NCBI Taxonomy: 296851

Monodora (ncbi_taxid: 296851)

found 53 associated metabolites at genus taxonomy rank level.

Ancestor: Monodoreae

Child Taxonomies: Monodora minor, Monodora junodii, Monodora crispata, Monodora brevipes, Monodora carolinae, Monodora laurentii, Monodora myristica, Monodora angolensis, Monodora globiflora, Monodora tenuifolia, Monodora grandidieri, Monodora hastipetala, Monodora stenopetala

Magnoflorine

5,6,6a(S),7-Tetrahydro-1,11-dihydroxy-2,10-dimethoxy-6,6-dimethyl-4H-dibenzo[de,g]quinolinium chloride

C20H24NO4+ (342.1705)


(S)-magnoflorine is an aporphine alkaloid that is (S)-corytuberine in which the nitrogen has been quaternised by an additional methyl group. It has a role as a plant metabolite. It is an aporphine alkaloid and a quaternary ammonium ion. It is functionally related to a (S)-corytuberine. Magnoflorine is a natural product found in Zanthoxylum myriacanthum, Fumaria capreolata, and other organisms with data available. See also: Caulophyllum thalictroides Root (part of).

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

(S)-Reticuline

7-ISOQUINOLINOL, 1,2,3,4-TETRAHYDRO-1-((3-HYDROXY-4-METHOXYPHENYL)METHYL)-6-METHOXY-2-METHYL-, (1S)-

C19H23NO4 (329.1627)


(S)-Reticuline is an endogenous precursor of morphine (PMID: 15383669). (S)-Reticuline is a key intermediate in the synthesis of morphine, the major active metabolite of the opium poppy. "Endogenous morphine" has been long isolated and authenticated by mass spectrometry in trace amounts from animal- and human-specific tissue or fluids (PMID: 15874902). Human neuroblastoma cells (SH-SY5Y) were shown capable of synthesizing morphine as well. (S)-Reticuline undergoes a change of configuration at C-1 during its transformation into salutaridinol and thebaine. From thebaine, there is a bifurcate pathway leading to morphine proceeding via codeine or oripavine, in both plants and mammals (PMID 15937106). (S)-reticuline is the (S)-enantiomer of reticuline. It has a role as an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor. It is a conjugate base of a (S)-reticulinium(1+). It is an enantiomer of a (R)-reticuline. Reticuline is a natural product found in Fumaria capreolata, Berberis integerrima, and other organisms with data available. See also: Peumus boldus leaf (part of). Alkaloid from Papaver somniferum (opium poppy) and Annona reticulata (custard apple) The (S)-enantiomer of reticuline.

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. Liriodenine, also known as oxoushinsunine or micheline b, is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Liriodenine is practically insoluble (in water) and a strong basic compound (based on its pKa). Liriodenine can be found in cherimoya and custard apple, which makes liriodenine a potential biomarker for the consumption of these food products. Liriodenine is a bio-active isolate of the Chinese medicinal herb Zanthoxylum nitidum .

   

Coclaurine

(1S)-1-[(4-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

C17H19NO3 (285.1365)


(S)-coclaurine is the (S)-enantiomer of coclaurine. It is a conjugate base of a (S)-coclaurinium. It is an enantiomer of a (R)-coclaurine. Coclaurine is a natural product found in Delphinium pentagynum, Damburneya salicifolia, and other organisms with data available. Coclaurine, also known as (r,s)-coclaurine or machiline, is a member of the class of compounds known as benzylisoquinolines. Benzylisoquinolines are organic compounds containing an isoquinoline to which a benzyl group is attached. Coclaurine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coclaurine can be found in custard apple and soursop, which makes coclaurine a potential biomarker for the consumption of these food products. Coclaurine is a nicotinic acetylcholine receptor antagonist which has been isolated from a variety of plant sources including Nelumbo nucifera, Sarcopetalum harveyanum, Ocotea duckei, and others. It belongs to the class of tetrahydroisoquinoline alkaloids. Dimerization of coclaurine leads to the biscoclaurine alkaloids such as cepharanthine .

