimon Saichaemchan, Bancha Satirapoj, Naiyarat Prasongsook. The Effect of Intravenous Mannitol Combined With Normal Saline in Preventing Cisplatin-Induced Nephrotoxicity: A Randomized, Double-Blind, Placebo-Controlled Trial.
JCO global oncology.
2022 03; 8(?):e2100275. doi:
10.1200/go.21.00275
. [PMID: 35436142] - Patrick M Honore, Sebastien Redant, Thierry Preseau, Sofie Moorthamers, Keitiane Kaefer, Leonel Barreto Gutierrez, Rachid Attou, Andrea Gallerani, David De Bels. Study conclude that AKI appears to be a frequent complication of hyperosmolar therapy with glycerol in patients with malignant MCA infarction: we don't agree about the next study to do!.
Journal of critical care.
2022 02; 67(?):230-231. doi:
10.1016/j.jcrc.2021.09.005
. [PMID: 34561147] - Silvio A Cândido-Sobrinho, Valéria F Lima, Francisco B S Freire, Leonardo P de Souza, Jorge Gago, Alisdair R Fernie, Danilo M Daloso. Metabolism-mediated mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms.
Plant, cell & environment.
2022 02; 45(2):296-311. doi:
10.1111/pce.14232
. [PMID: 34800300] - Behnam Noorani, Ekram Ahmed Chowdhury, Faleh Alqahtani, Md Sanaullah Sajib, Yeseul Ahn, Ehsan Nozohouri, Dhavalkumar Patel, Constantinos Mikelis, Reza Mehvar, Ulrich Bickel. A Semi-Physiological Three-Compartment Model Describes Brain Uptake Clearance and Efflux of Sucrose and Mannitol after IV Injection in Awake Mice.
Pharmaceutical research.
2022 Feb; 39(2):251-261. doi:
10.1007/s11095-022-03175-4
. [PMID: 35146590] - Jun-Jie Zhang, Yi-Heng Liu, Meng-Yun Tu, Kai Wei, Ying-Wei Wang, Meng Deng. Comparison of 1.0 g/kg of 20\% mannitol initiated at different time points and effects on brain relaxation in patients with midline shift undergoing supratentorial tumor resection: a randomized controlled trial.
Journal of neurosurgery.
2022 Feb; 136(2):350-357. doi:
10.3171/2021.1.jns204001
. [PMID: 34359042] - Claire Read, Andrew Wignell, Craig Stewart, Patrick Davies. Clinical effects of hypertonic saline boluses in children with severe traumatic brain injury.
Journal of paediatrics and child health.
2022 Feb; 58(2):256-260. doi:
10.1111/jpc.15695
. [PMID: 34427010] - Meng-Bin Ruan, Xiao-Ling Yu, Xin Guo, Ping-Juan Zhao, Ming Peng. Role of cassava CC-type glutaredoxin MeGRXC3 in regulating sensitivity to mannitol-induced osmotic stress dependent on its nuclear activity.
BMC plant biology.
2022 Jan; 22(1):41. doi:
10.1186/s12870-022-03433-y
. [PMID: 35057736] - Hans Helleberg, Rikke Hvid Lindecrona, Peter Thygesen, Mads Bjelke. Structure identification of circulating metabolites from somapacitan, a long-acting growth hormone derivative, and pharmacokinetics after single and multiple subcutaneous dosing in rats.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2022 Jan; 168(?):106032. doi:
10.1016/j.ejps.2021.106032
. [PMID: 34610450] - Yongxin Li, Hua Huang, Xinshuai Zhang. Identification of catabolic pathway for 1-deoxy-D-sorbitol in Bacillus licheniformis.
Biochemical and biophysical research communications.
2022 01; 586(?):81-86. doi:
10.1016/j.bbrc.2021.11.072
. [PMID: 34837836] - E Dubas, A M Castillo, I Żur, M Krzewska, M P Vallés. Microtubule organization changes severely after mannitol and n-butanol treatments inducing microspore embryogenesis in bread wheat.
