NCBI Taxonomy: 132964

Cinnamosma (ncbi_taxid: 132964)

found 345 associated metabolites at genus taxonomy rank level.

Ancestor: Canellaceae

Child Taxonomies: Cinnamosma fragrans, Cinnamosma macrocarpa, unclassified Cinnamosma, Cinnamosma madagascariensis

DL-Mannitol

(2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol

C6H14O6 (182.0790344)


D-mannitol appears as odorless white crystalline powder or free-flowing granules. Sweet taste. (NTP, 1992) D-mannitol is the D-enantiomer of mannitol. It has a role as an osmotic diuretic, a sweetening agent, an antiglaucoma drug, a metabolite, an allergen, a hapten, a food bulking agent, a food anticaking agent, a food humectant, a food stabiliser, a food thickening agent, an Escherichia coli metabolite and a member of compatible osmolytes. Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Mannitol is an Osmotic Diuretic. The mechanism of action of mannitol is as an Osmotic Activity. The physiologic effect of mannitol is by means of Increased Diuresis. Mannitol is a natural product found in Pavetta indica, Scoparia dulcis, and other organisms with data available. Mannitol is a naturally occurring alcohol found in fruits and vegetables and used as an osmotic diuretic. Mannitol is freely filtered by the glomerulus and poorly reabsorbed from the renal tubule, thereby causing an increase in osmolarity of the glomerular filtrate. An increase in osmolarity limits tubular reabsorption of water and inhibits the renal tubular reabsorption of sodium, chloride, and other solutes, thereby promoting diuresis. In addition, mannitol elevates blood plasma osmolarity, resulting in enhanced flow of water from tissues into interstitial fluid and plasma. D-mannitol is a metabolite found in or produced by Saccharomyces cerevisiae. A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. See also: Mannitol; sorbitol (component of); Mannitol; menthol (component of). Mannitol, or hexan-1,2,3,4,5,6-hexol (C6H8(OH)6), is an alcohol and a sugar (sugar alcohol), or a polyol, it is a stereoisomer of sorbitol and is similar to the C5 xylitol. The structure of mannitol is made of a straight chain of six carbon atoms, each of which is substituted with a hydroxyl group. Mannitol is one of the most abundant energy and carbon storage molecules in nature, it is produced by a wide range of organisms such as bacteria, fungi and plants (PMID: 19578847). In medicine, mannitol is used as a diuretic and renal diagnostic aid. Mannitol has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. Mannitol has a tendency to lose a hydrogen ion in aqueous solutions, which causes the solution to become acidic. For this, it is not uncommon to add a weak base, such as sodium bicarbonate, to the solution to adjust its pH. Mannitol is a non-permeating molecule i.e., it cannot cross biological membranes. Mannitol is an osmotic diuretic agent and a weak renal vasodilator. Mannitol is found to be associated with cytochrome c oxidase deficiency and ribose-5-phosphate isomerase deficiency, which are inborn errors of metabolism. Mannitol is also a microbial metabolite found in Aspergillus, Candida, Clostridium, Gluconobacter, Lactobacillus, Lactococcus, Leuconostoc, Pseudomonas, Rhodobacteraceae, Saccharomyces, Streptococcus, Torulaspora and Zymomonas (PMID: 15240312; PMID: 29480337). Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85085-15-0 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Polygodial

1,2-Naphthalenedicarboxaldehyde, 1,4,4a,5,6,7,8,8a-octahydro-5,5,8a-trimethyl-, (1R-(1alpha,4abeta,8aalpha))-

C15H22O2 (234.1619712)


Polygodial is an aldehyde. Polygodial is a natural product found in Zygogynum pancheri, Zygogynum acsmithii, and other organisms with data available. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Polygodial (Poligodial) is an antifungal potentiator[1]. Polygodial is a sesquiterpene with anti-hyperalgesic properties[2].

