NCBI Taxonomy: 285841

Globularia trichosantha (ncbi_taxid: 285841)

found 61 associated metabolites at species taxonomy rank level.

Ancestor: Globularia

Child Taxonomies: none taxonomy data.

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1264)


Aucubin is found in common verbena. Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety. Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally. Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis. The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1 Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety.; Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally.; Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis.; The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1. Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

Asperuloside

(2aS-(2aalpha,4aalpha,5alpha,7balpha))-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-1-oxo-1H-2,6-dioxacyclopent(cd)inden-4-ylmethyl acetate

C18H22O11 (414.1162)


Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone. Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available. See also: Galium aparine whole (part of). A iridoid monoterpenoid glycoside isolated from Galium verum. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].

   

Geniposidic acid

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Catalpol

(2S,3R,4S,5S,6R)-2-(((1aS,1bS,2S,5aR,6S,6aS)-6-hydroxy-1a-(hydroxymethyl)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O10 (362.1213)


Catalpol is an organic molecular entity. It has a role as a metabolite. Catalpol is a natural product found in Verbascum lychnitis, Plantago atrata, and other organisms with data available. See also: Rehmannia glutinosa Root (part of). Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3]. Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3].

   

crenatoside

Orobanchoside; Crenatoside

C29H34O15 (622.1898)


   

Isoacteoside

{6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,5-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}methyl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C29H36O15 (624.2054)


Isoacteoside is a polyphenol compound found in foods of plant origin (PMID: 20428313). A polyphenol compound found in foods of plant origin (PhenolExplorer) Isoacteoside is a natural product that can significantly inhibit the formation of glycation end products. Isoacteoside is a natural product that can significantly inhibit the formation of glycation end products.

   

Asperuloside

(2-oxo-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0,]undeca-1(10),5-dien-6-yl)methyl acetic acid

C18H22O11 (414.1162)


   

Verbascoside

6-[2-(3,4-Dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C29H36O15 (624.2054)


   

Geniposidic_acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

ACon1_001484

(1S,4aS,5S,7aS)-7-(acetoxymethyl)-5-hydroxy-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid

C18H24O12 (432.1268)


Asperulosidic acid is a glycoside and an iridoid monoterpenoid. Asperulosidic acid is a natural product found in Spermacoce alata, Knoxia roxburghii, and other organisms with data available. Asperulosidic Acid (ASPA), a bioactive iridoid glycoside, is extracted from the herbs of Hedyotis diffusa Willd. Asperulosidic Acid (ASPA) has anti-tumor, anti-oxidant, and anti-inflammatory activities[1]. ASPA is related to the inhibition of inflammatory cytokines (TNF-α, IL-6) and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways[2]. Asperulosidic Acid (ASPA), a bioactive iridoid glycoside, is extracted from the herbs of Hedyotis diffusa Willd. Asperulosidic Acid (ASPA) has anti-tumor, anti-oxidant, and anti-inflammatory activities[1]. ASPA is related to the inhibition of inflammatory cytokines (TNF-α, IL-6) and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways[2]. Asperulosidic Acid (ASPA), a bioactive iridoid glycoside, is extracted from the herbs of Hedyotis diffusa Willd. Asperulosidic Acid (ASPA) has anti-tumor, anti-oxidant, and anti-inflammatory activities[1]. ASPA is related to the inhibition of inflammatory cytokines (TNF-α, IL-6) and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways[2].

   

Verbascoside

[(2R,3R,4R,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054)


Acteoside is a glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. It has a role as a neuroprotective agent, an antileishmanial agent, an anti-inflammatory agent, a plant metabolite and an antibacterial agent. It is a cinnamate ester, a disaccharide derivative, a member of catechols, a polyphenol and a glycoside. It is functionally related to a hydroxytyrosol and a trans-caffeic acid. Acteoside is under investigation in clinical trial NCT02662283 (Validity and Security of Reh-acteoside Therapy for Patients of IgA Nephropathy). Acteoside is a natural product found in Orobanche amethystea, Barleria lupulina, and other organisms with data available. See also: Harpagophytum zeyheri root (part of). A glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.

   

Isoacteoside

[(2R,3R,4S,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,5-dihydroxy-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]methyl (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054)


Isoacteoside is a hydroxycinnamic acid. Isoacteoside is a natural product found in Plantago australis, Paulownia coreana, and other organisms with data available. See also: Harpagophytum zeyheri root (part of). Isoacteoside is a natural product that can significantly inhibit the formation of glycation end products. Isoacteoside is a natural product that can significantly inhibit the formation of glycation end products.

