Classification Term: 1713

Iridoid O-glycosides (ontology term: CHEMONTID:0004081)

Iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton." []

found 30 associated metabolites at category metabolite taxonomy ontology rank level.

Ancestor: Terpene glycosides

Child Taxonomies: There is no child term of current ontology term.

Agnuside

((1S,4AR,5S,7AS)-5-HYDROXY-1-(((2S,3R,4S,5S,6R)-3,4,5-TRIHYDROXY-6-(HYDROXYMETHYL)TETRAHYDRO-2H-PYRAN-2-YL)OXY)-1,4A,5,7A-TETRAHYDROCYCLOPENTA[C]PYRAN-7-YL)METHYL 4-HYDROXYBENZOATE

C22H26O11 (466.14750460000005)


Agnuside is a benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. It has a role as a plant metabolite, an anti-inflammatory agent, a pro-angiogenic agent and a cyclooxygenase 2 inhibitor. It is a terpene glycoside, an iridoid monoterpenoid, a benzoate ester, a member of phenols, a beta-D-glucoside, a cyclopentapyran and a monosaccharide derivative. It is functionally related to an aucubin. Agnuside is a natural product found in Crescentia cujete, Vitex peduncularis, and other organisms with data available. See also: Chaste tree fruit (part of); Vitex negundo leaf (part of). Isolated from Vitex agnus-castus (agnus castus). Agnuside is found in herbs and spices and fruits. Agnuside is found in fruits. Agnuside is isolated from Vitex agnus-castus (agnus castus). Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1]. Agnuside is used in the study of asthma, inflammation, and angiogenic diseases. Agnuside is an orally active compound that can be extracted from Vitex negundo[1][2][3][4]. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1].

   

Verbenalin

Methyl (1S,4aS,7S,7aR)-7-methyl-5-oxo-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylate

C17H24O10 (388.13694039999996)


Verbenalin, also known as cornin (glycoside) or cornin iridoid, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, verbenalin is considered to be an isoprenoid lipid molecule. Verbenalin is soluble (in water) and a very weakly acidic compound (based on its pKa). Verbenalin is a bitter tasting compound found in common verbena, which makes verbenalin a potential biomarker for the consumption of this food product. Verbenalin is a chemical compound, classified as an iridoid glucoside, that is found in Verbena officinalis. It is one of the sleep-promoting (soporific) components in Verbena officinalis . Verbenalin is a terpene glycoside. Verbenalin is a natural product found in Symplocos glauca, Cornus kousa, and other organisms with data available. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2]. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2].

   

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1263762)


Aucubin is found in common verbena. Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety. Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally. Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis. The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1 Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety.; Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally.; Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis.; The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1. Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

Monotropein

(1S,4aS,7R,7aS)-7-Hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.11620619999997)


Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). Monotropein is found in bilberry. Monotropein is a constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Monotropein is a food flavouring agent. Monotropein is a stabiliser Constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Food flavouring agent. Stabiliser. Monotropein is found in bilberry. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].

   

Geniposidic acid

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1212912)


Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Deoxyloganic acid

7-methyl-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid

C16H24O9 (360.14202539999997)


8-Epideoxyloganic acid (7-Deoxy-8-epiloganic acid), an iridoid glucoside, can be found in Incarvillea delavayi. 8-Epideoxyloganic acid exhibits weak antinociceptive activity[1]. 8-Epideoxyloganic acid (7-Deoxy-8-epiloganic acid), an iridoid glucoside, can be found in Incarvillea delavayi. 8-Epideoxyloganic acid exhibits weak antinociceptive activity[1].

   

Vaccinoside

(1S)-1alpha-(beta-D-Glucopyranosyloxy)-1,4aalpha,7,7aalpha-tetrahydro-7beta-hydroxy-7-[[[(E)-3-(4-hydroxyphenyl)-1-oxo-2-propenyl]oxy]methyl]cyclopenta[c]pyran-4-carboxylic acid

C25H28O13 (536.1529838)


Vaccinoside is found in fruits. Vaccinoside is isolated from flowers of Vaccinium bracteatum (sea bilberry Isolated from flowers of Vaccinium bracteatum (sea bilberry). Vaccinoside is found in fruits.

   

Lippioside I

6,7-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-({[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1H,4aH,5H,6H,7H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C25H30O13 (538.168633)


Lippioside I is found in herbs and spices. Lippioside I is a constituent of Lippia graveolens (Mexican oregano)

   

Caryoptosidic acid

6,7-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,6H,7H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H24O11 (392.13185539999995)


Caryoptosidic acid is found in herbs and spices. Caryoptosidic acid is a constituent of Lippia graveolens (Mexican oregano) Constituent of Lippia graveolens (Mexican oregano). Caryoptosidic acid is found in herbs and spices.