   

Xylopine

(12R)-16-methoxy-3,5-dioxa-11-azapentacyclo[10.7.1.0{2,6}.0{8,20}.0{14,19}]icosa-1(20),2(6),7,14(19),15,17-hexaene

C18H17NO3 (295.1208)


Xylopine, also known as (-)-xylopine, is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Xylopine is practically insoluble (in water) and a very strong basic compound (based on its pKa). Xylopine can be found in cherimoya and custard apple, which makes xylopine a potential biomarker for the consumption of these food products. Xylopine is an antimicrobial benzylisoquinoline alkaloid . Xylopine is an aporphine alkaloid. Xylopine is a natural product found in Dasymaschalon longiflorum, Annona muricata, and other organisms with data available.

   

Isoteolin

4H-Dibenzo(de,g)quinolinediol, 5,6,6a,7-tetrahydro-2,9(or 2,10)-dimethoxy-6-methyl-, (S)-

C19H21NO4 (327.1471)


Isoboldine is an aporphine alkaloid. (+)-Isoboldine is a natural product found in Fumaria capreolata, Thalictrum foetidum, and other organisms with data available. See also: Peumus boldus leaf (part of).

   

Indole-3-carboxaldehyde

1H-indole-3-carbaldehyde

C9H7NO (145.0528)


Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods. Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles. Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available. A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. Found in barley and tomato seedlings and cotton Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

alpha-Cadinol

(1R,4S,4aR,8aR)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1984)


alpha-Cadinol is found in cloves. alpha-Cadinol is a constituent of Juniperus communis (juniper)

   

Anonaine

3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaene

C17H15NO2 (265.1103)


Alkaloid from Annona muricata (soursop) and Nelumbo nucifera (East India lotus). Anonaine is found in many foods, some of which are sugar apple, sacred lotus, fruits, and custard apple. Anonaine is found in cherimoya. Anonaine is an alkaloid from Annona muricata (soursop) and Nelumbo nucifera (East India lotus

   

(R)-Roemerine

11-methyl-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaene

C18H17NO2 (279.1259)


(R)-Roemerine is found in coffee and coffee products. (R)-Roemerine is an alkaloid from Nelumbo nucifera (East India lotus Roemerine, an aporphine alkaloid, isolated from the leaves of Fibraurea recisa Pierre, functions by interacting with P-glycoprotein. Roemerine reverses the multidrug-resistance phenotype with cultured cells[1]. Roemerine, an aporphine alkaloid, isolated from the leaves of Fibraurea recisa Pierre, functions by interacting with P-glycoprotein. Roemerine reverses the multidrug-resistance phenotype with cultured cells[1].

   

Coreximine

3,10-dimethoxy-7,8,12b,13-tetrahydro-5H-6-azatetraphene-2,11-diol

C19H21NO4 (327.1471)


Coreximine is found in soursop. Coreximine is an alkaloid from Papaver somniferum (opium poppy Alkaloid from Papaver somniferum (opium poppy). Coreximine is found in soursop.

   

magnoflorine

3,16-dihydroxy-4,15-dimethoxy-10,10-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-10-ium

C20H24NO4 (342.1705)


Magnoflorine is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Magnoflorine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Magnoflorine can be found in a number of food items such as carob, other cereal product, durian, and japanese chestnut, which makes magnoflorine a potential biomarker for the consumption of these food products. Magnoflorine is a chemical compound isolated from the rhizome of Sinomenium acutum and from Pachygone ovata. It is classified as an aporphine alkaloid .

   

Stepholidine

(13aS)-3,9-dimethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline-2,10-diol

C19H21NO4 (327.1471)


l-Stepholidine is a natural product found in Desmos cochinchinensis, Meiogyne monosperma, and other organisms with data available.

   
   

6-prenylindole

6-(3-Methyl-2-butenyl)indole

C13H15N (185.1204)


   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

3-(3-methylbut-2-enyl)-1H-indole

3-(3-methylbut-2-enyl)-1H-indole

C13H15N (185.1204)


   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. An oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities.