   

Asperulosidic

(1S,4aS,5S,7aS)-7-(acetyloxymethyl)-5-hydroxy-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1268)


Asperulosidic acid is a glycoside and an iridoid monoterpenoid. Asperulosidic acid is a natural product found in Spermacoce alata, Knoxia roxburghii, and other organisms with data available. Asperulosidic Acid (ASPA), a bioactive iridoid glycoside, is extracted from the herbs of Hedyotis diffusa Willd. Asperulosidic Acid (ASPA) has anti-tumor, anti-oxidant, and anti-inflammatory activities[1]. ASPA is related to the inhibition of inflammatory cytokines (TNF-α, IL-6) and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways[2]. Asperulosidic Acid (ASPA), a bioactive iridoid glycoside, is extracted from the herbs of Hedyotis diffusa Willd. Asperulosidic Acid (ASPA) has anti-tumor, anti-oxidant, and anti-inflammatory activities[1]. ASPA is related to the inhibition of inflammatory cytokines (TNF-α, IL-6) and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways[2]. Asperulosidic Acid (ASPA), a bioactive iridoid glycoside, is extracted from the herbs of Hedyotis diffusa Willd. Asperulosidic Acid (ASPA) has anti-tumor, anti-oxidant, and anti-inflammatory activities[1]. ASPA is related to the inhibition of inflammatory cytokines (TNF-α, IL-6) and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways[2].

   

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1264)


Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids; Origin: Plant Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

Asperuloside

NCGC00380739-01_C18H22O11_1H-2,6-Dioxacyclopent[cd]inden-1-one, 4-[(acetyloxy)methyl]-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-, (2aS,4aS,5S,7bS)-

C18H22O11 (414.1162)


Asperuloside is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Asperuloside is soluble (in water) and a very weakly acidic compound (based on its pKa). Asperuloside can be found in bilberry, which makes asperuloside a potential biomarker for the consumption of this food product. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].

   

Geniposidic acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

[(2s,4ar,6r,7r,8s,8ar)-2-(3,4-dihydroxyphenyl)-7-hydroxy-8-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-hexahydro-2h-pyrano[2,3-b][1,4]dioxin-6-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

[(2s,4ar,6r,7r,8s,8ar)-2-(3,4-dihydroxyphenyl)-7-hydroxy-8-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-hexahydro-2h-pyrano[2,3-b][1,4]dioxin-6-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H34O15 (622.1898)


   

(2s,3r,4s,5r,6r)-2-{[(1s,4as,5r,7as)-5-hydroxy-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{[(1s,4as,5r,7as)-5-hydroxy-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H22O9 (346.1264)


   

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylic acid

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


   

[(4r,7s,8s,11s)-2-oxo-8-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0⁴,¹¹]undeca-1(10),5-dien-6-yl]methyl acetate

[(4r,7s,8s,11s)-2-oxo-8-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0⁴,¹¹]undeca-1(10),5-dien-6-yl]methyl acetate

C18H22O11 (414.1162)


   

(2s,3r,4s,5s,6s)-2-{4-[(1s,3ar,4s,6ar)-4-(3,5-dimethoxy-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6s)-2-{4-[(1s,3ar,4s,6ar)-4-(3,5-dimethoxy-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


   

2-(3,4-dihydroxyphenyl)-6-(hydroxymethyl)-8-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-hexahydro-2h-pyrano[2,3-b][1,4]dioxin-7-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

2-(3,4-dihydroxyphenyl)-6-(hydroxymethyl)-8-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-hexahydro-2h-pyrano[2,3-b][1,4]dioxin-7-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H34O15 (622.1898)


   

4-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

4-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C39H52O23 (888.2899)


   

(2s,3r,4s,5r,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5s,6s,10s)-5-hydroxy-2-({[(2e)-3-phenylprop-2-enoyl]oxy}methyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxan-4-yl (1s,4as)-7-[(acetyloxy)methyl]-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylate

(2s,3r,4s,5r,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5s,6s,10s)-5-hydroxy-2-({[(2e)-3-phenylprop-2-enoyl]oxy}methyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxan-4-yl (1s,4as)-7-[(acetyloxy)methyl]-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylate

C42H50O21 (890.2844)


   

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1268)


   

(1s,4as,5r,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5r,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1268)


   

(2r,3r,4r,5r,6r)-4-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-4-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C39H52O23 (888.2899)


   

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1268)


   

4,5-dihydroxy-2-{[5-hydroxy-2-({[(2e)-3-phenylprop-2-enoyl]oxy}methyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxan-3-yl 7-[(acetyloxy)methyl]-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylate

4,5-dihydroxy-2-{[5-hydroxy-2-({[(2e)-3-phenylprop-2-enoyl]oxy}methyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxan-3-yl 7-[(acetyloxy)methyl]-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylate

C42H50O21 (890.2844)


   

(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2-({[(2r,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2-({[(2r,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C34H44O19 (756.2477)


   

4-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

4-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C35H46O20 (786.2582)


   

(1s,4as)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


   

(1s,4as,7as)-7-(hydroxymethyl)-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,7as)-7-(hydroxymethyl)-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


   

(2s,4ar,6r,7r,8s,8ar)-2-(3,4-dihydroxyphenyl)-6-(hydroxymethyl)-8-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-hexahydro-2h-pyrano[2,3-b][1,4]dioxin-7-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2s,4ar,6r,7r,8s,8ar)-2-(3,4-dihydroxyphenyl)-6-(hydroxymethyl)-8-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-hexahydro-2h-pyrano[2,3-b][1,4]dioxin-7-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H34O15 (622.1898)


   

(1r,4as)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylic acid

(1r,4as)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


   