   

Lippioside II

1-{[6-({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-6,7-dihydroxy-7-methyl-1H,4aH,5H,6H,7H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C25H30O14 (554.163548)


Lippioside II is found in herbs and spices. Lippioside II is a constituent of Lippia graveolens (Mexican oregano)

   

Stachyoside A

2-({4a,5,7-trihydroxy-7-methyl-1H,4aH,5H,6H,7H,7aH-cyclopenta[c]pyran-1-yl}oxy)-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C21H34O15 (526.1897614000001)


Stachyoside A is found in root vegetables. Stachyoside A is isolated from Stachys sieboldii (Chinese artichoke). Isolated from Stachys sieboldii (Chinese artichoke). Stachyoside A is found in root vegetables.

   

(1R,4Ar,5S,7R)-7-methyl-1-[(2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,5,6,7a-tetrahydrocyclopenta[c]pyran-4a,5,7-triol

(1R,4Ar,5S,7R)-7-methyl-1-[(2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,5,6,7a-tetrahydrocyclopenta[c]pyran-4a,5,7-triol

C15H24O10 (364.13694039999996)


   

8-Epiloganic acid

6-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,6H,7H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.13694039999996)


   

Loganoside

Methyl 6-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,6H,7H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H26O10 (390.1525896)


Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Ajugol

(2S,3R,4S,5S,6R)-2-[[(1S,4aR,5R,7S,7aS)-5,7-dihydroxy-7-methyl-4a,5,6,7a-tetrahydro-1H-cyclopenta[c]pyran-1-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C15H24O9 (348.14202539999997)


   

Asperulosidic acid

7-(Acetyloxymethyl)-5-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

8-O-Acetyl shanzhiside methyl ester

Methyl 7-(acetyloxy)-5-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,6H,7H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C19H28O12 (448.1580688)


   

Deacetylasperulosidic acid

5-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.11620619999997)


   

Deoxyloganin

Methyl 7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,6H,7H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H26O9 (374.1576746)


   

Scandoside methyl ester

Methyl 5-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H24O11 (404.13185539999995)


   

Gardenoside

Methyl 7-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,7H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H24O11 (404.13185539999995)


   

Genipin 1-gentiobioside

Methyl 7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1H,4ah,5H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C23H34O15 (550.1897614000001)


   

Geniposide

Methyl 7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H24O10 (388.13694039999996)


   

Harpagoside

4a,5-Dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,6H,7H,7ah-cyclopenta[c]pyran-7-yl 3-phenylprop-2-enoic acid

C24H30O11 (494.178803)


   

15-Demethyl plumieride

Methyl 4-(hydroxymethyl)-5-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1H,5H-spiro[cyclopenta[c]pyran-7,2-furan]-4-carboxylic acid

C20H24O12 (456.1267704)


   

Plumieride

Methyl 4-(1-hydroxyethyl)-5-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1H,5H-spiro[cyclopenta[c]pyran-7,2-furan]-4-carboxylic acid

C21H26O12 (470.14241960000004)


   

Shanzhiside

(1S,4AS,5R,7S,7as)-5,7-dihydroxy-7-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4a,5,6,7a-tetrahydro-1H-cyclopenta[c]pyran-4-carboxylate

C16H24O11 (392.13185539999995)


   

Shanzhiside methyl ester

Methyl 5,7-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,6H,7H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H26O11 (406.1475046)


   

Hastatoside

CYCLOPENTA(C)PYRAN-4-CARBOXYLIC ACID, 1-(.BETA.-D-GLUCOPYRANOSYLOXY)-1,4A,5,6,7,7A-HEXAHYDRO-4A-HYDROXY-7-METHYL-5-OXO-, METHYL ESTER, (1S-(1.ALPHA.,4A.ALPHA.,7.ALPHA.,7A.ALPHA.))-

C17H24O11 (404.13185539999995)


Hastatoside is an iridoid monoterpenoid with formula C17H24O11 that is isolated from several plants including Verbena officinalis and exhibits a sleep-promoting effect. It has a role as a plant metabolite and a hepatoprotective agent. It is a beta-D-glucoside, an iridoid monoterpenoid, a cyclopentapyran, a monosaccharide derivative, a monoterpene glycoside, an alpha,beta-unsaturated carboxylic ester and a methyl ester. Hastatoside is a natural product found in Penstemon grandiflorus, Penstemon nitidus, and other organisms with data available. Hastatoside is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Hastatoside is soluble (in water) and a very weakly acidic compound (based on its pKa). Hastatoside can be found in common verbena, which makes hastatoside a potential biomarker for the consumption of this food product. Hastatoside is an iridoid glycoside that is isolated from Verbena officinalis and has a role in promoting sleep[1]. Hastatoside is an iridoid glycoside that is isolated from Verbena officinalis and has a role in promoting sleep[1].

   

loganate

6-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,6H,7H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H23O10 (375.1291158)


Loganate is also known as loganic acid. Loganate is soluble (in water) and a weakly acidic compound (based on its pKa). Loganate can be found in a number of food items such as hedge mustard, cinnamon, common sage, and welsh onion, which makes loganate a potential biomarker for the consumption of these food products. Loganic acid is an iridoid. Loganic acid is synthesized from 7-deoxyloganic acid by the enzyme 7-deoxyloganic acid hydroxylase (7-DLH). It is a substrate for the enzyme loganate O-methyltransferase for the production of loganin .