   

Lignoceric acid (C24)

Tetracosanoic acid

C24H48O2 (368.3654108)


Lignoceric acid, also known as N-tetracosanoic acid or tetraeicosanoate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, lignoceric acid is considered to be a fatty acid lipid molecule. Lignoceric acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lignoceric acid can be found in a number of food items such as hazelnut, cheese, rye bread, and cetacea (dolphin, porpoise, whale), which makes lignoceric acid a potential biomarker for the consumption of these food products. Lignoceric acid can be found primarily in blood and feces, as well as in human fibroblasts tissue. Lignoceric acid exists in all eukaryotes, ranging from yeast to humans. In humans, lignoceric acid is involved in a couple of metabolic pathways, which include adrenoleukodystrophy, x-linked and beta oxidation of very long chain fatty acids. Lignoceric acid is also involved in carnitine-acylcarnitine translocase deficiency, which is a metabolic disorder. Lignoceric acid, or tetracosanoic acid, is the saturated fatty acid with formula C23H47COOH. It is found in wood tar, various cerebrosides, and in small amounts in most natural fats. The fatty acids of peanut oil contain small amounts of lignoceric acid (1.1\\\\% – 2.2\\\\%). This fatty acid is also a byproduct of lignin production . Tetracosanoic acid is a C24 straight-chain saturated fatty acid. It has a role as a volatile oil component, a plant metabolite, a human metabolite and a Daphnia tenebrosa metabolite. It is a very long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetracosanoate. Tetracosanoic acid, also known as N-tetracosanoate or lignoceric acid, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tetracosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tetracosanoic acid is a potentially toxic compound. Acquisition and generation of the data is financially supported in part by CREST/JST. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

gamma-Tocotrienol

(2R)-3,4-Dihydro-2,7,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrien-1-yl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3184632)


gamma-Tocotrienol, also known as 7,8-dimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, gamma-tocotrienol is considered to be a quinone lipid molecule. gamma-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Tocotrienol targets cancer cells by inhibiting Id1, a key cancer-promoting protein. gamma-Tocotrienol was shown to trigger cell apoptosis and well as anti-proliferation of cancer cells. This mechanism was also observed in separate prostate cancer and melanoma cell line studies. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. gamma-Tocotrienol is found in many foods, some of which are rye, corn, rosemary, and common grape. Acquisition and generation of the data is financially supported in part by CREST/JST. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

delta-Tocotrienol

(2R)-2,8-Dimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol

C27H40O2 (396.302814)


delta-Tocotrienol, also known as 8-methyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, delta-tocotrienol is considered to be a quinone lipid molecule. delta-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. delta-Tocotrienol is found in American cranberry and palm oil. It is a nutriceutical with anticancer properties and a positive influence on the blood lipid profile. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. d-Tocotrienol is found in many foods, some of which are fennel, caraway, coconut, and lichee. Acquisition and generation of the data is financially supported in part by CREST/JST.

   
   

Karion

Sorbitol, LINIMENT 60\\%, Mannitol, Liniment, D-Mannitol, D-Sorbitol, Dulcitol

C6H14O6 (182.0790344)


Hexane-1,2,3,4,5,6-hexol is a hexitol. Hexitol is a natural product found in Mus musculus, Salacia chinensis, and other organisms with data available. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Sorbitol (Sorbitol) is a six-carbon sugar alcohol and can used as a sugar substitute. D-Sorbitol can be used as a stabilizing excipient and/or isotonicity agent, sweetener, humectant, thickener and dietary supplement[1]. D-Sorbitol (Sorbitol) is a six-carbon sugar alcohol and can used as a sugar substitute. D-Sorbitol can be used as a stabilizing excipient and/or isotonicity agent, sweetener, humectant, thickener and dietary supplement[1]. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose.

