Delphinidin (BioDeep_00000003579)
Secondary id: BioDeep_00001868620
natural product human metabolite PANOMIX_OTCML-2023 Endogenous PANOMIX-Anthocyanidin
代谢物信息卡片
化学式: [C15H11O7]+ (303.0504756)
中文名称: 飞燕草素, 飞燕草苷
谱图信息:
最多检出来源 Viridiplantae(plant) 0.44%
Last reviewed on 2024-09-18.
Cite this Page
Delphinidin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/delphinidin (retrieved
2024-11-05) (BioDeep RN: BioDeep_00000003579). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1(cc(c2c(c1)[o+]c(c(c2)O)c1cc(c(c(c1)O)O)O)O)O
InChI: InChI=1S/C15H10O7/c16-7-3-9(17)8-5-12(20)15(22-13(8)4-7)6-1-10(18)14(21)11(19)2-6/h1-5H,(H5-,16,17,18,19,20,21)/p+1
描述信息
Delphinidin, also known as delphinidin chloride (CAS: 528-53-0), belongs to the class of organic compounds known as 7-hydroxyflavonoids. These are flavonoids that bear one hydroxyl group at the C-7 position of the flavonoid skeleton. Thus, delphinidin is considered to be a flavonoid lipid molecule. Delphinidin is found, on average, in the highest concentration within a few different foods, such as bilberries, cowpea, and blackcurrants, and in a lower concentration in common beans, common pea, and wheats. Delphinidin has also been detected, but not quantified in, several different foods, such as Brussel sprouts, fruits, horseradish tree, pepper (C. pubescens), and macadamia nuts. This could make delphinidin a potential biomarker for the consumption of these foods. Delphinidin is an anthocyanin and a primary plant pigment. Delphinidin gives blue hues to flowers like violas and delphiniums. It also gives the blue-red colour of the grape that produces Cabernet Sauvignon, and can be found in cranberries (Wikipedia). BioTransformer predicts that delphinidin is a product of 5,7-dihydroxy-3-{oxy}-2-(3,4,5-trihydroxyphenyl)-1λ⁴-chromen-1-ylium metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by an EC.3.2.1.X enzyme (PMID: 30612223).
Widespread anthocyanidin found especies in blueberries, raspberries and red table wine. Glycosides also widespread. Delphinidin is found in many foods, some of which are macadamia nut (m. tetraphylla), oval-leaf huckleberry, napa cabbage, and sunburst squash (pattypan squash).
3,5,7-Trihydroxy-2-(3,4,5-trihydroxyphenyl)-1-benzopyrylium. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13270-61-6 (retrieved 2024-09-18) (CAS RN: 13270-61-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
15 个代谢物同义名
Chlorure de 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)benzopyrylium; 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-1lambda4-chromen-1-ylium; 3,5,7-Trihydroxy-2-(3,4,5-trihydroxyphenyl)benzopyrylium chloride; 3,5,7-Trihydroxy-2-(3,4,5-trihydroxyphenyl)benzopyryliumchlorid; 3,5,7-Trihydroxy-2-(3,4,5-trihydroxyphenyl)-1-benzopyrylium; 3,3,4,5,5,7-Hexahydroxy-2-phenylbenzopyrylium chloride; 3,3,4,5,5,7-Hexahydroxyflavylium chloride; 3,3,4,5,5,7-Hexahydroxyflavylium; Delphinidin chloride; Delfinidol chloride; Delphinidine; Delphinidin; Delphinidol; IdB 1056; Ephdine
数据库引用编号
21 个数据库交叉引用编号
- ChEBI: CHEBI:28436
- KEGG: C05908
- PubChem: 128853
- HMDB: HMDB0003074
- ChEMBL: CHEMBL276780
- ChEMBL: CHEMBL590878
- Wikipedia: Delphinidin
- MetaCyc: CPD-7090
- KNApSAcK: C00020091
- foodb: FDB002613
- chemspider: 114185
- CAS: 13270-61-6
- MoNA: PR100908
- MoNA: PS121202
- MoNA: PS121201
- LipidMAPS: LMPK12010001
- CAS: 528-53-0
- PDB-CCD: DLM
- 3DMET: B01908
- NIKKAJI: J402.606C
- LOTUS: LTS0036798
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
204 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(192)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
- Anthocyanin biosynthesis (delphinidin 3-O-glucoside):
2OG + Oxygen + leucodelphinidin ⟶ H2O + SUCCA + carbon dioxide + delphinidin
INOH(0)
PlantCyc(12)
- proanthocyanidins biosynthesis from flavanols:
UDP-α-D-glucose + a (2R,3R)-flavan-3-ol ⟶ H+ + UDP + a (2R,3R)-flavan-3-ol-3'-O-glucoside
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
UDP-α-D-glucose + a (2R,3R)-flavan-3-ol ⟶ H+ + UDP + a (2R,3R)-flavan-3-ol-3'-O-glucoside
- anthocyanin biosynthesis (delphinidin 3-O-glucoside):
(2R,3S,4S)-leucodelphinidin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + delphinidin + succinate
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- anthocyanin biosynthesis:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- anthocyanin biosynthesis:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- anthocyanin biosynthesis:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- anthocyanin biosynthesis:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
220 个相关的物种来源信息
- 3630 - Abutilon: LTS0036798
- 3631 - Abutilon theophrasti: 10.1007/BF01012523
- 3631 - Abutilon theophrasti: LTS0036798
- 3808 - Acacia: LTS0036798
- 205042 - Acacia dealbata: 10.1007/BF00597820
- 205042 - Acacia dealbata: LTS0036798
- 76409 - Actinoscirpus: LTS0036798
- 76410 - Actinoscirpus grossus: 10.1016/S0031-9422(00)84889-X
- 76410 - Actinoscirpus grossus: LTS0036798
- 2607223 - Anthelepis undulata: 10.1016/S0031-9422(00)84889-X
- 4150 - Antirrhinum: LTS0036798
- 4151 - Antirrhinum majus: 10.1515/ZNC-1983-11-1201
- 4151 - Antirrhinum majus: LTS0036798
- 4210 - Asteraceae: LTS0036798
- 3700 - Brassicaceae: LTS0036798
- 13384 - Calluna: LTS0036798
- 13385 - Calluna vulgaris: 10.1007/978-0-387-77335-3_9
- 13385 - Calluna vulgaris: LTS0036798
- 140580 - Carpha: LTS0036798
- 224677 - Carpha nivicola: 10.1016/S0031-9422(00)84889-X
- 224677 - Carpha nivicola: LTS0036798
- 149357 - Cissus: LTS0036798