BMC plant biology.
2021 Dec; 21(1):586. doi:
10.1186/s12870-021-03345-3
. [PMID: 34886809] - Tzu-Yun Chou, Hsiao-Ping Kuo, Sheng-Fa Tsai, Shyue-Tsong Huang, Meei-Ju Yang, Shoei-Sheng Lee, Chia-Chuan Chang. Doubled production of cordycepin analogs in cultured Cordyceps militaris by addition of Andrea droppings.
Natural product research.
2021 Dec; 35(23):5459-5464. doi:
10.1080/14786419.2020.1781112
. [PMID: 32594773] - Wei-Chung Luo, André O'Reilly Beringhs, Rachel Kim, William Zhang, Sajal M Patel, Robin H Bogner, Xiuling Lu. Impact of formulation on the quality and stability of freeze-dried nanoparticles.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2021 Dec; 169(?):256-267. doi:
10.1016/j.ejpb.2021.10.014
. [PMID: 34732383] - Hans Helleberg, Mads Bjelke, Birgitte Bentz Damholt, Palle Jacob Pedersen, Michael Højby Rasmussen. Absorption, metabolism and excretion of once-weekly somapacitan, a long-acting growth hormone derivative, after single subcutaneous dosing in human subjects.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2021 Dec; 167(?):106030. doi:
10.1016/j.ejps.2021.106030
. [PMID: 34601071] - Carolin Torregroza, Chiara O Glashoerster, Katharina Feige, Martin Stroethoff, Annika Raupach, André Heinen, Markus W Hollmann, Ragnar Huhn. Mediation of the Cardioprotective Effects of Mannitol Discovered, with Refutation of Common Protein Kinases.
International journal of molecular sciences.
2021 Nov; 22(22):. doi:
10.3390/ijms222212471
. [PMID: 34830353] - Shuo Han, Zhiyin Jiao, Meng-Xue Niu, Xiao Yu, Mengbo Huang, Chao Liu, Hou-Ling Wang, Yangyan Zhou, Wei Mao, Xiaofei Wang, Weilun Yin, Xinli Xia. Genome-Wide Comprehensive Analysis of the GASA Gene Family in Populus.
International journal of molecular sciences.
2021 Nov; 22(22):. doi:
10.3390/ijms222212336
. [PMID: 34830215] - Sarah Diver, Latifa Khalfaoui, Claire Emson, Sally E Wenzel, Andrew Menzies-Gow, Michael E Wechsler, James Johnston, Nestor Molfino, Jane R Parnes, Ayman Megally, Gene Colice, Christopher E Brightling. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial.
The Lancet. Respiratory medicine.
2021 11; 9(11):1299-1312. doi:
10.1016/s2213-2600(21)00226-5
. [PMID: 34256031] - Abdul Hafid Bajamal, Tedy Apriawan, I G M Aswin R Ranuh, Franco Servadei, Muhammad Faris, Asra Al Fauzi. Comparison of half-molar sodium lactate and mannitol to treat brain edema in severe traumatic brain injury: A systematic review.
Chinese journal of traumatology = Zhonghua chuang shang za zhi.
2021 Nov; 24(6):344-349. doi:
10.1016/j.cjtee.2021.07.005
. [PMID: 34344615] - Ivana Roosevelt Sequeira. Higher doses of ascorbic acid may have the potential to promote nutrient delivery via intestinal paracellular absorption.
World journal of gastroenterology.
2021 Oct; 27(40):6750-6756. doi:
10.3748/wjg.v27.i40.6750
. [PMID: 34790005] - Augustinas Bausys, Juste Maneikyte, Bettina Leber, Jennifer Weber, Nicole Feldbacher, Kestutis Strupas, Thomas Bernd Dschietzig, Peter Schemmer, Philipp Stiegler. Custodiol® Supplemented with Synthetic Human Relaxin Decreases Ischemia-Reperfusion Injury after Porcine Kidney Transplantation.
