NCBI Taxonomy: 1602317

Cinnamosma fragrans (ncbi_taxid: 1602317)

found 77 associated metabolites at species taxonomy rank level.

Ancestor: Cinnamosma

Child Taxonomies: Cinnamosma fragrans var. perrieri

DL-Mannitol

(2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol

C6H14O6 (182.0790344)


D-mannitol appears as odorless white crystalline powder or free-flowing granules. Sweet taste. (NTP, 1992) D-mannitol is the D-enantiomer of mannitol. It has a role as an osmotic diuretic, a sweetening agent, an antiglaucoma drug, a metabolite, an allergen, a hapten, a food bulking agent, a food anticaking agent, a food humectant, a food stabiliser, a food thickening agent, an Escherichia coli metabolite and a member of compatible osmolytes. Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Mannitol is an Osmotic Diuretic. The mechanism of action of mannitol is as an Osmotic Activity. The physiologic effect of mannitol is by means of Increased Diuresis. Mannitol is a natural product found in Pavetta indica, Scoparia dulcis, and other organisms with data available. Mannitol is a naturally occurring alcohol found in fruits and vegetables and used as an osmotic diuretic. Mannitol is freely filtered by the glomerulus and poorly reabsorbed from the renal tubule, thereby causing an increase in osmolarity of the glomerular filtrate. An increase in osmolarity limits tubular reabsorption of water and inhibits the renal tubular reabsorption of sodium, chloride, and other solutes, thereby promoting diuresis. In addition, mannitol elevates blood plasma osmolarity, resulting in enhanced flow of water from tissues into interstitial fluid and plasma. D-mannitol is a metabolite found in or produced by Saccharomyces cerevisiae. A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. See also: Mannitol; sorbitol (component of); Mannitol; menthol (component of). Mannitol, or hexan-1,2,3,4,5,6-hexol (C6H8(OH)6), is an alcohol and a sugar (sugar alcohol), or a polyol, it is a stereoisomer of sorbitol and is similar to the C5 xylitol. The structure of mannitol is made of a straight chain of six carbon atoms, each of which is substituted with a hydroxyl group. Mannitol is one of the most abundant energy and carbon storage molecules in nature, it is produced by a wide range of organisms such as bacteria, fungi and plants (PMID: 19578847). In medicine, mannitol is used as a diuretic and renal diagnostic aid. Mannitol has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. Mannitol has a tendency to lose a hydrogen ion in aqueous solutions, which causes the solution to become acidic. For this, it is not uncommon to add a weak base, such as sodium bicarbonate, to the solution to adjust its pH. Mannitol is a non-permeating molecule i.e., it cannot cross biological membranes. Mannitol is an osmotic diuretic agent and a weak renal vasodilator. Mannitol is found to be associated with cytochrome c oxidase deficiency and ribose-5-phosphate isomerase deficiency, which are inborn errors of metabolism. Mannitol is also a microbial metabolite found in Aspergillus, Candida, Clostridium, Gluconobacter, Lactobacillus, Lactococcus, Leuconostoc, Pseudomonas, Rhodobacteraceae, Saccharomyces, Streptococcus, Torulaspora and Zymomonas (PMID: 15240312; PMID: 29480337). Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85085-15-0 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.

   

delta-Tocotrienol

(2R)-2,8-Dimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol

C27H40O2 (396.302814)


delta-Tocotrienol, also known as 8-methyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, delta-tocotrienol is considered to be a quinone lipid molecule. delta-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. delta-Tocotrienol is found in American cranberry and palm oil. It is a nutriceutical with anticancer properties and a positive influence on the blood lipid profile. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. d-Tocotrienol is found in many foods, some of which are fennel, caraway, coconut, and lichee. Acquisition and generation of the data is financially supported in part by CREST/JST.

   
   

Karion

Sorbitol, LINIMENT 60\\%, Mannitol, Liniment, D-Mannitol, D-Sorbitol, Dulcitol

C6H14O6 (182.0790344)


Hexane-1,2,3,4,5,6-hexol is a hexitol. Hexitol is a natural product found in Mus musculus, Salacia chinensis, and other organisms with data available. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Sorbitol (Sorbitol) is a six-carbon sugar alcohol and can used as a sugar substitute. D-Sorbitol can be used as a stabilizing excipient and/or isotonicity agent, sweetener, humectant, thickener and dietary supplement[1]. D-Sorbitol (Sorbitol) is a six-carbon sugar alcohol and can used as a sugar substitute. D-Sorbitol can be used as a stabilizing excipient and/or isotonicity agent, sweetener, humectant, thickener and dietary supplement[1]. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose.