- 165299 - Cissus discolor: 10.1111/J.1365-2621.1983.TB09238.X
- 289665 - Cissus verticillata: LTS0036798
- 4609 - Cyperaceae: LTS0036798
- 4610 - Cyperus: LTS0036798
- 46324 - Eleocharis: LTS0036798
- 269574 - Eleocharis cylindrostachys: 10.1016/S0031-9422(00)84889-X
- 269574 - Eleocharis cylindrostachys: LTS0036798
- 372386 - Eleocharis sphacelata: 10.1016/S0031-9422(00)84889-X
- 372386 - Eleocharis sphacelata: LTS0036798
- 3387 - Ephedra: LTS0036798
- 173281 - Ephedra andina: 10.1016/0305-1978(84)90056-5
- 173281 - Ephedra andina: LTS0036798
- 288832 - Ephedra breana: 10.1016/0305-1978(84)90056-5
- 288832 - Ephedra breana: LTS0036798
- 224737 - Ephedra chilensis: 10.1016/0305-1978(84)90056-5
- 224737 - Ephedra chilensis: LTS0036798
- 173277 - Ephedra frustillata: 10.1016/0305-1978(84)90056-5
- 173277 - Ephedra frustillata: LTS0036798
- 3386 - Ephedraceae: LTS0036798
- 4345 - Ericaceae: LTS0036798
- 2759 - Eukaryota: LTS0036798
- 3803 - Fabaceae: LTS0036798
- 76442 - Fimbristylis: LTS0036798
- 269577 - Fimbristylis bisumbellata: 10.1016/S0031-9422(00)84889-X
- 76444 - Fimbristylis dichotoma: 10.1016/S0031-9422(00)84889-X
- 76444 - Fimbristylis dichotoma: LTS0036798
- 4027 - Geraniaceae: LTS0036798
- 3310 - Ginkgo: LTS0036798
- 3311 - Ginkgo biloba: 10.5650/JOS1996.48.719
- 3311 - Ginkgo biloba: LTS0036798
- 3309 - Ginkgoaceae: LTS0036798
- 29811 - Ginkgoopsida: LTS0036798
- 3372 - Gnetopsida: LTS0036798
- 23066 - Grossulariaceae: LTS0036798
- 42216 - Hamamelidaceae: LTS0036798
- 4395 - Hamamelis: LTS0036798
- 4397 - Hamamelis virginiana: 10.1007/BF02323304
- 4397 - Hamamelis virginiana: LTS0036798
- 9606 - Homo sapiens: -
- 137679 - Koenigia: LTS0036798
- 457182 - Koenigia coriaria: 10.1007/BF02254802
- 457182 - Koenigia coriaria: LTS0036798
- 4136 - Lamiaceae: LTS0036798
- 3853 - Lathyrus: LTS0036798
- 313078 - Lathyrus angulatus:
- 313078 - Lathyrus angulatus: 10.1111/J.1469-8137.1960.TB06211.X
- 313078 - Lathyrus angulatus: LTS0036798
- 313079 - Lathyrus annuus:
- 313079 - Lathyrus annuus: 10.1111/J.1469-8137.1960.TB06211.X
- 313079 - Lathyrus annuus: LTS0036798
- 3856 - Lathyrus cicera:
- 3856 - Lathyrus cicera: 10.1111/J.1469-8137.1960.TB06211.X
- 3856 - Lathyrus cicera: LTS0036798
- 3855 - Lathyrus clymenum:
- 3855 - Lathyrus clymenum: 10.1038/195620A0
- 3855 - Lathyrus clymenum: LTS0036798
- 3857 - Lathyrus hirsutus:
- 3857 - Lathyrus hirsutus: 10.1111/J.1469-8137.1960.TB06211.X
- 3857 - Lathyrus hirsutus: LTS0036798
- 313096 - Lathyrus linifolius:
- 313096 - Lathyrus linifolius: 10.1111/J.1469-8137.1960.TB06211.X
- 313096 - Lathyrus linifolius: LTS0036798
- 29752 - Lathyrus nissolia:
- 29752 - Lathyrus nissolia: 10.1111/J.1469-8137.1960.TB06211.X
- 29752 - Lathyrus nissolia: LTS0036798
- 3859 - Lathyrus odoratus:
- 3859 - Lathyrus odoratus: 10.1111/J.1469-8137.1960.TB06211.X
- 3859 - Lathyrus odoratus: LTS0036798
- 313110 - Lathyrus rotundifolius:
- 313110 - Lathyrus rotundifolius: 10.1111/J.1469-8137.1960.TB06211.X
- 313110 - Lathyrus rotundifolius: LTS0036798
- 313112 - Lathyrus setifolius:
- 313112 - Lathyrus setifolius: 10.1111/J.1469-8137.1960.TB06211.X
- 313112 - Lathyrus setifolius: LTS0036798
- 3861 - Lathyrus sphaericus:
- 3861 - Lathyrus sphaericus: 10.1111/J.1469-8137.1960.TB06211.X
- 3861 - Lathyrus sphaericus: LTS0036798
- 3862 - Lathyrus tingitanus:
- 3862 - Lathyrus tingitanus: 10.1111/J.1469-8137.1960.TB06211.X
- 3862 - Lathyrus tingitanus: LTS0036798
- 313120 - Lathyrus vernus:
- 313120 - Lathyrus vernus: 10.1111/J.1469-8137.1960.TB06211.X
- 313120 - Lathyrus vernus: LTS0036798
- 43198 - Launaea: LTS0036798
- 39169 - Lavandula: LTS0036798
- 39329 - Lavandula angustifolia: LTS0036798
- 1211581 - Lavandula angustifolia subsp. angustifolia: 10.1016/S0031-9422(00)80692-5
- 1211581 - Lavandula angustifolia subsp. angustifolia: LTS0036798
- 140780 - Lepidosperma: LTS0036798
- 4447 - Liliopsida: LTS0036798
- 3867 - Lotus: LTS0036798
- 347994 - Lotus pedunculatus: 10.1104/PP.100.1.444
- 347994 - Lotus pedunculatus: LTS0036798
- 181288 - Lotus uliginosus: 10.1104/PP.100.1.444
- 181288 - Lotus uliginosus: LTS0036798
- 3928 - Lythraceae: LTS0036798
- 3398 - Magnoliopsida: LTS0036798
- 3629 - Malvaceae: LTS0036798
- 3723 - Matthiola: LTS0036798
- 3724 - Matthiola incana: 10.1515/ZNC-1983-11-1201
- 3724 - Matthiola incana: LTS0036798
- 4030 - Pelargonium: LTS0036798
- 3318 - Pinaceae: LTS0036798
- 58019 - Pinopsida: LTS0036798
- 3337 - Pinus: LTS0036798
- 88726 - Pinus brutia: 10.1016/S0305-1978(97)00049-5
- 88726 - Pinus brutia: LTS0036798
- 1193841 - Pinus brutia var. eldarica: 10.1016/S0305-1978(97)00049-5
- 1193841 - Pinus brutia var. eldarica: LTS0036798
- 71633 - Pinus halepensis: 10.1016/S0305-1978(97)00049-5
- 71633 - Pinus halepensis: LTS0036798
- 156152 - Plantaginaceae: LTS0036798
- 3615 - Polygonaceae: LTS0036798
- 42229 - Prunus avium: 10.1371/JOURNAL.PONE.0121164
- 22662 - Punica: LTS0036798
- 22663 - Punica granatum:
- 22663 - Punica granatum: 10.1007/BF00597820
- 22663 - Punica granatum: LTS0036798
- 4346 - Rhododendron: LTS0036798
- 407979 - Rhododendron rubiginosum: 10.1016/0031-9422(75)85197-1
- 407979 - Rhododendron rubiginosum: LTS0036798
- 3801 - Ribes: LTS0036798
- 175201 - Ribes sanguineum: 10.1016/0031-9422(75)85197-1
- 175201 - Ribes sanguineum: LTS0036798
- 3688 - Salicaceae: LTS0036798
- 40685 - Salix: LTS0036798
- 75704 - Salix alba:
- 75704 - Salix alba: 10.1016/S0031-9422(00)85563-6
- 75704 - Salix alba: 10.1016/S0031-9422(00)88609-4
- 75704 - Salix alba: LTS0036798