International journal of molecular sciences.
2021 Oct; 22(21):. doi:
10.3390/ijms222111417
. [PMID: 34768845] - Meihua Guo, Qilei Zhao, Shengjin Fan, Zhiqiang Wu, Liwang Lin, Hongzhu Chen, Yanhui Gao, Xin Hai. Characteristics of arsenic species in cerebrospinal fluid (CSF) of acute promyelocytic leukaemia (APL) patients treated with arsenic trioxide plus mannitol.
British journal of clinical pharmacology.
2021 10; 87(10):4020-4026. doi:
10.1111/bcp.14804
. [PMID: 33638869] - Stijn C van de Laar, Geerten N Schouten, Jan N M IJzermans, Robert C Minnee. Effect of Mannitol on Kidney Function After Kidney Transplantation: A Systematic Review and Meta-Analysis.
Transplantation proceedings.
2021 Sep; 53(7):2122-2132. doi:
10.1016/j.transproceed.2021.07.001
. [PMID: 34412911] - Amiya K Barik, Sanjay Agrawal, Priyanka Gupta, Ranjeeta Kumari. Evaluation of equiosmolar 20\% mannitol, 3\% hypertonic saline and 8.4\% sodium bicarbonate on intraoperative brain relaxation and hemodynamic parameters in patients undergoing craniotomy for supratentorial tumors: a prospective randomized study.
Minerva anestesiologica.
2021 09; 87(9):997-1005. doi:
10.23736/s0375-9393.21.15448-3
. [PMID: 34612617] - Eakapol Wangkaghart, Sebastien Deville, Bei Wang, Prapansak Srisapoome, Tiehui Wang, Christopher J Secombes. Immune response and protective efficacy of two new adjuvants, Montanide™ ISA 763B VG and Montanide™ GEL02, administered with a Streptococcus agalactiae ghost vaccine in Nile tilapia (Oreochromis niloticus).
Fish & shellfish immunology.
2021 Sep; 116(?):19-29. doi:
10.1016/j.fsi.2021.06.014
. [PMID: 34153428] - Charlotte von Horn, Benjamin Wilde, Ursula Rauen, Andreas Paul, Thomas Minor. Use of the new preservation solution Custodiol-MP for ex vivo reconditioning of kidney grafts.
Artificial organs.
2021 Sep; 45(9):1117-1123. doi:
10.1111/aor.13951
. [PMID: 33683761] - Allan Gottschalk, Thomas J K Toung. Effects of Volume Replacement for Urinary Losses from Mannitol Diuresis on Brain Water in Normal Rats.
Neurocritical care.
2021 08; 35(1):24-29. doi:
10.1007/s12028-020-01132-w
. [PMID: 33123951] - Haidar Moustafa, Daniela Schoene, Eyad Altarsha, Jan Rahmig, Hauke Schneider, Lars-Peder Pallesen, Alexandra Prakapenia, Timo Siepmann, Jessica Barlinn, Jens Passauer, Heinz Reichmann, Volker Puetz, Kristian Barlinn. Acute kidney injury in patients with malignant middle cerebral artery infarction undergoing hyperosmolar therapy with mannitol.
Journal of critical care.
2021 08; 64(?):22-28. doi:
10.1016/j.jcrc.2021.02.007
. [PMID: 33770572] - Yuan Chen, Jing Ling, Mingyue Li, Yongchao Su, Kinnari Santosh Arte, Tarun Tejasvi Mutukuri, Lynne S Taylor, Eric J Munson, Elizabeth M Topp, Qi Tony Zhou. Understanding the Impact of Protein-Excipient Interactions on Physical Stability of Spray-Dried Protein Solids.
Molecular pharmaceutics.
