NCBI Taxonomy: 72355

Artemisia umbelliformis (ncbi_taxid: 72355)

found 56 associated metabolites at species taxonomy rank level.

Ancestor: Artemisia

Child Taxonomies: none taxonomy data.

Costunolide

Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.1463)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. Constituent of costus root (Saussurea lappa). Costunolide is found in tarragon, sweet bay, and herbs and spices. Costunolide is found in herbs and spices. Costunolide is a constituent of costus root (Saussurea lappa) D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents INTERNAL_ID 2266; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2266 D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Absinthin

(1R,2R,5S,8S,9S,12S,13R,14S,15S,16R,17S,20S,21S,24S)-12,17-dihydroxy-3,8,12,17,21,25-hexamethyl-6,23-dioxaheptacyclo[13.9.2.0(1,16).0(2,14).0(4,13).0(5,9).0(20,24)]hexacosa-3,25-diene-7,22-dione

C30H40O6 (496.2825)


Absinthin is a dimeric sesquiterpene lactone that is produced by the plant Artemisia absinthium (Wormwood). The bitter tasting constituent of Absinthe. It has a role as a plant metabolite and an anti-inflammatory agent. It is a sesquiterpene lactone, a triterpenoid and an organic heteroheptacyclic compound. Absinthin is a natural product found in Artemisia genipi, Artemisia annua, and other organisms with data available. Constituent of Artemisia absinthium (wormwood). Isoabsinthin is found in alcoholic beverages and herbs and spices. Isoabsinthin is found in alcoholic beverages. Isoabsinthin is a constituent of Artemisia absinthium (wormwood).

   

Santamarin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, 3A,4,5,5A,6,7,9A,9B-OCTAHYDRO-6-HYDROXY-5A,9-DIMETHYL-3-METHYLENE-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.1412)


Santamarin, also known as (+)-santamarine or balchanin, belongs to eudesmanolides, secoeudesmanolides, and derivatives class of compounds. Those are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton. Santamarin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Santamarin can be found in sweet bay, which makes santamarin a potential biomarker for the consumption of this food product. Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.

   

Artemisinin

3,12-Epoxy-12H-pyranol(4,3-j)-1,2-benzodioxepin-10(3H)-one, octahydro-3,6,9-trimethyl-, (3-alpha,5a-beta,6-beta,8a-beta,9-alpha,12-beta,12aR*)-(+)-

C15H22O5 (282.1467)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides D000890 - Anti-Infective Agents (+)-artemisinin is a sesquiterpene lactone obtained from sweet wormwood, Artemisia annua, which is used as an antimalarial for the treatment of multi-drug resistant strains of falciparum malaria. It has a role as an antimalarial and a plant metabolite. It is a sesquiterpene lactone and an organic peroxide. Artemisinin has been used in trials studying the treatment of Schizophrenia, Malaria, Falciparum, and Plasmodium Falciparum. Artemisinin is a natural product found in Microliabum polymnioides, Artemisia tenuisecta, and other organisms with data available. A sesquiterpene lactone obtained from sweet wormwood, Artemisia annua, which is used as an antimalarial for the treatment of multi-drug resistant strains of falciparum malaria. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BE - Artemisinin and derivatives, plain C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Origin: Plant; SubCategory_DNP: Sesquiterpenoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9 INTERNAL_ID 9; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.152 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.156 [Raw Data] CB176_Artemisinin_pos_30eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_20eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_10eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_40eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_50eV_isCID-10eV_rep000004.txt Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2]. Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2]. Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2].

   

Eupatilin

2-(3,4-Dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one; 5,7-Dihydroxy-3,4,6-trimethoxyflavone; 2-(3,4-Dimethoxyphenyl)-5,7-dihydroxy-6-methoxychromen-4-one; 4H-1-Benzopyran-4-one, 2-(3,4-diMethoxyphenyl)-5,7-dihydroxy-6-Methoxy-

C18H16O7 (344.0896)


Eupatilin is a trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. It has a role as an anti-ulcer drug, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antineoplastic agent, an anti-inflammatory agent and a metabolite. It is a trimethoxyflavone and a dihydroxyflavone. Eupatilin is a natural product found in Eupatorium capillifolium, Chromolaena odorata, and other organisms with data available. A trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. Eupatilin is found in herbs and spices. Eupatilin is isolated from Tanacetum vulgare (tansy Isolated from Tanacetum vulgare (tansy). Eupatilin is found in herbs and spices. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.