- 395313 - Salix arctica: 10.1016/S0031-9422(00)88609-4
- 395313 - Salix arctica: LTS0036798
- 75706 - Salix babylonica:
- 75706 - Salix babylonica: 10.1016/S0031-9422(00)85563-6
- 75706 - Salix babylonica: 10.1016/S0031-9422(00)88609-4
- 75706 - Salix babylonica: LTS0036798
- 75707 - Salix bebbiana:
- 1087216 - Salix candida: 10.1016/S0031-9422(00)88609-4
- 1087216 - Salix candida: LTS0036798
- 172267 - Salix caprea:
- 172267 - Salix caprea: 10.1016/S0031-9422(00)85563-6
- 172267 - Salix caprea: 10.1016/S0031-9422(00)88609-4
- 172267 - Salix caprea: LTS0036798
- 470278 - Salix cinerea: 10.1016/S0031-9422(00)88609-4
- 470278 - Salix cinerea: LTS0036798
- 470274 - Salix daphnoides: 10.1016/S0031-9422(00)88609-4
- 470274 - Salix daphnoides: LTS0036798
- 77063 - Salix fragilis: 10.1016/S0031-9422(00)88609-4
- 77063 - Salix fragilis: LTS0036798
- 77064 - Salix herbacea: 10.1016/S0031-9422(00)85563-6
- 77064 - Salix herbacea: LTS0036798
- 75712 - Salix interior: 10.1016/S0031-9422(00)88609-4
- 75712 - Salix interior: LTS0036798
- 339964 - Salix myrsinifolia: 10.1016/S0031-9422(00)88609-4
- 339964 - Salix myrsinifolia: LTS0036798
- 1623474 - Salix myrsinifolia subsp. myrsinifolia: LTS0036798
- 75715 - Salix pentandra: 10.1016/S0031-9422(00)88609-4
- 75715 - Salix pentandra: LTS0036798
- 470269 - Salix phylicifolia: 10.1016/S0031-9422(00)88609-4
- 470269 - Salix phylicifolia: LTS0036798
- 77065 - Salix purpurea: 10.1016/S0031-9422(00)88609-4
- 77065 - Salix purpurea: LTS0036798
- 77069 - Salix triandra:
- 77069 - Salix triandra: 10.1016/S0031-9422(00)85563-6
- 77069 - Salix triandra: 10.1016/S0031-9422(00)88609-4
- 77069 - Salix triandra: LTS0036798
- 40686 - Salix viminalis:
- 40686 - Salix viminalis: 10.1016/S0031-9422(00)88609-4
- 40686 - Salix viminalis: LTS0036798
- 1112091 - Salix × rubra: 10.1016/S0031-9422(00)88609-4
- 1244589 - Salix × smithiana: 10.1016/S0031-9422(00)88609-4
- 76505 - Schoenus: LTS0036798
- 372401 - Schoenus brevifolius: 10.1016/S0031-9422(00)84889-X
- 372401 - Schoenus brevifolius: LTS0036798
- 1914837 - Schoenus sparteus: 10.1016/S0031-9422(00)84889-X
- 1914837 - Schoenus sparteus: LTS0036798
- 76510 - Scleria: LTS0036798
- 1735542 - Scleria sphacelata: 10.1016/S0031-9422(00)84889-X
- 1735542 - Scleria sphacelata: LTS0036798
- 91155 - Sempervivum tectorum: 10.1021/JF980669D
- 4070 - Solanaceae: LTS0036798
- 4107 - Solanum: LTS0036798
- 4111 - Solanum melongena: 10.1055/S-2006-957412
- 4111 - Solanum melongena: LTS0036798
- 35493 - Streptophyta: LTS0036798
- 58023 - Tracheophyta: LTS0036798
- 224699 - Tricostularia: LTS0036798
- 13749 - Vaccinium: LTS0036798
- 180763 - Vaccinium myrtillus:
- 180763 - Vaccinium myrtillus: 10.1016/0003-2670(92)85082-H
- 180763 - Vaccinium myrtillus: 10.1016/S0731-7085(00)00264-8
- 180763 - Vaccinium myrtillus: LTS0036798
- 3904 - Vicia: LTS0036798
- 3906 - Vicia faba: 10.1139/B89-200
- 3906 - Vicia faba: LTS0036798
- 33090 - Viridiplantae: LTS0036798
- 3602 - Vitaceae: LTS0036798
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sergio R Zúñiga-Hernández, Trinidad García-Iglesias, Monserrat Macías-Carballo, Alejandro Pérez-Larios, Yanet Karina Gutiérrez-Mercado, Gabriela Camargo-Hernández, Christian Martin Rodríguez-Razón. Targets and Effects of Common Biocompounds of Hibiscus sabdariffa (Delphinidin-3-Sambubiosid, Quercetin, and Hibiscus Acid) in Different Pathways of Human Cells According to a Bioinformatic Assay.
Nutrients.
2024 Feb; 16(4):. doi:
10.3390/nu16040566
. [PMID: 38398890] - Juliana Gimenez Casagrande, Marcelo Macedo Rogero, Dalila Cunha de Oliveira, Bruna J Quintanilha, Vinícius Cooper Capetini, Edson Naoto Makiyama, Bruna Roberta Oliveira Neves, Carlos Eduardo da Silva Gonçalves, Sumara de Freitas, Neuza Mariko Aymoto Hassimotto, Ricardo Ambrósio Fock. Effects of grape juice intake on the cell migration properties in overweight women: Modulation mechanisms of cell migration in vitro by delphinidin-3-O-glucoside.
Food research international (Ottawa, Ont.).
2024 Feb; 178(?):113873. doi:
10.1016/j.foodres.2023.113873
. [PMID: 38309895] - Naymul Karim, Shiyu Liu, Ahmed K Rashwan, Jiahong Xie, Jianling Mo, Ahmed I Osman, David W Rooney, Wei Chen. Green synthesis of nanolipo-fibersomes using Nutriose® FB 06 for delphinidin-3-O-sambubioside delivery: Characterization, physicochemical properties, and application.
International journal of biological macromolecules.
2023 Aug; 247(?):125839. doi:
10.1016/j.ijbiomac.2023.125839
. [PMID: 37454997] - Dario E Iglesias, Eleonora Cremonini, Shelly N Hester, Steven M Wood, Mark Bartlett, Cesar G Fraga, Patricia I Oteiza. Cyanidin and delphinidin restore colon physiology in high fat diet-fed mice: Involvement of TLR-4 and redox-regulated signaling.
Free radical biology & medicine.
2022 08; 188(?):71-82. doi:
10.1016/j.freeradbiomed.2022.06.006
. [PMID: 35691508] - Edward Valera-Vera, Chantal Reigada, Melisa Sayé, Fabio A Digirolamo, Facundo Galceran, Mariana R Miranda, Claudio A Pereira. Trypanocidal activity of the anthocyanidin delphinidin, a non-competitive inhibitor of arginine kinase.
Natural product research.
2022 Jun; 36(12):3153-3157. doi:
10.1080/14786419.2021.1947270
. [PMID: 34219561] - John Bradley Morris, Brandon D Tonnis, Ming Li Wang, Uttam Bhattarai. Genetic Diversity for Quercetin, Myricetin, Cyanidin, and Delphinidin Concentrations in 38 Blackeye Pea (Vigna unguiculata L. Walp.) Genotypes for Potential Use as a Functional Health Vegetable.
Journal of dietary supplements.