2021 07; 18(7):2657-2668. doi:
10.1021/acs.molpharmaceut.1c00189
. [PMID: 34096731] - Immanuel I Turner, Mark Ruzmetov, Jianli Niu, Steven Bibevski, Frank G Scholl. Scavenging right atrial Bretschneider histidine-tryptophan-ketoglutarate cardioplegia: Impact on hyponatremia and seizures in pediatric cardiac surgery patients.
The Journal of thoracic and cardiovascular surgery.
2021 Jul; 162(1):228-237. doi:
10.1016/j.jtcvs.2020.08.098
. [PMID: 33036746] - Margaux Pontailler, Charles-Henri David, Philippe Lacoste, Guillaume Guimbretière, Basile Marie, Christian Perigaud, Antoine Mugniot, Imen Fellah, Jean-Christian Roussel, Thomas Senage. Celsior® crystalloid cardioplegia versus standard hyperkalemic normothermic blood cardioplegia: Analysis of myocardial protection in elective mitral valve repair.
Perfusion.
2021 Jul; 36(5):455-462. doi:
10.1177/0267659121991760
. [PMID: 33530875] - Kimberly A Veenstra, Tiehui Wang, K Spencer Russell, Lincoln Tubbs, Juliette Ben Arous, Christopher J Secombes. Montanide™ ISA 763A VG and ISA 761 VG induce different immune pathway responses in rainbow trout (Oncorhynchus mykiss) when used as adjuvant for an Aeromonas salmonicida bacterin.
Fish & shellfish immunology.
2021 Jul; 114(?):171-183. doi:
10.1016/j.fsi.2021.04.024
. [PMID: 33940174] - Huayu Sun, Sining Wang, Yongfeng Lou, Chenglei Zhu, Hansheng Zhao, Ying Li, Xueping Li, Zhimin Gao. A bamboo leaf-specific aquaporin gene PePIP2;7 is involved in abiotic stress response.
Plant cell reports.
2021 Jul; 40(7):1101-1114. doi:
10.1007/s00299-021-02673-w
. [PMID: 34100122] - Zunaira Afzal, Sajid Asghar. Fabrication and characterization of itraconazole loaded anisotropic solid lipid-mannitol microstructures for enhanced antifungal activity.
Pakistan journal of pharmaceutical sciences.
2021 Jul; 34(4(Supplementary)):1607-1614. doi:
"
. [PMID: 34799338] - Natasha Ferreira Mezzacappo, Larissa Marila de Souza, Natália Mayumi Inada, Lucas Danilo Dias, Matheus Garbuio, Francine Perri Venturini, Thaila Quatrini Corrêa, Lidia Moura, Kate Cristina Blanco, Kleber Thiago de Oliveira, Vanderlei Salvador Bagnato. Curcumin/d-mannitol as photolarvicide: induced delay in larval development time, changes in sex ratio and reduced longevity of Aedes aegypti.
Pest management science.
2021 May; 77(5):2530-2538. doi:
10.1002/ps.6286
. [PMID: 33470514] - Mohsen Vaez, Seyed Javad Davarpanah. New Insights into the Biological Activity of Lichens: Bioavailable Secondary Metabolites of Umbilicaria decussata as Potential Anticoagulants.
Chemistry & biodiversity.
2021 May; 18(5):e2100080. doi:
10.1002/cbdv.202100080
. [PMID: 33773025] - Ting Zeng, Baohua Fang, Fenglin Huang, Li Dai, Zhi Tang, Jinglin Tian, Guodong Cao, Xuanlin Meng, Yuanchen Liu, Bo Lei, Minghua Lu, Zongwei Cai. Mass spectrometry-based metabolomics investigation on two different indica rice grains (Oryza sativa L.) under cadmium stress.
Food chemistry.