   

alpha-Cadinol

alpha-Cadinol

C15H26O (222.1984)


A cadinane sesquiterpenoid that is cadin-4-ene carrying a hydroxy substituent at position 10.

   

anonaine

(-)-Annonaine

C17H15NO2 (265.1103)


An aporphine alkaloid that exhibits anti-cancer, trypanocidal and antiplasmodial activites.

   

Remerin

11-methyl-3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6}.0^{8,20}.0^{14,19}]icosa-1(20),2(6),7,14,16,18-hexaene

C18H17NO2 (279.1259)


Remerin is an isoquinoline alkaloid. Roemerine is a natural product found in Cryptocarya angulata, Stephania abyssinica, and other organisms with data available. Origin: Plant; Formula(Parent): C18H17NO2; Bottle Name:Remerine hydrochloride; PRIME Parent Name:Remerine; PRIME in-house No.:V0353; SubCategory_DNP: Isoquinoline alkaloids, Aporphine alkaloids Roemerine, an aporphine alkaloid, isolated from the leaves of Fibraurea recisa Pierre, functions by interacting with P-glycoprotein. Roemerine reverses the multidrug-resistance phenotype with cultured cells[1]. Roemerine, an aporphine alkaloid, isolated from the leaves of Fibraurea recisa Pierre, functions by interacting with P-glycoprotein. Roemerine reverses the multidrug-resistance phenotype with cultured cells[1].

   

Indole-3-carboxaldehyde

INDOLE-3-CARBOXYALDEHYDE

C9H7NO (145.0528)


Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

Magnoflorine

Magnoflorine

[C20H24NO4]+ (342.1705)


Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids

   
   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

AI3-52407

5-21-08-00246 (Beilstein Handbook Reference)

C9H7NO (145.0528)


Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

magnoflorine

3,16-dihydroxy-4,15-dimethoxy-10,10-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-10-ium

[C20H24NO4]+ (342.1705)


Magnoflorine is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Magnoflorine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Magnoflorine can be found in a number of food items such as carob, other cereal product, durian, and japanese chestnut, which makes magnoflorine a potential biomarker for the consumption of these food products. Magnoflorine is a chemical compound isolated from the rhizome of Sinomenium acutum and from Pachygone ovata. It is classified as an aporphine alkaloid . Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids

   
   

Xylopine

(12R)-16-methoxy-3,5-dioxa-11-azapentacyclo[10.7.1.0{2,6}.0{8,20}.0{14,19}]icosa-1(20),2(6),7,14(19),15,17-hexaene

C18H17NO3 (295.1208)


Xylopine is an aporphine alkaloid. Xylopine is a natural product found in Dasymaschalon longiflorum, Annona muricata, and other organisms with data available.

   

aporeine

(R)-Roemerine

C18H17NO2 (279.1259)


   

3-(3-methylbut-2-en-1-yl)-1h-indole

3-(3-methylbut-2-en-1-yl)-1h-indole

C13H15N (185.1204)


   

6-(3-methylbuta-1,3-dien-1-yl)-1h-indole

6-(3-methylbuta-1,3-dien-1-yl)-1h-indole

C13H13N (183.1048)


   

6-(3-methylbut-2-en-1-yl)-1h-indole

6-(3-methylbut-2-en-1-yl)-1h-indole

C13H15N (185.1204)


   

(3e)-4-(1h-indol-5-yl)but-3-en-2-one

(3e)-4-(1h-indol-5-yl)but-3-en-2-one

C12H11NO (185.0841)


   

10',11'-dimethoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one

10',11'-dimethoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one

C18H19NO3 (297.1365)


   

(9r)-4,15-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-16-ol

(9r)-4,15-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-16-ol

C18H19NO3 (297.1365)


   

5-isopropyl-2-methylcyclohex-3-ene-1,2-diol

5-isopropyl-2-methylcyclohex-3-ene-1,2-diol

C10H18O2 (170.1307)


   