   

Scutellarein

6-hydroxyapigenin

C15H10O6 (286.0477)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Vulgarin

9-hydroxy-3,5a,9-trimethyl-2H,3H,3aH,4H,5H,5aH,6H,9H,9aH,9bH-naphtho[1,2-b]furan-2,6-dione

C15H20O4 (264.1362)


Vulgarin is found in mugwort. Vulgarin is a constituent of Artemisia vulgaris (mugwort) Constituent of Artemisia vulgaris (mugwort). Vulgarin is found in mugwort.

   

Artabsin

6-hydroxy-3,6,9-trimethyl-2H,3H,3aH,4H,5H,6H,8H,9bH-azuleno[4,5-b]furan-2-one

C15H20O3 (248.1412)


Constituent of Artemisia absinthium (wormwood). Artabsin is found in alcoholic beverages and herbs and spices. Artabsin is found in alcoholic beverages. Artabsin is a constituent of Artemisia absinthium (wormwood).

   

Artemorin

(3aS,7R,11aR)-7-hydroxy-10-methyl-3,6-dimethylidene-2H,3H,3aH,4H,5H,6H,7H,8H,9H,11aH-cyclodeca[b]furan-2-one

C15H20O3 (248.1412)


Artemorin is a member of the class of compounds known as terpene lactones. Terpene lactones are prenol lipids containing a lactone ring. Artemorin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Artemorin is a bitter tasting compound found in sweet bay, which makes artemorin a potential biomarker for the consumption of this food product.

   

Matricin

9-Hydroxy-3,6,9-trimethyl-2-oxo-2H,3H,3ah,4H,5H,9H,9ah,9BH-azuleno[4,5-b]furan-4-yl acetic acid

C17H22O5 (306.1467)


Constituent of Matricaria chamomilla (German chamomile). Matricin is found in many foods, some of which are german camomile, fats and oils, tea, and herbs and spices. Matricin is found in fats and oils. Matricin is a constituent of Matricaria chamomilla (German chamomile).

   

Axillarin

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0689)


   

Spinacetin

3,5,7-Trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-1-benzopyran-4-one, 9ci

C17H14O8 (346.0689)


Isolated from spinach (Spinacia oleracea). Spinacetin is found in german camomile, green vegetables, and spinach. Spinacetin is found in german camomile. Spinacetin is isolated from spinach (Spinacia oleracea

   

Ketopelenolide a

3,6,10-trimethyl-2H,3H,3aH,4H,5H,8H,9H,10H,11H,11aH-cyclodeca[b]furan-2,9-dione

C15H22O3 (250.1569)


From Artemisia absinthium (wormwood). Ketopelenolide a is found in alcoholic beverages and herbs and spices. Ketopelenolide b is found in alcoholic beverages. Ketopelenolide b is from Artemisia absinthium (wormwood).

   

Anabsinthin

(2R,5S,8S,9S,12S,13R,14S,15S,17R,19R,22S,23S,26S,27R)-12-hydroxy-3,8,12,17,19,23-hexamethyl-6,18,25-trioxaoctacyclo[13.11.1.0¹,¹⁷.0²,¹⁴.0⁴,¹³.0⁵,⁹.0¹⁹,²⁷.0²²,²⁶]heptacos-3-ene-7,24-dione

C30H40O6 (496.2825)


Isolated from Artemisia absinthium (wormwood). Anabsinthin is found in alcoholic beverages and herbs and spices. Anabsinthin is found in alcoholic beverages. Anabsinthin is isolated from Artemisia absinthium (wormwood).

   

Reynosin

6-hydroxy-5a-methyl-3,9-dimethylidene-dodecahydronaphtho[1,2-b]furan-2-one

C15H20O3 (248.1412)


Reynosin belongs to eudesmanolides, secoeudesmanolides, and derivatives class of compounds. Those are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton. Reynosin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Reynosin can be found in sweet bay, which makes reynosin a potential biomarker for the consumption of this food product.

   

Verlotorin

7-hydroperoxy-10-methyl-3,6-dimethylidene-2H,3H,3aH,4H,5H,6H,7H,8H,9H,11aH-cyclodeca[b]furan-2-one

C15H20O4 (264.1362)


Verlotorin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Verlotorin can be found in sweet bay, which makes verlotorin a potential biomarker for the consumption of this food product.