2021 May; 343(?):128472. doi:
10.1016/j.foodchem.2020.128472
. [PMID: 33139121] - Kwanhatai Areevijit, Nirada Dhanesuan, Jittima Amie Luckanagul, Sorasun Rungsiyanont. Biocompatibility study of modified injectable hyaluronic acid hydrogel with mannitol/BSA to alveolar bone cells.
Journal of biomaterials applications.
2021 05; 35(10):1294-1303. doi:
10.1177/0885328220971746
. [PMID: 33148100] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Nasser Nassiri Koopaei, Ekram Ahmed Chowdhury, Jinmai Jiang, Behnam Noorani, Lais da Silva, Gamze Bulut, Hesamedin Hakimjavadi, Srikar Chamala, Ulrich Bickel, Thomas D Schmittgen. Enrichment of the erythrocyte miR-451a in brain extracellular vesicles following impairment of the blood-brain barrier.
Neuroscience letters.
2021 04; 751(?):135829. doi:
10.1016/j.neulet.2021.135829
. [PMID: 33727125] - Yi-Bo Yan, Shuo Shi, Qian-Biao Wu, Jin-Sheng Cai, Bin-Feng Lei. Effect of different cardioprotective methods on extracorporeal circulation in fetal sheep: a randomized controlled trial.
Journal of cardiothoracic surgery.
2021 Apr; 16(1):94. doi:
10.1186/s13019-021-01486-y
. [PMID: 33865409] - Sindhu Kashyap, Nirupama Shivakumar, Veerasamy Sejian, Nicolaas E P Deutz, Thomas Preston, Sheshshayee Sreeman, Sarita Devi, Anura V Kurpad. Goat milk protein digestibility in relation to intestinal function.
The American journal of clinical nutrition.
2021 04; 113(4):845-853. doi:
10.1093/ajcn/nqaa400
. [PMID: 33677496] - Markus B Skrifvars, Michael Bailey, Elizabeth Moore, Johan Mårtensson, Craig French, Jeffrey Presneill, Alistair Nichol, Lorraine Little, Jacques Duranteau, Olivier Huet, Samir Haddad, Yaseen M Arabi, Colin McArthur, David James Cooper, Stepani Bendel, Rinaldo Bellomo. A Post Hoc Analysis of Osmotherapy Use in the Erythropoietin in Traumatic Brain Injury Study-Associations With Acute Kidney Injury and Mortality.
Critical care medicine.
2021 04; 49(4):e394-e403. doi:
10.1097/ccm.0000000000004853
. [PMID: 33566466] - Anne-Marie Bégin, Marie-Lawrence Monfette, Étienne Boudrias-Dalle, Emmie Lavallée, Vanessa Samouelian, Denis Soulières, Miguel Chagnon, Marie-Andrée Fournier, Nathalie Letarte, Jean-Philippe Adam. Effect of mannitol on acute kidney injury induced by cisplatin.
Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer.
2021 Apr; 29(4):2083-2091. doi:
10.1007/s00520-020-05703-7
. [PMID: 32862356] - Yihan Zhao, Yu Zhao, Renjie Fu, Tao Zhang, Jing Li, Jianfa Zhang. Transcriptomic and metabolomic profiling of a Rhodotorula color mutant to improve its lipid productivity in fed-batch fermentation.
World journal of microbiology & biotechnology.
2021 Apr; 37(5):77. doi:
10.1007/s11274-021-03043-0
. [PMID: 33792794] - Jia Wang, Yan Ren, Shuai-Fei Wang, Lian-Di Kan, Li-Juan Zhou, Hong-Mei Fang, Hui Fan. Comparative efficacy and safety of glycerol versus mannitol in patients with cerebral oedema and elevated intracranial pressure: A systematic review and meta-analysis.
Journal of clinical pharmacy and therapeutics.
2021 Apr; 46(2):504-514. doi:
10.1111/jcpt.13314
. [PMID: 33217016] - Julian Peter Müller, Lena Keufgens, Dirk Gründemann. Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP).
Biochemical pharmacology.