   

Nb-p-Coumaroyltryptamine

(2E)-3-(4-Hydroxyphenyl)-N-[2-(1H-indol-3-yl)ethyl]prop-2-enimidate

C19H18N2O2 (306.1368208)


Nb-p-Coumaroyltryptamine is found in cereals and cereal products. Nb-p-Coumaroyltryptamine is found in kernels of sweet corn (Zea mays). Found in kernels of sweet corn (Zea mays)

   

Nb-Feruloyltryptamine

(2E)-3-(4-Hydroxy-3-methoxyphenyl)-N-[2-(1H-indol-3-yl)ethyl]prop-2-enimidate

C20H20N2O3 (336.147385)


Nb-Feruloyltryptamine is found in cereals and cereal products. Nb-Feruloyltryptamine is found in kernels of sweet corn (Zea mays). Found in kernels of sweet corn (Zea mays)

   

(2R)-2,8-Dimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol

2,8-dimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-2H-1-benzopyran-6-ol

C27H40O2 (396.302814)


   

(2R)-2,7,8-Trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol

2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-2H-1-benzopyran-6-ol

C28H42O2 (410.3184632)


   

Polygodial

5,5,8a-trimethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalene-1,2-dicarbaldehyde

C15H22O2 (234.1619712)


   

D-Mannitol

D-glycero-Hexitol

C6H14O6 (182.0790344)


Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol, a type of sugar alcohol, serves several important biological functions: Osmotic Diuretic: Mannitol is used medically as an osmotic diuretic to reduce intracranial and intraocular pressure. By increasing urine production, it helps to draw excess fluid from the brain and eyes, which is beneficial in conditions like cerebral edema and glaucoma. Sweetener and Sugar Substitute: In the food industry, mannitol is used as a sweetener and sugar substitute. It provides sweetness without contributing to tooth decay and is often used in products for diabetics because it has a minimal impact on blood sugar levels. Preservative: Mannitol’s hygroscopic properties make it useful as a preservative in various products, including pharmaceuticals and foods, to prevent moisture absorption and maintain product stability. Laxative: In high concentrations, mannitol can act as a laxative due to its osmotic effect in the intestine, drawing water into the bowel and stimulating bowel movements. Tissue Protectant: In cryopreservation, mannitol is used to protect tissues from damage caused by freezing and thawing processes. Cell Culture Medium Component: Mannitol is often included in cell culture media to maintain osmotic balance and provide a stable environment for cell growth. Pharmaceutical Excipient: It is used as an excipient in the pharmaceutical industry, helping to enhance the stability and bioavailability of drugs. Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-65-8 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.

   
   
   
   
   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterol

Stigmasterol

C29H48O (412.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

gamma-Tocotrienol

2,7,8-TRIMETHYL-2-[(3E,7E,11E,15E,19E,23E,27E)-4,8,12,16,20,24,28,32-O CTAMETHYL-3,7,11,15,19,23,27,31-TRITRIACONTAOCTAENYL]-6-CHROMANOL

C28H42O2 (410.3184632)


gamma-Tocotrienol, also known as 7,8-dimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, gamma-tocotrienol is considered to be a quinone lipid molecule. gamma-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Tocotrienol targets cancer cells by inhibiting Id1, a key cancer-promoting protein. gamma-Tocotrienol was shown to trigger cell apoptosis and well as anti-proliferation of cancer cells. This mechanism was also observed in separate prostate cancer and melanoma cell line studies. Gamma-tocotrienol is a tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 7 and 8 and a farnesyl chain at position 2. A vitamin E family member that has potent anti-cancer properties against a wide-range of cancers. It has a role as an antioxidant, an antineoplastic agent, a plant metabolite, a radiation protective agent, an apoptosis inducer and a hepatoprotective agent. It is a tocotrienol and a vitamin E. gamma-Tocotrienol is a natural product found in Amaranthus cruentus, Triadica sebifera, and other organisms with data available. A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 7 and 8 and a farnesyl chain at position 2. A vitamin E family member that has potent anti-cancer properties against a wide-range of cancers. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. gamma-Tocotrienol is found in many foods, some of which are rye, corn, rosemary, and common grape. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

Lignoceric acid

Tetracosanoic acid

C24H48O2 (368.36541079999995)


A C24 straight-chain saturated fatty acid. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

γ-Tocotrienol

gamma-Tocotrienol

C28H42O2 (410.3184632)


γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

δ-Tocotrienol

NCGC00253541-03_C27H40O2_(2R)-2,8-Dimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrien-1-yl]-6-chromanol

C27H40O2 (396.302814)


A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2 and 8 and a farnesyl chain at position 2.