2022 May; ?(?):1-16. doi:
10.1080/19390211.2022.2077881
. [PMID: 35615864] - Eleonora Cremonini, Dario E Iglesias, Karen E Matsukuma, Shelly N Hester, Steven M Wood, Mark Bartlett, Cesar G Fraga, Patricia I Oteiza. Supplementation with cyanidin and delphinidin mitigates high fat diet-induced endotoxemia and associated liver inflammation in mice.
Food & function.
2022 Jan; 13(2):781-794. doi:
10.1039/d1fo03108b
. [PMID: 34981106] - Zhiyong Zhang, Yan Pan, Yan Zhao, Mudan Ren, Yarui Li, Guifang Lu, Kaichun Wu, Shuixiang He. Delphinidin modulates JAK/STAT3 and MAPKinase signaling to induce apoptosis in HCT116 cells.
Environmental toxicology.
2021 Aug; 36(8):1557-1566. doi:
10.1002/tox.23152
. [PMID: 33955636] - Nguyen Minh Thuy, Vo Quang Minh, Tran Chi Ben, My Tuyen Thi Nguyen, Ho Thi Ngan Ha, Ngo Van Tai. Identification of Anthocyanin Compounds in Butterfly Pea Flowers (Clitoria ternatea L.) by Ultra Performance Liquid Chromatography/Ultraviolet Coupled to Mass Spectrometry.
Molecules (Basel, Switzerland).
2021 Jul; 26(15):. doi:
10.3390/molecules26154539
. [PMID: 34361692] - Reine-Solange Sauer, Ivo Krummenacher, Ezgi Eylül Bankoglu, Shaobing Yang, Beatrice Oehler, Friedrich Schöppler, Milad Mohammadi, Paul Güntzel, Adel Ben-Kraiem, Ulrike Holzgrabe, Helga Stopper, Jens A Broscheit, Holger Braunschweig, Norbert Roewer, Alexander Brack, Heike L Rittner. Stabilization of Delphinidin in Complex with Sulfobutylether-β-Cyclodextrin Allows for Antinociception in Inflammatory Pain.
Antioxidants & redox signaling.
2021 06; 34(16):1260-1279. doi:
10.1089/ars.2019.7957
. [PMID: 32977733] - Qunfeng Zhang, Jianhui Hu, Meiya Liu, Yuanzhi Shi, Ric C H De Vos, Jianyun Ruan. Stimulated biosynthesis of delphinidin-related anthocyanins in tea shoots reducing the quality of green tea in summer.
Journal of the science of food and agriculture.
2020 Mar; 100(4):1505-1514. doi:
10.1002/jsfa.10158
. [PMID: 31756273] - Abu Hazafa, Khalil-Ur- Rehman, Nazish Jahan, Zara Jabeen. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells.
Nutrition and cancer.
2020; 72(3):386-397. doi:
10.1080/01635581.2019.1637006
. [PMID: 31287738] - Candice Mazewski, Morgan Sanha Kim, Elvira Gonzalez de Mejia. Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico.
Scientific reports.
2019 08; 9(1):11560. doi:
10.1038/s41598-019-47903-0
. [PMID: 31399602] - Ana Solopova, Amanda Y van Tilburg, Alexandre Foito, J William Allwood, Derek Stewart, Saulius Kulakauskas, Oscar P Kuipers. Engineering Lactococcus lactis for the production of unusual anthocyanins using tea as substrate.
Metabolic engineering.
2019 07; 54(?):160-169. doi:
10.1016/j.ymben.2019.04.002
. [PMID: 30978503] - Hadzic Maida, Haveric Sanin, Haveric Anja, Lojo-Kadric Naida, Galic Borivoj, Jasmin Ramic, Pojskic Lejla. Bioflavonoids protect cells against halogenated boroxine-induced genotoxic damage by upregulation of hTERT expression.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2019 May; 74(5-6):125-129. doi:
10.1515/znc-2018-0132
. [PMID: 30864408] - Ye Tian, Oskar Laaksonen, Heta Haikonen, Anita Vanag, Huma Ejaz, Kaisa Linderborg, Saila Karhu, Baoru Yang. Compositional Diversity among Blackcurrant ( Ribes nigrum) Cultivars Originating from European Countries.
Journal of agricultural and food chemistry.
2019 May; 67(19):5621-5633. doi:
10.1021/acs.jafc.9b00033
. [PMID: 31013088] - Yanfang Liu, Jianhua Zhang, Xiaohong Yang, Jiangmin Wang, Yangang Li, Peng Zhang, Jin Mao, Qingmei Huang, Hao Tang. Diversity in flower colorations of Ranunculus asiaticus L. revealed by anthocyanin biosynthesis pathway in view of gene composition, gene expression patterns, and color phenotype.
Environmental science and pollution research international.
2019 May; 26(14):13785-13794. doi:
10.1007/s11356-018-2779-3
. [PMID: 30145754] - Liga Saulite, Kaspars Jekabsons, Maris Klavins, Ruta Muceniece, Una Riekstina. Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2019 Feb; 53(?):86-95. doi:
10.1016/j.phymed.2018.09.029
. [PMID: 30668416] - Megan Stevens, Christopher R Neal, Elena C Craciun, Maria Dronca, Steven J Harper, Sebastian Oltean. The natural drug DIAVIT is protective in a type II mouse model of diabetic nephropathy.
PloS one.
2019; 14(3):e0212910. doi:
10.1371/journal.pone.0212910
. [PMID: 30865689] - Christiane Schön, Roland Wacker, Antje Micka, Jasmin Steudle, Stefanie Lang, Bernd Bonnländer. Bioavailability Study of Maqui Berry Extract in Healthy Subjects.
Nutrients.
2018 Nov; 10(11):. doi:
10.3390/nu10111720
. [PMID: 30423989] - Ezgi Eyluel Bankoglu, Jens Broscheit, Theresa Arnaudov, Norbert Roewer, Helga Stopper. Protective effects of tricetinidin against oxidative stress inducers in rat kidney cells: A comparison with delphinidin and standard antioxidants.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2018 Nov; 121(?):549-557. doi:
10.1016/j.fct.2018.09.058
. [PMID: 30266311] - Eliza Łata, Agnieszka Fulczyk, Teresa Kowalska, Mieczysław Sajewicz. Vulnerability of anthocyanins to the components of a thin-layer chromatographic system and comprehensive screening of anthocyanes in alimentary products.
Journal of chromatography. A.
2018 Oct; 1572(?):137-144. doi:
10.1016/j.chroma.2018.08.040
. [PMID: 30150119] - Elena Daveri, Eleonora Cremonini, Angela Mastaloudis, Shelly N Hester, Steven M Wood, Andrew L Waterhouse, Mauri Anderson, Cesar G Fraga, Patricia I Oteiza. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice.
Redox biology.
2018 09; 18(?):16-24. doi:
10.1016/j.redox.2018.05.012
. [PMID: 29890336] - Marcela Parra-Vargas, Ana Sandoval-Rodriguez, Roberto Rodriguez-Echevarria, Jose Alfredo Dominguez-Rosales, Arturo Santos-Garcia, Juan Armendariz-Borunda. Delphinidin Ameliorates Hepatic Triglyceride Accumulation in Human HepG2 Cells, but Not in Diet-Induced Obese Mice.
Nutrients.