   

Proazulene

(3S,3aR,4S,9R,9aS,9bS)-9-hydroxy-3,6,9-trimethyl-2-oxo-2H,3H,3aH,4H,5H,9H,9aH,9bH-azuleno[4,5-b]furan-4-yl acetate

C17H22O5 (306.1467)


Proazulene, also known as matricine, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Thus, proazulene is considered to be an isoprenoid lipid molecule. Proazulene is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Proazulene can be found in anise, which makes proazulene a potential biomarker for the consumption of this food product. Chamazulene, a blue-violet derivative of azulene, found in a variety of plants including in chamomile (Matricaria chamomilla), wormwood (Artemisia absinthium) and yarrow (Achillea millefolium) is biosynthesized from matricin .

   

Scutellarein

(2S)-2,3-dihydro-5,6,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.0477)


Scutellarein is flavone substituted with hydroxy groups at C-4, -5, -6 and -7. It has a role as a metabolite. It is functionally related to an apigenin. It is a conjugate acid of a scutellarein(1-). Scutellarein is a natural product found in Scoparia dulcis, Artemisia douglasiana, and other organisms with data available. Flavone substituted with hydroxy groups at C-4, -5, -6 and -7. Scutellarein, also known as 6-hydroxyapigenin or 4,5,6,7-tetrahydroxyflavanone, is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, scutellarein is considered to be a flavonoid lipid molecule. Scutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Scutellarein can be synthesized from apigenin. Scutellarein is also a parent compound for other transformation products, including but not limited to, scutellarin, 4,6-dihydroxy-5,7-dimethoxyflavone, and 6-hydroxy-4,5,7-trimethoxyflavone. Scutellarein is a bitter tasting compound found in mexican oregano and sweet orange, which makes scutellarein a potential biomarker for the consumption of these food products. Scutellarein is a flavone that can be found in Scutellaria lateriflora and other members of the genus Scutellaria, as well as the fern Asplenium belangeri . Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Telekin

[3aR-(3aalpha,4aalpha,8abeta,9aalpha)]-Decahydro-4a-hydroxy-8a-methyl-3,5-bis(methylene)-naphtho[2,3-b]furan-2(3H)-one

C15H20O3 (248.1412)


Telekin is a sesquiterpene lactone. Telekin is a natural product found in Calea jamaicensis, Carpesium abrotanoides, and other organisms with data available.

   

Axillarin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-

C17H14O8 (346.0689)


A dimethoxyflavone that is the 3,6-dimethyl ether derivative of quercetagetin. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one, also known as 3,4,5,7-tetrahydroxy-3,6-dimethoxyflavone or 3,6-dimethoxyquercetagetin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one can be found in german camomile, which makes 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one a potential biomarker for the consumption of this food product.

   

Eupatilin

2- (3,4-Dimethoxyphenyl) -5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0896)


Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.

   

Spinacetin

3,5,7-Trihydroxy-2- (4-hydroxy-3-methoxyphenyl) -6-methoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0689)


   

Costunolide

NCGC00381718-02_C15H20O2_Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.1463)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics A germacranolide with anthelminthic, antiparasitic and antiviral activities. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

Reynosin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, DECAHYDRO-6-HYDROXY-5A-METHYL-3,9-BIS(METHYLENE)-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.1412)


Reynosin is a sesquiterpene lactone of the eudesmanolide group, found particularly in Magnolia grandiflora and Laurus nobilis. It has a role as a metabolite. It is a sesquiterpene lactone and an organic heterotricyclic compound. Reynosin is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available. A sesquiterpene lactone of the eudesmanolide group, found particularly in Magnolia grandiflora and Laurus nobilis.

   

Vulgarin

Vulgarin

C15H20O4 (264.1362)


Origin: Plant; SubCategory_DNP: Sesquiterpenoids

   

Artabsinolide A

6,9-dihydroxy-3,6,9-trimethyl-2H,3H,3aH,4H,5H,6H,7H,8H,9H,9bH-azuleno[4,5-b]furan-2,7-dione

C15H20O5 (280.1311)


   

Anabsinthin

11-hydroxy-3,8,11,17,19,23-hexamethyl-6,18,25-trioxaoctacyclo[13.11.1.0^{1,17}.0^{2,14}.0^{4,13}.0^{5,9}.0^{19,27}.0^{22,26}]heptacos-3-ene-7,24-dione

C30H40O6 (496.2825)


   
   

Flavonoid

4H-1-Benzopyran-4-one, 5,6,7-trihydroxy-2-(4-hydroxyphenyl)-

C15H10O6 (286.0477)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Barrelin

Naphtho(1,2-b)furan-2,6(3H,4H)-dione, 3a,5,5a,9,9a,9b-hexahydro-9-hydroxy-3,5a,9-trimethyl-, (3S-(3alpha,3aalpha,5abeta,9alpha,9aalpha,9bbeta))-

C15H20O4 (264.1362)


   

Euptailin

4H-1-Benzopyran-4-one, 2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-

C18H16O7 (344.0896)


Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.