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

2-{[14-(5-ethyl-6-methylheptan-2-yl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

Nb-p-Coumaroyltryptamine

(2E)-3-(4-hydroxyphenyl)-N-[2-(1H-indol-3-yl)ethyl]prop-2-enamide

C19H18N2O2 (306.1368208)


   

Nb-Feruloyltryptamine

(2E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(1H-indol-3-yl)ethyl]prop-2-enamide

C20H20N2O3 (336.147385)


   

ST 29:1;O;Hex

stigmast-5-en-3beta-yl beta-D-galactopyranoside

C35H60O6 (576.4389659999999)


   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

557-59-5

N-Tetracosanoic acid

C24H48O2 (368.36541079999995)


Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

CHEBI:33277

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,7,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-, (2R)- (9CI)

C28H42O2 (410.3184632)


γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

(2R)-2,7,8-Trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol

2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-3,4-dihydro-2H-1-benzopyran-6-ol

C28H42O2 (410.3184632)


   

(1s,2s,7s,8r,11s,13s,15s)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8r,11s,13s,15s)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C34H48O10 (616.3247308)


   

(5as,9as)-6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

(5as,9as)-6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

C15H20O3 (248.14123700000002)


   

(4s,5s,5as,9as)-4-chloro-6,6,9a-trimethyl-3-oxo-1h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

(4s,5s,5as,9as)-4-chloro-6,6,9a-trimethyl-3-oxo-1h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C17H23ClO4 (326.12847880000004)


   

(5ar,9as)-6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

(5ar,9as)-6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

C15H20O3 (248.14123700000002)


   

15-[4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

15-[4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C34H48O10 (616.3247308)


   

(5r,5ar,9as,9bs)-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

(5r,5ar,9as,9bs)-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

C17H24O4 (292.1674504)


   

(4s,5s,9as)-4-hydroxy-6,6,9a-trimethyl-3-oxo-1h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

(4s,5s,9as)-4-hydroxy-6,6,9a-trimethyl-3-oxo-1h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C17H24O5 (308.1623654)


   

3-(4-hydroxy-3-methoxyphenyl)-n-[2-(1h-indol-3-yl)ethyl]prop-2-enimidic acid

3-(4-hydroxy-3-methoxyphenyl)-n-[2-(1h-indol-3-yl)ethyl]prop-2-enimidic acid

C20H20N2O3 (336.147385)


   

(5as,9ar)-6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

(5as,9ar)-6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

C15H20O2 (232.14632200000003)


   

6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

C17H24O4 (292.1674504)


   

4,8,9-trimethyl-11-oxo-2-oxatricyclo[6.3.1.0⁴,¹²]dodeca-1(12),9-diene-10-carboxylic acid

4,8,9-trimethyl-11-oxo-2-oxatricyclo[6.3.1.0⁴,¹²]dodeca-1(12),9-diene-10-carboxylic acid

C15H18O4 (262.1205028)


   

9b-hydroxy-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

9b-hydroxy-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C17H24O5 (308.1623654)


   

(4r,8r)-4,8,9-trimethyl-11-oxo-2-oxatricyclo[6.3.1.0⁴,¹²]dodeca-1(12),9-diene-10-carboxylic acid

(4r,8r)-4,8,9-trimethyl-11-oxo-2-oxatricyclo[6.3.1.0⁴,¹²]dodeca-1(12),9-diene-10-carboxylic acid

C15H18O4 (262.1205028)


   

(1s,2s,7s,8r,11s,13s,15r)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[(4s,5s,5as,9as)-5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8r,11s,13s,15r)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[(4s,5s,5as,9as)-5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C51H70O14 (906.476532)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2s,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2s,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.37049579999996)