(1r,2r,5s)-5-isopropyl-2-methylcyclohex-3-ene-1,2-diol

(1r,2r,5s)-5-isopropyl-2-methylcyclohex-3-ene-1,2-diol

C10H18O2 (170.1307)


   

3,5-bis(acetyloxy)-7,8-dimethyl-7-(3-methylidenepent-4-en-1-yl)-decahydronaphtho[4,4a-c]furan-1-yl acetate

3,5-bis(acetyloxy)-7,8-dimethyl-7-(3-methylidenepent-4-en-1-yl)-decahydronaphtho[4,4a-c]furan-1-yl acetate

C26H38O7 (462.2617)


   

(1r,3r,3as,5s,6as,7r,8r,10as)-1,3-bis(acetyloxy)-7,8-dimethyl-7-(3-methylidenepent-4-en-1-yl)-decahydronaphtho[1,8a-c]furan-5-yl 2-methylpropanoate

(1r,3r,3as,5s,6as,7r,8r,10as)-1,3-bis(acetyloxy)-7,8-dimethyl-7-(3-methylidenepent-4-en-1-yl)-decahydronaphtho[1,8a-c]furan-5-yl 2-methylpropanoate

C28H42O7 (490.293)


   

(9s)-4,15-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene-5,16-diol

(9s)-4,15-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene-5,16-diol

C19H21NO4 (327.1471)


   

(12r)-7-methoxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaene

(12r)-7-methoxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaene

C18H17NO3 (295.1208)


   

[(4as,5r,6r,8ar)-5,6,8a-trimethyl-5-(3-methylidenepent-4-en-1-yl)-3-oxo-4a,6,7,8-tetrahydro-4h-naphthalen-1-yl]methyl acetate

[(4as,5r,6r,8ar)-5,6,8a-trimethyl-5-(3-methylidenepent-4-en-1-yl)-3-oxo-4a,6,7,8-tetrahydro-4h-naphthalen-1-yl]methyl acetate

C22H32O3 (344.2351)


   

(1r,3r,3ar,5s,6as,7r,8r,10as)-1,5-bis(acetyloxy)-7,8-dimethyl-7-(3-methylidenepent-4-en-1-yl)-decahydronaphtho[1,8a-c]furan-3-yl acetate

(1r,3r,3ar,5s,6as,7r,8r,10as)-1,5-bis(acetyloxy)-7,8-dimethyl-7-(3-methylidenepent-4-en-1-yl)-decahydronaphtho[1,8a-c]furan-3-yl acetate

C26H38O7 (462.2617)


   

(9s)-15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

(9s)-15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

C18H19NO2 (281.1416)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

[5,6,8a-trimethyl-5-(3-methylidenepent-4-en-1-yl)-3-oxo-4a,6,7,8-tetrahydro-4h-naphthalen-1-yl]methyl acetate

[5,6,8a-trimethyl-5-(3-methylidenepent-4-en-1-yl)-3-oxo-4a,6,7,8-tetrahydro-4h-naphthalen-1-yl]methyl acetate

C22H32O3 (344.2351)


   

11'-hydroxy-10'-methoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one

11'-hydroxy-10'-methoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one

C17H17NO3 (283.1208)


   

sparsiflorine

sparsiflorine

C17H17NO3 (283.1208)


   

6-[(1e)-3-methylbuta-1,3-dien-1-yl]-1h-indole

6-[(1e)-3-methylbuta-1,3-dien-1-yl]-1h-indole

C13H13N (183.1048)


   

(4'r)-10',11'-dimethoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one

(4'r)-10',11'-dimethoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one

C18H19NO3 (297.1365)


   

1,3-bis(acetyloxy)-7,8-dimethyl-7-(3-methylidenepent-4-en-1-yl)-decahydronaphtho[4,4a-c]furan-5-yl 2-methylpropanoate

1,3-bis(acetyloxy)-7,8-dimethyl-7-(3-methylidenepent-4-en-1-yl)-decahydronaphtho[4,4a-c]furan-5-yl 2-methylpropanoate

C28H42O7 (490.293)