   

Balchanin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, 3A,4,5,5A,6,7,9A,9B-OCTAHYDRO-6-HYDROXY-5A,9-DIMETHYL-3-METHYLENE-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.1412)


Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.

   

Verlotorin

Verlotorin

C15H20O4 (264.1362)


A germacranolide isolated from Laurus nobilis L.

   

Ketopelenolide A

Ketopelenolide A

C15H22O3 (250.1569)


   

Absinthin

(1R,2R,5S,8S,9S,12S,13R,14S,15S,16R,17S,20S,21S,24S)-12,17-dihydroxy-3,8,12,17,21,25-hexamethyl-6,23-dioxaheptacyclo[13.9.2.0(1,16).0(2,14).0(4,13).0(5,9).0(20,24)]hexacosa-3,25-diene-7,22-dione

C30H40O6 (496.2825)


Absinthin is a dimeric sesquiterpene lactone that is produced by the plant Artemisia absinthium (Wormwood). The bitter tasting constituent of Absinthe. It has a role as a plant metabolite and an anti-inflammatory agent. It is a sesquiterpene lactone, a triterpenoid and an organic heteroheptacyclic compound. Absinthin is a natural product found in Artemisia genipi, Artemisia annua, and other organisms with data available. A dimeric sesquiterpene lactone that is produced by the plant Artemisia absinthium (Wormwood). The bitter tasting constituent of Absinthe.

   
   

Artemorin

Artemorin

C15H20O3 (248.1412)


A germacranolide isolated from Laurus nobilis L..

   

(3ar,4ar,8ar,9ar)-4a-hydroperoxy-8a-methyl-3,5-dimethylidene-hexahydro-3ah-naphtho[2,3-b]furan-2-one

(3ar,4ar,8ar,9ar)-4a-hydroperoxy-8a-methyl-3,5-dimethylidene-hexahydro-3ah-naphtho[2,3-b]furan-2-one

C15H20O4 (264.1362)


   

(3r,3as,9r,10s,11ar)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,10h,11h,11ah-cyclodeca[b]furan-2-one

(3r,3as,9r,10s,11ar)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,10h,11h,11ah-cyclodeca[b]furan-2-one

C15H24O3 (252.1725)


   

6,10-dimethyl-4'-(4-methylpent-3-en-1-yl)-3a,4,5,8,9,11a-hexahydrospiro[cyclodeca[b]furan-3,1'-cyclohexan]-3'-en-2-one

6,10-dimethyl-4'-(4-methylpent-3-en-1-yl)-3a,4,5,8,9,11a-hexahydrospiro[cyclodeca[b]furan-3,1'-cyclohexan]-3'-en-2-one

C25H36O2 (368.2715)


   

(3ar,4ar,8ar,9ar)-8a-methyl-3,5-dimethylidene-2-oxo-hexahydro-3ah-naphtho[2,3-b]furan-4a-yl n-(2,2,2-trichloro-1-hydroxyethylidene)carbamate

(3ar,4ar,8ar,9ar)-8a-methyl-3,5-dimethylidene-2-oxo-hexahydro-3ah-naphtho[2,3-b]furan-4a-yl n-(2,2,2-trichloro-1-hydroxyethylidene)carbamate

C18H20Cl3NO5 (435.0407)


   

(3as,11ar)-10-methyl-3,6-dimethylidene-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

(3as,11ar)-10-methyl-3,6-dimethylidene-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

C15H18O3 (246.1256)


   

(3s,3as,6s,9r,9bs)-6,9-dihydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,8h,9bh-azuleno[4,5-b]furan-2,7-dione

(3s,3as,6s,9r,9bs)-6,9-dihydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,8h,9bh-azuleno[4,5-b]furan-2,7-dione

C15H20O5 (280.1311)


   

(9s,12s,16r,17s,19s,23s,26s)-12,16-dihydroxy-3,8,12,17,19,23-hexamethyl-6,18,25-trioxaoctacyclo[13.11.1.0¹,¹⁷.0²,¹⁴.0⁴,¹³.0⁵,⁹.0¹⁹,²⁷.0²²,²⁶]heptacos-3-ene-7,24-dione