2018 Aug; 10(8):. doi:
10.3390/nu10081060
. [PMID: 30103390] - Qianyu Yue, Lili Xu, Guangqing Xiang, Xin Yu, Yuxin Yao. Characterization of Gene Expression Profile, Phenolic Composition, and Antioxidant Capacity in Red-Fleshed Grape Berries and Their Wines.
Journal of agricultural and food chemistry.
2018 Jul; 66(27):7190-7199. doi:
10.1021/acs.jafc.8b01323
. [PMID: 29920074] - Rocio González-Barrio, María Jesús Periago, Cristina Luna-Recio, Francisco Javier Garcia-Alonso, Inmaculada Navarro-González. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds.
Food chemistry.
2018 Jun; 252(?):373-380. doi:
10.1016/j.foodchem.2018.01.102
. [PMID: 29478556] - Wenji Xu, Gangjun Luo, Fengyang Yu, Qingxiang Jia, Yang Zheng, Xiaoying Bi, Jiajun Lei. Characterization of anthocyanins in the hybrid progenies derived from Iris dichotoma and I. domestica by HPLC-DAD-ESI/MS analysis.
Phytochemistry.
2018 Jun; 150(?):60-74. doi:
10.1016/j.phytochem.2018.03.003
. [PMID: 29550699] - Pavel A Zykin, Elena A Andreeva, Anna N Lykholay, Natalia V Tsvetkova, Anatoly V Voylokov. Anthocyanin Composition and Content in Rye Plants with Different Grain Color.
Molecules (Basel, Switzerland).
2018 Apr; 23(4):. doi:
10.3390/molecules23040948
. [PMID: 29671758] - Hee Duk Oh, Duk Jun Yu, Sun Woo Chung, Sinath Chea, Hee Jae Lee. Abscisic acid stimulates anthocyanin accumulation in 'Jersey' highbush blueberry fruits during ripening.
Food chemistry.
2018 Apr; 244(?):403-407. doi:
10.1016/j.foodchem.2017.10.051
. [PMID: 29120800] - Wei-Ming Chai, Qian Huang, Mei-Zhen Lin, Chong Ou-Yang, Wen-Yang Huang, Ying-Xia Wang, Kai-Li Xu, Hui-Ling Feng. Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism.
Journal of agricultural and food chemistry.
2018 Jan; 66(4):908-917. doi:
10.1021/acs.jafc.7b05481
. [PMID: 29313327] - H Du, L Lai, F Wang, W Sun, L Zhang, X Li, L Wang, L Jiang, Y Zheng. Characterisation of flower colouration in 30 Rhododendron species via anthocyanin and flavonol identification and quantitative traits.
Plant biology (Stuttgart, Germany).
2018 Jan; 20(1):121-129. doi:
10.1111/plb.12649
. [PMID: 29054107] - Swathi Putta, Nagendra Sastry Yarla, Eswar Kumar K, Dhananjaya Bhadrapura Lakkappa, Mohammad A Kamal, Luciana Scotti, Marcus T Scotti, Ghulam Md Ashraf, B Sasi Bhusana Rao, Sarala Kumari D, Gorla V Reddy, Vadim V Tarasov, Sarat Babu Imandi, Gjumrakch Aliev. Preventive and Therapeutic Potentials of Anthocyanins in Diabetes and Associated Complications.
Current medicinal chemistry.
2018; 25(39):5347-5371. doi:
10.2174/0929867325666171206101945
. [PMID: 29210634] - Stefano Catola, Antonella Castagna, Marco Santin, Valentina Calvenzani, Katia Petroni, Andrea Mazzucato, Annamaria Ranieri. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit.
Planta.
2017 Aug; 246(2):263-275. doi:
10.1007/s00425-017-2710-z
. [PMID: 28516293] - Boris Pejin, Ana Ciric, Jasmina Dimitric Markovic, Jasmina Glamoclija, Milos Nikolic, Marina Sokovic. An insight into anti-biofilm and anti-quorum sensing activities of the selected anthocyanidins: the case study of Pseudomonas aeruginosa PAO1.
Natural product research.
2017 May; 31(10):1177-1180. doi:
10.1080/14786419.2016.1222386
. [PMID: 27539815] - Yongbin Zhuang, Erin A Tripp. Genome-scale transcriptional study of hybrid effects and regulatory divergence in an F1 hybrid Ruellia (Wild Petunias: Acanthaceae) and its parents.
BMC plant biology.
2017 01; 17(1):15. doi:
10.1186/s12870-016-0962-6
. [PMID: 28095782] - Jean Christopher Chamcheu, Vaqar M Adhami, Stephane Esnault, Mario Sechi, Imtiaz A Siddiqui, Kenneth A Satyshur, Deeba N Syed, Shah-Jahan M Dodwad, Maria-Ines Chaves-Rodriquez, B Jack Longley, Gary S Wood, Hasan Mukhtar. Dual Inhibition of PI3K/Akt and mTOR by the Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced Psoriasis-Like Disease in Mice.
Antioxidants & redox signaling.
2017 01; 26(2):49-69. doi:
10.1089/ars.2016.6769
. [PMID: 27393705] - Milica M Pantelić, Dragana Č Dabić Zagorac, Sonja M Davidović, Slavica R Todić, Zoran S Bešlić, Uroš M Gašić, Živoslav Lj Tešić, Maja M Natić. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia.
Food chemistry.
2016 Nov; 211(?):243-52. doi:
10.1016/j.foodchem.2016.05.051
. [PMID: 27283628] - Mi-Hyeon Jeong, Hyeonseok Ko, Hyelin Jeon, Gi-Jun Sung, Soo-Yeon Park, Woo Jin Jun, Yoo-Hyun Lee, Jeongmin Lee, Sang-Wook Lee, Ho-Geun Yoon, Kyung-Chul Choi. Delphinidin induces apoptosis via cleaved HDAC3-mediated p53 acetylation and oligomerization in prostate cancer cells.
Oncotarget.
2016 Aug; 7(35):56767-56780. doi:
10.18632/oncotarget.10790
. [PMID: 27462923] - G Aichinger, G Pahlke, L J Nagel, W Berger, D Marko. Bilberry extract, its major polyphenolic compounds, and the soy isoflavone genistein antagonize the cytostatic drug erlotinib in human epithelial cells.
Food & function.
2016 Aug; 7(8):3628-36. doi:
10.1039/c6fo00570e
. [PMID: 27485636] - Motoki Murata, Reia Kosaka, Kana Kurihara, Shuya Yamashita, Hirofumi Tachibana. Delphinidin prevents disuse muscle atrophy and reduces stress-related gene expression.
Bioscience, biotechnology, and biochemistry.
2016 Aug; 80(8):1636-40. doi:
10.1080/09168451.2016.1184560
. [PMID: 27180787] - Baolu Cui, Zongli Hu, Yanjie Zhang, Jingtao Hu, Wencheng Yin, Ye Feng, Qiaoli Xie, Guoping Chen. Anthocyanins and flavonols are responsible for purple color of Lablab purpureus (L.) sweet pods.
Plant physiology and biochemistry : PPB.
2016 Jun; 103(?):183-90. doi:
10.1016/j.plaphy.2016.03.011
. [PMID: 26995313] - Yun-Song Lai, Sha Li, Qian Tang, Huan-Xiu Li, Shen-Xiang Chen, Pin-Wu Li, Jin-Yi Xu, Yan Xu, Xiang Guo. The Dark-Purple Tea Cultivar 'Ziyan' Accumulates a Large Amount of Delphinidin-Related Anthocyanins.