   

4-hydroxy-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

4-hydroxy-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C17H24O5 (308.1623654)


   

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-methoxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-methoxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C35H50O10 (630.34038)


   

4-chloro-6,6,9a-trimethyl-3-oxo-1h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

4-chloro-6,6,9a-trimethyl-3-oxo-1h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C17H23ClO4 (326.12847880000004)


   

(5as,9as,9br)-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

(5as,9as,9br)-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

C15H22O2 (234.1619712)


   

6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

6,6,9a-trimethyl-1h,4h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3,5-dione

C15H20O3 (248.14123700000002)


   
   

6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

C15H22O2 (234.1619712)


   

(1s,3s,4s,9s,10s,13s,15s,17s,18s,19s,24s,25s)-25-(acetyloxy)-4,8,8,19,23,23-hexamethyl-2,14,16,28,29-pentaoxaoctacyclo[15.10.1.1¹³,¹⁸.0³,¹².0³,¹⁵.0⁴,⁹.0¹⁸,²⁷.0¹⁹,²⁴]nonacosa-11,26-dien-10-yl acetate

(1s,3s,4s,9s,10s,13s,15s,17s,18s,19s,24s,25s)-25-(acetyloxy)-4,8,8,19,23,23-hexamethyl-2,14,16,28,29-pentaoxaoctacyclo[15.10.1.1¹³,¹⁸.0³,¹².0³,¹⁵.0⁴,⁹.0¹⁸,²⁷.0¹⁹,²⁴]nonacosa-11,26-dien-10-yl acetate

C34H46O9 (598.3141666)


   

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C34H48O10 (616.3247308)


   

6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

C15H20O2 (232.14632200000003)


   

(2e)-3-(4-hydroxy-3-methoxyphenyl)-n-[2-(1h-indol-3-yl)ethyl]prop-2-enimidic acid

(2e)-3-(4-hydroxy-3-methoxyphenyl)-n-[2-(1h-indol-3-yl)ethyl]prop-2-enimidic acid

C20H20N2O3 (336.147385)


   

(5s,5as,9ar,9br)-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

(5s,5as,9ar,9br)-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-5-yl acetate

C17H24O4 (292.1674504)


   
   

(5as,9as)-6,6,9a-trimethyl-3-oxo-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

(5as,9as)-6,6,9a-trimethyl-3-oxo-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C17H22O4 (290.1518012)


   

(5s,5as,9as,9bs)-5,9b-dihydroxy-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

(5s,5as,9as,9bs)-5,9b-dihydroxy-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

C15H22O4 (266.1518012)


   

(2s)-2,8-dimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran-6-ol

(2s)-2,8-dimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran-6-ol

C27H40O2 (396.302814)


   

(5s,5as,9as,9bs)-9b-hydroxy-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

(5s,5as,9as,9bs)-9b-hydroxy-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C17H24O5 (308.1623654)


   

(1s,4as,8ar)-5,5,8a-trimethyl-1,4,4a,6,7,8-hexahydronaphthalene-1,2-dicarbaldehyde

(1s,4as,8ar)-5,5,8a-trimethyl-1,4,4a,6,7,8-hexahydronaphthalene-1,2-dicarbaldehyde

C15H22O2 (234.1619712)


   

(4r,5r,5as,9as)-4-[(4r,5r,5as,9as)-5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

(4r,5r,5as,9as)-4-[(4r,5r,5as,9as)-5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C34H46O8 (582.3192516)


   

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[(4s,5s,5as,9as)-5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8s,11s,13s,15s)-15-[(1s,4s,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[(4s,5s,5as,9as)-5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C51H70O14 (906.476532)


   

6,6,9a-trimethyl-3-oxo-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

6,6,9a-trimethyl-3-oxo-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C17H22O4 (290.1518012)


   

3,4-diformyl-4-hydroxy-4a,8,8-trimethyl-5,6,7,8a-tetrahydro-1h-naphthalen-1-yl acetate