(9s,12s,16r,17s,19s,23s,26s)-12,16-dihydroxy-3,8,12,17,19,23-hexamethyl-6,18,25-trioxaoctacyclo[13.11.1.0¹,¹⁷.0²,¹⁴.0⁴,¹³.0⁵,⁹.0¹⁹,²⁷.0²²,²⁶]heptacos-3-ene-7,24-dione

C30H40O7 (512.2774)


   

(3r,3as,9s,11as)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3r,3as,9s,11as)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

4a-hydroperoxy-8a-methyl-3,5-dimethylidene-hexahydro-3ah-naphtho[2,3-b]furan-2-one

4a-hydroperoxy-8a-methyl-3,5-dimethylidene-hexahydro-3ah-naphtho[2,3-b]furan-2-one

C15H20O4 (264.1362)


   

(3ar,4as,8ar,9ar)-4a-hydroperoxy-8a-methyl-3,5-dimethylidene-hexahydro-3ah-naphtho[2,3-b]furan-2-one

(3ar,4as,8ar,9ar)-4a-hydroperoxy-8a-methyl-3,5-dimethylidene-hexahydro-3ah-naphtho[2,3-b]furan-2-one

C15H20O4 (264.1362)


   

(3r,3as,11ar)-6,10-dimethyl-4'-(4-methylpent-3-en-1-yl)-3a,4,5,8,9,11a-hexahydrospiro[cyclodeca[b]furan-3,1'-cyclohexan]-3'-en-2-one

(3r,3as,11ar)-6,10-dimethyl-4'-(4-methylpent-3-en-1-yl)-3a,4,5,8,9,11a-hexahydrospiro[cyclodeca[b]furan-3,1'-cyclohexan]-3'-en-2-one

C25H36O2 (368.2715)


   

(3s,3as,6s,9s,9bs)-6,9-dihydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,8h,9bh-azuleno[4,5-b]furan-2,7-dione

(3s,3as,6s,9s,9bs)-6,9-dihydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,8h,9bh-azuleno[4,5-b]furan-2,7-dione

C15H20O5 (280.1311)


   

(3r,3as,5ar,6r,9s,9as,9bs)-6-hydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2,8-dione

(3r,3as,5ar,6r,9s,9as,9bs)-6-hydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2,8-dione

C15H22O4 (266.1518)


   

8a-methyl-3,5-dimethylidene-2-oxo-hexahydro-3ah-naphtho[2,3-b]furan-4a-yl n-(2,2,2-trichloro-1-hydroxyethylidene)carbamate

8a-methyl-3,5-dimethylidene-2-oxo-hexahydro-3ah-naphtho[2,3-b]furan-4a-yl n-(2,2,2-trichloro-1-hydroxyethylidene)carbamate

C18H20Cl3NO5 (435.0407)


   

(3as,6s,7as)-6-methyl-3-methylidene-6-(4-oxopentyl)-tetrahydro-1-benzofuran-2,5-dione

(3as,6s,7as)-6-methyl-3-methylidene-6-(4-oxopentyl)-tetrahydro-1-benzofuran-2,5-dione

C15H20O4 (264.1362)


   

(1s,2r,5s,8s,9s,12s,13r,14r,15r,16r,17s,19s,22s,23s,26s,27r)-12,16-dihydroxy-3,8,12,17,19,23-hexamethyl-6,18,25-trioxaoctacyclo[13.11.1.0¹,¹⁷.0²,¹⁴.0⁴,¹³.0⁵,⁹.0¹⁹,²⁷.0²²,²⁶]heptacos-3-ene-7,24-dione

(1s,2r,5s,8s,9s,12s,13r,14r,15r,16r,17s,19s,22s,23s,26s,27r)-12,16-dihydroxy-3,8,12,17,19,23-hexamethyl-6,18,25-trioxaoctacyclo[13.11.1.0¹,¹⁷.0²,¹⁴.0⁴,¹³.0⁵,⁹.0¹⁹,²⁷.0²²,²⁶]heptacos-3-ene-7,24-dione

C30H40O7 (512.2774)


   

7-hydroxy-10-methyl-3,6-dimethylidene-3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

7-hydroxy-10-methyl-3,6-dimethylidene-3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H20O3 (248.1412)


   

(3ar,4ar,8ar,9ar)-4a-hydroxy-8a-methyl-3,5-dimethylidene-hexahydro-3ah-naphtho[2,3-b]furan-2-one

(3ar,4ar,8ar,9ar)-4a-hydroxy-8a-methyl-3,5-dimethylidene-hexahydro-3ah-naphtho[2,3-b]furan-2-one

C15H20O3 (248.1412)