Journal of agricultural and food chemistry.
2016 Apr; 64(13):2719-26. doi:
10.1021/acs.jafc.5b04036
. [PMID: 26996195] - Cristian Del Bo', Yi Cao, Martin Roursgaard, Patrizia Riso, Marisa Porrini, Steffen Loft, Peter Møller. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages.
European journal of nutrition.
2016 Feb; 55(1):171-82. doi:
10.1007/s00394-015-0835-z
. [PMID: 25595100] - Lu Wang, Xiaoyu Li, Zhenyu Wang. Whole body radioprotective effect of phenolic extracts from the fruits of Malus baccata (Linn.) Borkh.
Food & function.
2016 Feb; 7(2):975-81. doi:
10.1039/c5fo01377a
. [PMID: 26741951] - Naimur Rahman, Miso Jeon, Yong-Sik Kim. Delphinidin, a major anthocyanin, inhibits 3T3-L1 pre-adipocyte differentiation through activation of Wnt/β-catenin signaling.
BioFactors (Oxford, England).
2016 Jan; 42(1):49-59. doi:
10.1002/biof.1251
. [PMID: 26816335] - Jorge L Alvarado, Andrés Leschot, Álvaro Olivera-Nappa, Ana-María Salgado, Hernán Rioseco, Carolina Lyon, Pilar Vigil. Delphinidin-Rich Maqui Berry Extract (Delphinol®) Lowers Fasting and Postprandial Glycemia and Insulinemia in Prediabetic Individuals during Oral Glucose Tolerance Tests.
BioMed research international.
2016; 2016(?):9070537. doi:
10.1155/2016/9070537
. [PMID: 28025651] - Emi Ooe, Kenjirou Ogawa, Tadashi Horiuchi, Hiroyuki Tada, Hiromi Murase, Kazuhiro Tsuruma, Masamitsu Shimazawa, Hideaki Hara. Analysis and characterization of anthocyanins and carotenoids in Japanese blue tomato.
Bioscience, biotechnology, and biochemistry.
2016; 80(2):341-9. doi:
10.1080/09168451.2015.1091715
. [PMID: 26443075] - Sang Gil Lee, Terrence M Vance, Tae-Gyu Nam, Dae-Ok Kim, Sung I Koo, Ock K Chun. Contribution of Anthocyanin Composition to Total Antioxidant Capacity of Berries.
Plant foods for human nutrition (Dordrecht, Netherlands).
2015 Dec; 70(4):427-32. doi:
10.1007/s11130-015-0514-5
. [PMID: 26515081] - Noémie Calland, Marie-Emmanuelle Sahuc, Sandrine Belouzard, Véronique Pène, Pierre Bonnafous, Ahmed Atef Mesalam, Gaspard Deloison, Véronique Descamps, Sevser Sahpaz, Czeslaw Wychowski, Olivier Lambert, Priscille Brodin, Gilles Duverlie, Philip Meuleman, Arielle R Rosenberg, Jean Dubuisson, Yves Rouillé, Karin Séron. Polyphenols Inhibit Hepatitis C Virus Entry by a New Mechanism of Action.
Journal of virology.
2015 Oct; 89(19):10053-63. doi:
10.1128/jvi.01473-15
. [PMID: 26202241] - R R Watson, F Schönlau. Nutraceutical and antioxidant effects of a delphinidin-rich maqui berry extract Delphinol®: a review.
Minerva cardioangiologica.
2015 Apr; 63(2 Suppl 1):1-12. doi:
. [PMID: 25892567]
- Takayuki Sogo, Takuma Kumamoto, Hisako Ishida, Ayami Hisanaga, Kozue Sakao, Norihiko Terahara, Koji Wada, De-Xing Hou. Comparison of the inhibitory effects of delphinidin and its glycosides on cell transformation.
Planta medica.
2015 Jan; 81(1):26-31. doi:
10.1055/s-0034-1383311
. [PMID: 25469858] - Sergio Davinelli, Juan Carlos Bertoglio, Armando Zarrelli, Riccardo Pina, Giovanni Scapagnini. A Randomized Clinical Trial Evaluating the Efficacy of an Anthocyanin-Maqui Berry Extract (Delphinol®) on Oxidative Stress Biomarkers.
Journal of the American College of Nutrition.
2015; 34 Suppl 1(?):28-33. doi:
10.1080/07315724.2015.1080108
. [PMID: 26400431] - Yue Zhu, Qing-Zhong Peng, Ke-Gang Li, De-Yu Xie. Molecular cloning and functional characterization of the anthocyanidin reductase gene from Vitis bellula.
Planta.
2014 Aug; 240(2):381-98. doi:
10.1007/s00425-014-2094-2
. [PMID: 24880552] - You-Shin Shim, Seunghee Kim, Dongwon Seo, Hyun-Jin Park, Jaeho Ha. Rapid method for determination of anthocyanin glucosides and free delphinidin in grapes using u-HPLC.
Journal of chromatographic science.
2014 Aug; 52(7):629-35. doi:
10.1093/chromsci/bmt091
. [PMID: 23839806] - Eric Soubeyrand, Cyril Basteau, Ghislaine Hilbert, Cornelis van Leeuwen, Serge Delrot, Eric Gomès. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries.
Phytochemistry.
2014 Jul; 103(?):38-49. doi:
10.1016/j.phytochem.2014.03.024
. [PMID: 24735825] - Qian Lou, Yali Liu, Yinyan Qi, Shuzhen Jiao, Feifei Tian, Ling Jiang, Yuejin Wang. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth.
Journal of experimental botany.
2014 Jul; 65(12):3157-64. doi:
10.1093/jxb/eru168
. [PMID: 24790110] - J Hidalgo, C Flores, M A Hidalgo, M Perez, A Yañez, L Quiñones, D D Caceres, R A Burgos. Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition.
Panminerva medica.
2014 Jun; 56(2 Suppl 3):1-7. doi:
. [PMID: 24861886]
- Kenjirou Ogawa, Yoshiki Kuse, Kazuhiro Tsuruma, Saori Kobayashi, Masamitsu Shimazawa, Hideaki Hara. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro.
BMC complementary and alternative medicine.
2014 Apr; 14(?):120. doi:
10.1186/1472-6882-14-120
. [PMID: 24690313] - Bojana Miladinović, Milica Kostić, Katarina Šavikin, Boban Đorđević, Tatjana Mihajilov-Krstev, Slavoljub Živanović, Dušanka Kitić. Chemical profile and antioxidative and antimicrobial activity of juices and extracts of 4 black currants varieties (Ribes nigrum L.).
Journal of food science.
2014 Mar; 79(3):C301-9. doi:
10.1111/1750-3841.12364
. [PMID: 24506271] - Elika Hoss, Heather R Austin, Shane F Batie, Peter W Jurutka, Mark R Haussler, G Kerr Whitfield. Control of late cornified envelope genes relevant to psoriasis risk: upregulation by 1,25-dihydroxyvitamin D3 and plant-derived delphinidin.
Archives of dermatological research.
2013 Dec; 305(10):867-78. doi:
10.1007/s00403-013-1390-1
. [PMID: 23839497] - Amir Gharib, Zohreh Faezizadeh, Masoud Godarzee. Treatment of diabetes in the mouse model by delphinidin and cyanidin hydrochloride in free and liposomal forms.
Planta medica.