(2s,4ar,6r,7r,8s)-2-(3,4-dihydroxyphenyl)-6-(hydroxymethyl)-8-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-hexahydro-2h-pyrano[2,3-b][1,4]dioxin-7-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2s,4ar,6r,7r,8s)-2-(3,4-dihydroxyphenyl)-6-(hydroxymethyl)-8-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-hexahydro-2h-pyrano[2,3-b][1,4]dioxin-7-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H34O15 (622.1898)


   

(1s,4as,5r,7as)-7-[(benzoyloxy)methyl]-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-5-yl (1s,4as,7as)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylate

(1s,4as,5r,7as)-7-[(benzoyloxy)methyl]-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-5-yl (1s,4as,7as)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylate

C38H46O19 (806.2633)


   

7-[(benzoyloxy)methyl]-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-5-yl 7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylate

7-[(benzoyloxy)methyl]-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-5-yl 7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylate

C38H46O19 (806.2633)


   

(1s,4as,5r,7as)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5r,7as)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.1162)


   

(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-4-{[(3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-4-{[(3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C34H44O19 (756.2477)


   

(2s,3r,4s,5s,6r)-2-{[(1s,2s,4s,5s,6s,10s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(1s,2s,4s,5s,6s,10s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H22O10 (362.1213)


   

(1s,4as)-7-[(acetyloxy)methyl]-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as)-7-[(acetyloxy)methyl]-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylic acid

C18H24O11 (416.1319)


   

(2r,3s,4s,5s,6s)-4-{[(2s,3r,4r,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3s,4s,5s,6s)-4-{[(2s,3r,4r,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C35H46O20 (786.2582)


   

4,5-dihydroxy-2-[(5-hydroxy-2-{[(3-phenylprop-2-enoyl)oxy]methyl}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl)oxy]-6-(hydroxymethyl)oxan-3-yl 7-[(acetyloxy)methyl]-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylate

4,5-dihydroxy-2-[(5-hydroxy-2-{[(3-phenylprop-2-enoyl)oxy]methyl}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl)oxy]-6-(hydroxymethyl)oxan-3-yl 7-[(acetyloxy)methyl]-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylate

C42H50O21 (890.2844)


   

(4ar,6r,7r,8s,8as)-2-(3,4-dihydroxyphenyl)-6-(hydroxymethyl)-8-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-hexahydro-2h-pyrano[2,3-b][1,4]dioxin-7-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(4ar,6r,7r,8s,8as)-2-(3,4-dihydroxyphenyl)-6-(hydroxymethyl)-8-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-hexahydro-2h-pyrano[2,3-b][1,4]dioxin-7-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H34O15 (622.1898)


   

(5s)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(5s)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.1162)


   

(2r,3r,4r,5r,6r)-4-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-({[(2s,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-4-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-({[(2s,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C39H52O23 (888.2899)


   

(1s,4as,5s,7as)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5s,7as)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.1162)


   

4-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

4-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C34H44O19 (756.2477)


   

[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]decan-2-yl]methyl (2z)-3-phenylprop-2-enoate

[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]decan-2-yl]methyl (2z)-3-phenylprop-2-enoate

C24H30O11 (494.1788)


   

{6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,5-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}methyl 3-(3,4-dihydroxyphenyl)prop-2-enoate

{6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,5-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}methyl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054)


   

(2r,3r,4r,5r,6r)-4-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-4-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C34H44O19 (756.2477)


   

[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]decan-2-yl]methyl (2e)-3-phenylprop-2-enoate

[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]decan-2-yl]methyl (2e)-3-phenylprop-2-enoate

C24H30O11 (494.1788)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1r,2s,4s,5s,6s,10s)-5-hydroxy-2-({[(2e)-3-phenylprop-2-enoyl]oxy}methyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxan-3-yl (1s,4as)-7-[(acetyloxy)methyl]-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1r,2s,4s,5s,6s,10s)-5-hydroxy-2-({[(2e)-3-phenylprop-2-enoyl]oxy}methyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxan-3-yl (1s,4as)-7-[(acetyloxy)methyl]-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylate

C42H50O21 (890.2844)


   

(3r,4r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3s,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(3r,4r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3s,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054)


   

(4s,7s,8s,11s)-6-(hydroxymethyl)-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0⁴,¹¹]undeca-1(10),5-dien-2-one

(4s,7s,8s,11s)-6-(hydroxymethyl)-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0⁴,¹¹]undeca-1(10),5-dien-2-one

C16H20O10 (372.1056)


   

(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054)


   

7-[(acetyloxy)methyl]-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylic acid

7-[(acetyloxy)methyl]-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h-cyclopenta[c]pyran-4-carboxylic acid

C18H24O11 (416.1319)


   

(2r,3r,4r,5r,6r)-4-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-4-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C35H46O20 (786.2582)


   

2-{4-[(3as,6ar)-4-(3,5-dimethoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{4-[(3as,6ar)-4-(3,5-dimethoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


   

(2s,3r,4s,5r,6r)-2-{[(1s,4as,5r)-5-hydroxy-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{[(1s,4as,5r)-5-hydroxy-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H22O9 (346.1264)