Subcellular Location: cis-Golgi network membrane

Found 72 associated metabolites.

11 associated genes. ATP2C1, BOK, GPR108, HLA-G, PHTF1, PMEL, RNF183, TMEM165, TRAPPC3, TRAPPC3L, VPS13B

Isoimperatorin

7,4-[(3-methyl-2-butenyl)oxy]-7H-furo[3,2-g]-1-benzopyran-7-one

C16H14O4 (270.0892)


Isoimperatorin is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Isoimperatorin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Isoimperatorin can be found in a number of food items such as parsley, lime, wild celery, and parsnip, which makes isoimperatorin a potential biomarker for the consumption of these food products. Isoimperatorin is a non-carcinogenic (not listed by IARC) potentially toxic compound. If the compound has been ingested, rapid gastric lavage should be performed using 5\\\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

Arbutin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-(4-hydroxyphenoxy)tetrahydro-2H-pyran-3,4,5-triol

C12H16O7 (272.0896)


Hydroquinone O-beta-D-glucopyranoside is a monosaccharide derivative that is hydroquinone attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite and an Escherichia coli metabolite. It is a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a hydroquinone. Extracted from the dried leaves of bearberry plant in the genus Arctostaphylos and other plants commonly in the Ericaceae family, arbutin is a beta-D-glucopyranoside of [DB09526]. It is found in foods, over-the-counter drugs, and herbal dietary supplements. Most commonly, it is an active ingredient in skincare and cosmetic products as a skin-lightening agent for the prevention of melanin formation in various skin conditions that involve cutaneous hyperpigmentation or hyperactive melanocyte function. It has also been used as an anti-infective for the urinary system as well as a diuretic. Arbutin is available in both natural and synthetic forms; it can be synthesized from acetobromglucose and [DB09526]. Arbutin is a competitive inhibitor of tyrosinase (E.C.1.14.18.1) in melanocytes, and the inhibition of melanin synthesis at non-toxic concentrations was observed in vitro. Arbutin was shown to be less cytotoxic to melanocytes in culture compared to [DB09526]. Arbutin is a natural product found in Grevillea robusta, Halocarpus biformis, and other organisms with data available. See also: Arctostaphylos uva-ursi leaf (part of); Arbutin; octinoxate (component of); Adenosine; arbutin (component of) ... View More ... Arbutin, also known as hydroquinone-O-beta-D-glucopyranoside or P-hydroxyphenyl beta-D-glucopyranoside, is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Arbutin is soluble (in water) and a very weakly acidic compound (based on its pKa). Arbutin can be found in a number of food items such as guava, lingonberry, irish moss, and rowal, which makes arbutin a potential biomarker for the consumption of these food products. Arbutin is a glycoside; a glycosylated hydroquinone extracted from the bearberry plant in the genus Arctostaphylos among many other medicinal plants, primarily in the Ericaceae family. Applied topically, it inhibits tyrosinase and thus prevents the formation of melanin. Arbutin is therefore used as a skin-lightening agent. Very tiny amounts of arbutin are found in wheat, pear skins, and some other foods. It is also found in Bergenia crassifolia. Arbutin was also produced by an in vitro culture of Schisandra chinensis . A monosaccharide derivative that is hydroquinone attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Arbutin is found in apple. Glucoside in pear leaves (Pyrus communis C471 - Enzyme Inhibitor CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6126; ORIGINAL_PRECURSOR_SCAN_NO 6123 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6107; ORIGINAL_PRECURSOR_SCAN_NO 6104 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 811; ORIGINAL_PRECURSOR_SCAN_NO 808 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 806; ORIGINAL_PRECURSOR_SCAN_NO 804 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 813; ORIGINAL_PRECURSOR_SCAN_NO 811 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 832; ORIGINAL_PRECURSOR_SCAN_NO 828 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 817; ORIGINAL_PRECURSOR_SCAN_NO 816 Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3]. Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3].

   

Dacarbazine

Dacarbazine, Pharmaceutical Secondary Standard; Certified Reference Material

C6H10N6O (182.0916)


Dacarbazine appears as white to ivory microcrystals or off-white crystalline solid. (NTP, 1992) (E)-dacarbazine is a dacarbazine in which the N=N double bond adopts a trans-configuration. An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564). Dacarbazine with Oblimersen is in clinical trials for the treatment of malignant melanoma. Dacarbazine is an Alkylating Drug. The mechanism of action of dacarbazine is as an Alkylating Activity. Dacarbazine (also known as DTIC) is an intravenously administered alkylating agent used in the therapy of Hodgkin disease and malignant melanoma. Dacarbazine therapy has been associated with serum enzyme elevations during therapy and occasional cases of severe and distinctive acute hepatic failure, probably caused by acute sinusoidal obstruction syndrome. Dacarbazine is a triazene derivative with antineoplastic activity. Dacarbazine alkylates and cross-links DNA during all phases of the cell cycle, resulting in disruption of DNA function, cell cycle arrest, and apoptosis. (NCI04) An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564) Dacarbazine is only found in individuals that have used or taken this drug. It is an antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564)The mechanism of action is not known, but appears to exert cytotoxic effects via its action as an alkylating agent. Other theories include DNA synthesis inhibition by its action as a purine analog, and interaction with SH groups. Dacarbazine is not cell cycle-phase specific. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