2013 Nov; 79(17):1599-604. doi:
10.1055/s-0033-1350908
. [PMID: 24108435] - Keisuke Sakaguchi, Junichi Kitajima, Tsukasa Iwashina. Acylated delphinidin glycosides from violet and violet-blue flowers of Clematis cultivars and their coloration.
Natural product communications.
2013 Nov; 8(11):1563-6. doi:
. [PMID: 24427942]
- Hui Wang, Lucie Conchou, Jean-Marie Bessière, Guillaume Cazals, Bertrand Schatz, Eric Imbert. Flower color polymorphism in Iris lutescens (Iridaceae): biochemical analyses in light of plant-insect interactions.
Phytochemistry.
2013 Oct; 94(?):123-34. doi:
10.1016/j.phytochem.2013.05.007
. [PMID: 23790644] - Naonobu Noda, Ryutaro Aida, Sanae Kishimoto, Kanako Ishiguro, Masako Fukuchi-Mizutani, Yoshikazu Tanaka, Akemi Ohmiya. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins.
Plant & cell physiology.
2013 Oct; 54(10):1684-95. doi:
10.1093/pcp/pct111
. [PMID: 23926063] - Filippa Brugliera, Guo-Qing Tao, Ursula Tems, Gianna Kalc, Ekaterina Mouradova, Kym Price, Kim Stevenson, Noriko Nakamura, Iolanda Stacey, Yukihisa Katsumoto, Yoshikazu Tanaka, John G Mason. Violet/blue chrysanthemums--metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors.
Plant & cell physiology.
2013 Oct; 54(10):1696-710. doi:
10.1093/pcp/pct110
. [PMID: 23926066] - Junji Tanaka, Takashi Kadekaru, Kenjirou Ogawa, Shoketsu Hitoe, Hiroshi Shimoda, Hideaki Hara. Maqui berry (Aristotelia chilensis) and the constituent delphinidin glycoside inhibit photoreceptor cell death induced by visible light.
Food chemistry.
2013 Aug; 139(1-4):129-37. doi:
10.1016/j.foodchem.2013.01.036
. [PMID: 23561088] - Barizza Elisabetta, Guzzo Flavia, Fanton Paolo, Lucchini Giorgio, Sacchi G Attilio, Lo Schiavo Fiorella, Nascimbene Juri. Nutritional profile and productivity of bilberry (Vaccinium myrtillus L.) in different habitats of a protected area of the eastern Italian Alps.
Journal of food science.
2013 May; 78(5):C673-8. doi:
10.1111/1750-3841.12120
. [PMID: 23573813] - Branka Mozetič Vodopivec, Jing Wang, Anne L Møller, Jacob Krake, Torben Lund, Poul Erik Hansen, Søren Laurentius Nielsen. Differences in the structure of anthocyanins from the two amphibious plants, Lobelia cardinalis and Nesaea crassicaulis.
Natural product research.
2013 Apr; 27(7):654-64. doi:
10.1080/14786419.2012.688046
. [PMID: 22694738] - Silvia Vignolini, Matthew P Davey, Richard M Bateman, Paula J Rudall, Edwige Moyroud, Julia Tratt, Svante Malmgren, Ullrich Steiner, Beverley J Glover. The mirror crack'd: both pigment and structure contribute to the glossy blue appearance of the mirror orchid, Ophrys speculum.
The New phytologist.
2012 Dec; 196(4):1038-1047. doi:
10.1111/j.1469-8137.2012.04356.x
. [PMID: 23043621] - Kom Kamonpatana, M Mónica Giusti, Chureeporn Chitchumroonchokchai, Maria MorenoCruz, Ken M Riedl, Purnima Kumar, Mark L Failla. Susceptibility of anthocyanins to ex vivo degradation in human saliva.
Food chemistry.
2012 Nov; 135(2):738-47. doi:
10.1016/j.foodchem.2012.04.110
. [PMID: 22868153] - Siddheshwar K Chauthe, Ram Jee Sharma, Farrukh Aqil, Ramesh C Gupta, Inder Pal Singh. Quantitative NMR: an applicable method for quantitative analysis of medicinal plant extracts and herbal products.
Phytochemical analysis : PCA.
2012 Nov; 23(6):689-96. doi:
10.1002/pca.2375
. [PMID: 22707000] - Satoshi Tsuyuki, Sayuri Fukui, Akari Watanabe, Satoshi Akune, Mizuki Tanabe, Kenichi Yoshida. Delphinidin induces autolysosome as well as autophagosome formation and delphinidin-induced autophagy exerts a cell protective role.
Journal of biochemical and molecular toxicology.
2012 Nov; 26(11):445-53. doi:
10.1002/jbt.21443
. [PMID: 23129091] - Adilson Pereira Domingues Júnior, Milton Massao Shimizu, Jullyana Cristina Magalhães Silva Moura, Rodrigo Ramos Catharino, Rômulo Augusto Ramos, Rafael Vasconcelos Ribeiro, Paulo Mazzafera. Looking for the physiological role of anthocyanins in the leaves of Coffea arabica.
Photochemistry and photobiology.
2012 Jul; 88(4):928-37. doi:
10.1111/j.1751-1097.2012.01125.x
. [PMID: 22372995] - Ana Rodriguez-Mateos, Tania Cifuentes-Gomez, Setareh Tabatabaee, Caroline Lecras, Jeremy P E Spencer. Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries.
Journal of agricultural and food chemistry.
2012 Jun; 60(23):5772-8. doi:
10.1021/jf203812w
. [PMID: 22175691] - Carol Moreau, Mike J Ambrose, Lynda Turner, Lionel Hill, T H Noel Ellis, Julie M I Hofer. The B gene of pea encodes a defective flavonoid 3',5'-hydroxylase, and confers pink flower color.
Plant physiology.
2012 Jun; 159(2):759-68. doi:
10.1104/pp.112.197517
. [PMID: 22492867] - XianLin Zhang, YaJun Liu, KeJun Gao, Lei Zhao, Li Liu, YunSheng Wang, MeiLian Sun, LiPing Gao, Tao Xia. Characterisation of anthocyanidin reductase from Shuchazao green tea.
Journal of the science of food and agriculture.
2012 May; 92(7):1533-9. doi:
10.1002/jsfa.4739
. [PMID: 22173936] - Kanako Ishiguro, Masumi Taniguchi, Yoshikazu Tanaka. Functional analysis of Antirrhinum kelloggii flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum.
Journal of plant research.
2012 May; 125(3):451-6. doi:
10.1007/s10265-011-0455-5
. [PMID: 21959781] - Iva Fernandes, Victor de Freitas, Celso Reis, Nuno Mateus. A new approach on the gastric absorption of anthocyanins.
Food & function.
2012 May; 3(5):508-16. doi:
10.1039/c2fo10295a
. [PMID: 22391951] - Hirofumi Inoue, Mari Maeda-Yamamoto, Atsushi Nesumi, Akira Murakami. Delphinidin-3-O-galactoside protects mouse hepatocytes from (-)-epigallocatechin-3-gallate-induced cytotoxicity via up-regulation of heme oxygenase-1 and heat shock protein 70.
Nutrition research (New York, N.Y.).
2012 May; 32(5):357-64. doi:
10.1016/j.nutres.2012.04.001
. [PMID: 22652375] - Farrukh Aqil, Akash Gupta, Radha Munagala, Jeyaprakash Jeyabalan, Hina Kausar, Ram Jee Sharma, Inder Pal Singh, Ramesh C Gupta. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry).
Nutrition and cancer.