2021 04; 186(?):114484. doi:
10.1016/j.bcp.2021.114484
. [PMID: 33617845] - Hui-Jeon Jeon, Dong Kyu Choi, JaeHeon Choi, Seul Lee, Heejin Lee, Ji Hoon Yu, Sang-Hyun Min. D-Mannitol Induces a Brown Fat-like Phenotype via a β3-Adrenergic Receptor-Dependent Mechanism.
Cells.
2021 03; 10(4):. doi:
10.3390/cells10040768
. [PMID: 33807329] - Jia Wang, Yan Ren, Li-Juan Zhou, Lian-Di Kan, Hui Fan, Hong-Mei Fang. Glycerol Infusion Versus Mannitol for Cerebral Edema: A Systematic Review and Meta-analysis.
Clinical therapeutics.
2021 03; 43(3):637-649. doi:
10.1016/j.clinthera.2021.01.010
. [PMID: 33581877] - Elise Mank, Dewi van Harskamp, Letty van Toledo, Johannes B van Goudoever, Henk Schierbeek. Simultaneous assessment of intestinal permeability and lactase activity in human-milk-fed preterm infants by sugar absorption test: Clinical implementation and analytical method.
Clinical nutrition (Edinburgh, Scotland).
2021 03; 40(3):1413-1419. doi:
10.1016/j.clnu.2020.08.034
. [PMID: 32948350] - Christian Reiterer, Karin Hu, Samir Sljivic, Markus Falkner von Sonnenburg, Edith Fleischmann, Barbara Kabon. The effect of mannitol on oxidation-reduction potential in patients undergoing deceased donor renal transplantation-A randomized controlled trial.
Acta anaesthesiologica Scandinavica.
2021 02; 65(2):162-168. doi:
10.1111/aas.13713
. [PMID: 32966587] - Amy E Selmer, Andi N Rice, Colleen M Naglee, Charles A Vacchiano. Optimizing Intraoperative Fluid Replacement for Patients Receiving Mannitol During Neurosurgical Procedures: A Quality Improvement Initiative.
AANA journal.
2021 Feb; 89(1):35-43. doi:
NULL
. [PMID: 33501907] - Go Makimoto, Katsuyuki Hotta, Isao Oze, Kiichiro Ninomiya, Masamoto Nakanishi, Naofumi Hara, Hirohisa Kano, Hiromi Watanabe, Yusuke Hata, Kazuya Nishii, Takamasa Nakasuka, Junko Itano, Takashi Ninomiya, Toshio Kubo, Kadoaki Ohashi, Eiki Ichihara, Daisuke Minami, Akiko Sato, Masahiro Tabata, Yoshinobu Maeda, Katsuyuki Kiura. Randomized study comparing mannitol with furosemide for the prevention of cisplatin-induced renal toxicity in non-small cell lung cancer: The OLCSG1406 trial.
Asia-Pacific journal of clinical oncology.
2021 Feb; 17(1):101-108. doi:
10.1111/ajco.13423
. [PMID: 32885583] - Julie De Beule, Steffen Fieuws, Diethard Monbaliu, Maarten Naesens, Mauricio Sainz-Barriga, Ben Sprangers, Dirk Kuypers, Jacques Pirenne, Ina Jochmans. The effect of IGL-1 preservation solution on outcome after kidney transplantation: A retrospective single-center analysis.
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.
2021 02; 21(2):830-837. doi:
10.1111/ajt.16302
. [PMID: 32888364] - Jiale Yang, Lixiang Zhang, Li Jiang, Ya Guang Zhan, Gui Zhi Fan. Quercetin alleviates seed germination and growth inhibition in Apocynum venetum and Apocynum pictum under mannitol-induced osmotic stress.
Plant physiology and biochemistry : PPB.
2021 Feb; 159(?):268-276. doi:
10.1016/j.plaphy.2020.12.025
. [PMID: 33401201]