3,4-diformyl-4-hydroxy-4a,8,8-trimethyl-5,6,7,8a-tetrahydro-1h-naphthalen-1-yl acetate

C17H24O5 (308.1623654)


   

(1s,4as,8as)-5,5,8a-trimethyl-1,4,4a,6,7,8-hexahydronaphthalene-1,2-dicarbaldehyde

(1s,4as,8as)-5,5,8a-trimethyl-1,4,4a,6,7,8-hexahydronaphthalene-1,2-dicarbaldehyde

C15H22O2 (234.1619712)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

9b-hydroxy-1,3-dimethoxy-6,6,9a-trimethyl-1h,3h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

9b-hydroxy-1,3-dimethoxy-6,6,9a-trimethyl-1h,3h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C19H30O6 (354.204228)


   

4-hydroxy-6,6,9a-trimethyl-3-oxo-1h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

4-hydroxy-6,6,9a-trimethyl-3-oxo-1h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C17H24O5 (308.1623654)


   

3-(4-hydroxyphenyl)-n-[2-(1h-indol-3-yl)ethyl]prop-2-enimidic acid

3-(4-hydroxyphenyl)-n-[2-(1h-indol-3-yl)ethyl]prop-2-enimidic acid

C19H18N2O2 (306.1368208)


   
   

(1s,3r,4s,5s,5as,9as)-4-hydroxy-1,3-dimethoxy-6,6,9a-trimethyl-1h,3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

(1s,3r,4s,5s,5as,9as)-4-hydroxy-1,3-dimethoxy-6,6,9a-trimethyl-1h,3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C19H30O6 (354.204228)


   

4-[5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

4-[5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C34H46O8 (582.3192516)


   

(1s,2s,7s,8r,11r,13s,15r)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

(1s,2s,7s,8r,11r,13s,15r)-15-[(1s,4r,4as,8as)-4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-hydroxy-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C34H48O10 (616.3247308)


   

(2e)-3-(4-hydroxyphenyl)-n-[2-(1h-indol-3-yl)ethyl]prop-2-enimidic acid

(2e)-3-(4-hydroxyphenyl)-n-[2-(1h-indol-3-yl)ethyl]prop-2-enimidic acid

C19H18N2O2 (306.1368208)


   

(1s,4s,4as,8as)-3,4-diformyl-4-hydroxy-4a,8,8-trimethyl-5,6,7,8a-tetrahydro-1h-naphthalen-1-yl acetate

(1s,4s,4as,8as)-3,4-diformyl-4-hydroxy-4a,8,8-trimethyl-5,6,7,8a-tetrahydro-1h-naphthalen-1-yl acetate

C17H24O5 (308.1623654)


   

(5as,9as)-6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

(5as,9as)-6,6,9a-trimethyl-1h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

C15H20O2 (232.14632200000003)


   

(5ar,9as,9br)-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

(5ar,9as,9br)-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-3-one

C15H22O2 (234.1619712)


   

15-[4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

15-[4-(acetyloxy)-1-formyl-1-hydroxy-5,5,8a-trimethyl-4a,6,7,8-tetrahydro-4h-naphthalen-2-yl]-11-{[5-(acetyloxy)-6,6,9a-trimethyl-1-oxo-3h,4h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-4-yl]oxy}-2,6,6-trimethyl-12,14,16-trioxatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-9-en-8-yl acetate

C51H70O14 (906.476532)


   

(1r,3r,5r,5as,9as,9bs)-9b-hydroxy-1,3-dimethoxy-6,6,9a-trimethyl-1h,3h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

(1r,3r,5r,5as,9as,9bs)-9b-hydroxy-1,3-dimethoxy-6,6,9a-trimethyl-1h,3h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-5-yl acetate

C19H30O6 (354.204228)


   

5,9b-dihydroxy-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

5,9b-dihydroxy-6,6,9a-trimethyl-1h,5h,5ah,7h,8h,9h-naphtho[1,2-c]furan-3-one

C15H22O4 (266.1518012)