2012 Apr; 64(3):428-38. doi:
10.1080/01635581.2012.657766
. [PMID: 22420901] - Hwan-Hee Jang, Mi-Young Park, Heon-Woong Kim, Young-Min Lee, Kyung-A Hwang, Jae-Hak Park, Dong-Sik Park, Oran Kwon. Black rice (Oryza sativa L.) extract attenuates hepatic steatosis in C57BL/6 J mice fed a high-fat diet via fatty acid oxidation.
Nutrition & metabolism.
2012 Mar; 9(1):27. doi:
10.1186/1743-7075-9-27
. [PMID: 22458550] - Raja S Payyavula, Duroy A Navarre, Joseph C Kuhl, Alberto Pantoja, Syamkumar S Pillai. Differential effects of environment on potato phenylpropanoid and carotenoid expression.
BMC plant biology.
2012 Mar; 12(?):39. doi:
10.1186/1471-2229-12-39
. [PMID: 22429339] - Yoosoo Yang, Jin Kyu Choi, Chang Hwa Jung, Hyun Ju Koh, Paul Heo, Jae Yoon Shin, Sehyun Kim, Won-Seok Park, Hong-Ju Shin, Dae-Hyuk Kweon. SNARE-wedging polyphenols as small molecular botox.
Planta medica.
2012 Feb; 78(3):233-6. doi:
10.1055/s-0031-1280385
. [PMID: 22109835] - Shibu M Poulose, Derek R Fisher, Jessica Larson, Donna F Bielinski, Agnes M Rimando, Amanda N Carey, Alexander G Schauss, Barbara Shukitt-Hale. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells.
Journal of agricultural and food chemistry.
2012 Feb; 60(4):1084-93. doi:
10.1021/jf203989k
. [PMID: 22224493] - Neyres Zinia Taveira De Jesus, Heloina de Souza Falcão, Isis Fernandes Gomes, Thiago Jose de Almeida Leite, Gedson Rodrigues de Morais Lima, Jose Maria Barbosa-Filho, Josean Fechine Tavares, Marcelo Sobral da Silva, Petrônio Filgueiras de Athayde-Filho, Leonia Maria Batista. Tannins, peptic ulcers and related mechanisms.
International journal of molecular sciences.
2012; 13(3):3203-3228. doi:
10.3390/ijms13033203
. [PMID: 22489149] - Tsung-Yen Wu, Cheng-Chih Tsai, Yi-Ting Hwang, Tsai-Hsin Chiu. Effect of antioxidant activity and functional properties of Chingshey purple sweet potato fermented milk by Lactobacillus acidophilus, L. delbrueckii subsp. lactis, and L. gasseri strains.
Journal of food science.
2012 Jan; 77(1):M2-8. doi:
10.1111/j.1750-3841.2011.02507.x
. [PMID: 22182227] - Hanyong Chen, Ke Yao, Janos Nadas, Ann M Bode, Margarita Malakhova, Naomi Oi, Haitao Li, Ronald A Lubet, Zigang Dong. Prediction of molecular targets of cancer preventing flavonoid compounds using computational methods.
PloS one.
2012; 7(5):e38261. doi:
10.1371/journal.pone.0038261
. [PMID: 22693608] - Aristidis S Veskoukis, Antonios Kyparos, Michalis G Nikolaidis, Dimitrios Stagos, Nektarios Aligiannis, Maria Halabalaki, Konstantinos Chronis, Nikolaos Goutzourelas, Leandros Skaltsounis, Dimitrios Kouretas. The antioxidant effects of a polyphenol-rich grape pomace extract in vitro do not correspond in vivo using exercise as an oxidant stimulus.
Oxidative medicine and cellular longevity.
2012; 2012(?):185867. doi:
10.1155/2012/185867
. [PMID: 22693650] - Manlan Zhu, Xuchen Zheng, Qingyan Shu, Hui Li, Peixing Zhong, Huijin Zhang, Yanjun Xu, Lijin Wang, Liangsheng Wang. Relationship between the composition of flavonoids and flower colors variation in tropical water lily (Nymphaea) cultivars.
PloS one.
2012; 7(4):e34335. doi:
10.1371/journal.pone.0034335
. [PMID: 22485167] - Masoumeh Akhlaghi, Brian Bandy. Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death.
Oxidative medicine and cellular longevity.
2012; 2012(?):782321. doi:
10.1155/2012/782321
. [PMID: 22829963] - Yan Yang, Zhenyin Shi, Adili Reheman, Joseph W Jin, Conglei Li, Yiming Wang, Marc C Andrews, Pingguo Chen, Guangheng Zhu, Wenhua Ling, Heyu Ni. Plant food delphinidin-3-glucoside significantly inhibits platelet activation and thrombosis: novel protective roles against cardiovascular diseases.
PloS one.
2012; 7(5):e37323. doi:
10.1371/journal.pone.0037323
. [PMID: 22624015] - Masaomi Nakamura, Tsuyoshi Hachiya, Yutaka Saito, Kengo Sato, Yasubumi Sakakibara. An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds.
BMC bioinformatics.
2012; 13 Suppl 17(?):S8. doi:
10.1186/1471-2105-13-s17-s8
. [PMID: 23282285] - Alexandre Fournier-Level, Philippe Hugueney, Clotilde Verriès, Patrice This, Agnès Ageorges. Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.).
BMC plant biology.
2011 Dec; 11(?):179. doi:
10.1186/1471-2229-11-179
. [PMID: 22171701] - Zuzana Kyselova. Toxicological aspects of the use of phenolic compounds in disease prevention.
Interdisciplinary toxicology.
2011 Dec; 4(4):173-83. doi:
10.2478/v10102-011-0027-5
. [PMID: 22319251] - Yusuke Akita, Satoshi Kitamura, Yoshihiro Hase, Issay Narumi, Hiroshi Ishizaka, Emiko Kondo, Naoko Kameari, Masayoshi Nakayama, Natsu Tanikawa, Yasumasa Morita, Atsushi Tanaka. Isolation and characterization of the fragrant cyclamen O-methyltransferase involved in flower coloration.
Planta.
2011 Dec; 234(6):1127-36. doi:
10.1007/s00425-011-1466-0
. [PMID: 21735197] - F Afaq, S K Katiyar. Polyphenols: skin photoprotection and inhibition of photocarcinogenesis.
Mini reviews in medicinal chemistry.
2011 Dec; 11(14):1200-15. doi:
10.2174/13895575111091200
. [PMID: 22070679] - A J Kortstee, S A Khan, C Helderman, L M Trindade, Y Wu, R G F Visser, C Brendolise, A Allan, H J Schouten, E Jacobsen. Anthocyanin production as a potential visual selection marker during plant transformation.
Transgenic research.
2011 Dec; 20(6):1253-64. doi:
10.1007/s11248-011-9490-1
. [PMID: 21340526] - Jason D Gillman, Ashley Tetlow, Jeong-Deong Lee, J Grover Shannon, Kristin Bilyeu. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats.
BMC plant biology.
2011 Nov; 11(?):155. doi:
10.1186/1471-2229-11-155
. [PMID: 22070454] - Angelique Stalmach, Christine A Edwards, Jolynne D Wightman, Alan Crozier. Identification of (poly)phenolic compounds in concord grape juice and their metabolites in human plasma and urine after juice consumption.
Journal of agricultural and food chemistry.
2011 Sep; 59(17):9512-22. doi:
10.1021/jf2015039
. [PMID: 21812481]