   

(2R)-2,8-Dimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol

2,8-dimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-2H-1-benzopyran-6-ol

C27H40O2 (396.302814)


   

D-Mannitol

D-glycero-Hexitol

C6H14O6 (182.0790344)


Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol, a type of sugar alcohol, serves several important biological functions: Osmotic Diuretic: Mannitol is used medically as an osmotic diuretic to reduce intracranial and intraocular pressure. By increasing urine production, it helps to draw excess fluid from the brain and eyes, which is beneficial in conditions like cerebral edema and glaucoma. Sweetener and Sugar Substitute: In the food industry, mannitol is used as a sweetener and sugar substitute. It provides sweetness without contributing to tooth decay and is often used in products for diabetics because it has a minimal impact on blood sugar levels. Preservative: Mannitol’s hygroscopic properties make it useful as a preservative in various products, including pharmaceuticals and foods, to prevent moisture absorption and maintain product stability. Laxative: In high concentrations, mannitol can act as a laxative due to its osmotic effect in the intestine, drawing water into the bowel and stimulating bowel movements. Tissue Protectant: In cryopreservation, mannitol is used to protect tissues from damage caused by freezing and thawing processes. Cell Culture Medium Component: Mannitol is often included in cell culture media to maintain osmotic balance and provide a stable environment for cell growth. Pharmaceutical Excipient: It is used as an excipient in the pharmaceutical industry, helping to enhance the stability and bioavailability of drugs. Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-65-8 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.

   
   
   

δ-Tocotrienol

NCGC00253541-03_C27H40O2_(2R)-2,8-Dimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrien-1-yl]-6-chromanol

C27H40O2 (396.302814)


A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2 and 8 and a farnesyl chain at position 2.

   

(1s,2s,7s,8r,11s,13s,15s)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8r,11s,13s,15s)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C34H48O10 (616.3247308)


   

(5as,9as)-6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

(5as,9as)-6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

C15H20O3 (248.14123700000002)


   

(5ar,9as)-6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

(5ar,9as)-6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

C15H20O3 (248.14123700000002)


   

15-[4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

15-[4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C34H48O10 (616.3247308)


   

(5r,5ar,9as,9bs)-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

(5r,5ar,9as,9bs)-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

C17H24O4 (292.1674504)


   

(5as,9ar)-6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

(5as,9ar)-6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

C15H20O2 (232.14632200000003)


   

6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

C17H24O4 (292.1674504)


   

(1s,2s,7s,8r,11s,13s,15r)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[(4s,5s,5as,9as)-5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8r,11s,13s,15r)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[(4s,5s,5as,9as)-5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C51H70O14 (906.476532)


   

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-methoxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-methoxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C35H50O10 (630.34038)


   

(5as,9as,9br)-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

(5as,9as,9br)-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

C15H22O2 (234.1619712)


   

6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

C15H20O3 (248.14123700000002)


   

6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

C15H22O2 (234.1619712)


   

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C34H48O10 (616.3247308)


   

6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

C15H20O2 (232.14632200000003)


   

(5s,5as,9ar,9br)-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

(5s,5as,9ar,9br)-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

C17H24O4 (292.1674504)


   

(2s)-2,8-dimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran-6-ol

(2s)-2,8-dimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran-6-ol

C27H40O2 (396.302814)


   

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[(4s,5s,5as,9as)-5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[(4s,5s,5as,9as)-5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C51H70O14 (906.476532)


   

3,4-diformyl-4-hydroxy-4a,8,8-trimethyl-5,6,7,8a-tetrahydro-1h-naphthalen-1-yl acetate

3,4-diformyl-4-hydroxy-4a,8,8-trimethyl-5,6,7,8a-tetrahydro-1h-naphthalen-1-yl acetate

C17H24O5 (308.1623654)


   

(1s,2s,7s,8r,11r,13s,15r)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8r,11r,13s,15r)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C34H48O10 (616.3247308)


   

(5as,9as)-6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

(5as,9as)-6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

C15H20O2 (232.14632200000003)


   

(5ar,9as,9br)-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

(5ar,9as,9br)-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

C15H22O2 (234.1619712)


   

15-[4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

15-[4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C51H70O14 (906.476532)