L-Dopa

(2S)-2-Amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid

C9H11NO4 (197.0688)


L-dopa is an optically active form of dopa having L-configuration. Used to treat the stiffness, tremors, spasms, and poor muscle control of Parkinsons disease It has a role as a prodrug, a hapten, a neurotoxin, an antiparkinson drug, a dopaminergic agent, an antidyskinesia agent, an allelochemical, a plant growth retardant, a human metabolite, a mouse metabolite and a plant metabolite. It is a dopa, a L-tyrosine derivative and a non-proteinogenic L-alpha-amino acid. It is a conjugate acid of a L-dopa(1-). It is an enantiomer of a D-dopa. It is a tautomer of a L-dopa zwitterion. Levodopa is a prodrug of dopamine that is administered to patients with Parkinsons due to its ability to cross the blood-brain barrier. Levodopa can be metabolised to dopamine on either side of the blood-brain barrier and so it is generally administered with a dopa decarboxylase inhibitor like carbidopa to prevent metabolism until after it has crossed the blood-brain barrier. Once past the blood-brain barrier, levodopa is metabolized to dopamine and supplements the low endogenous levels of dopamine to treat symptoms of Parkinsons. The first developed drug product that was approved by the FDA was a levodopa and carbidopa combined product called Sinemet that was approved on May 2, 1975. 3,4-Dihydroxy-L-phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Levodopa is an Aromatic Amino Acid. Levodopa is an amino acid precursor of dopamine with antiparkinsonian properties. Levodopa is a prodrug that is converted to dopamine by DOPA decarboxylase and can cross the blood-brain barrier. When in the brain, levodopa is decarboxylated to dopamine and stimulates the dopaminergic receptors, thereby compensating for the depleted supply of endogenous dopamine seen in Parkinsons disease. To assure that adequate concentrations of levodopa reach the central nervous system, it is administered with carbidopa, a decarboxylase inhibitor that does not cross the blood-brain barrier, thereby diminishing the decarboxylation and inactivation of levodopa in peripheral tissues and increasing the delivery of dopamine to the CNS. L-Dopa is used for the treatment of Parkinsonian disorders and Dopa-Responsive Dystonia and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. Peripheral tissue conversion may be the mechanism of the adverse effects of levodopa. It is standard clinical practice to co-administer a peripheral DOPA decarboxylase inhibitor - carbidopa or benserazide - and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent synthesis of dopamine in peripheral tissue.The naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. It is used for the treatment of parkinsonian disorders and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. [PubChem]L-Dopa is the naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, L-Dopa can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. In particular, it is metabolized to dopamine by aromatic L-amino acid decarboxylase. Pyridoxal phosphate (vitamin B6) is a required cofactor for this decarboxylation, and may be administered along with levodopa, usually as pyridoxine. The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside ... L-DOPA, also known as levodopa or 3,4-dihydroxyphenylalanine is an alpha amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). L-DOPA is found naturally in both animals and plants. It is made via biosynthesis from the amino acid L-tyrosine by the enzyme tyrosine hydroxylase.. L-DOPA is the precursor to the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline), which are collectively known as catecholamines. The Swedish scientist Arvid Carlsson first showed in the 1950s that administering L-DOPA to animals with drug-induced (reserpine) Parkinsonian symptoms caused a reduction in the intensity of the animals symptoms. Unlike dopamine itself, L-DOPA can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. In particular, it is metabolized to dopamine by aromatic L-amino acid decarboxylase. Pyridoxal phosphate (vitamin B6) is a required cofactor for this decarboxylation, and may be administered along with levodopa, usually as pyridoxine. As a result, L-DOPA is a drug that is now used for the treatment of Parkinsonian disorders and DOPA-Responsive Dystonia. It is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. It is standard clinical practice in treating Parkinsonism to co-administer a peripheral DOPA decarboxylase inhibitor - carbidopa or benserazide - and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent synthesis of dopamine in peripheral tissue. Side effects of L-DOPA treatment may include: hypertension, arrhythmias, nausea, gastrointestinal bleeding, disturbed respiration, hair loss, disorientation and confusion. L-DOPA can act as an L-tyrosine mimetic and be incorporated into proteins by mammalian cells in place of L-tyrosine, generating protease-resistant and aggregate-prone proteins in vitro and may contribute to neurotoxicity with chronic L-DOPA administration. L-phenylalanine, L-tyrosine, and L-DOPA are all precursors to the biological pigment melanin. The enzyme tyrosinase catalyzes the oxidation of L-DOPA to the reactive intermediate dopaquinone, which reacts further, eventually leading to melanin oligomers. An optically active form of dopa having L-configuration. Used to treat the stiffness, tremors, spasms, and poor muscle control of Parkinsons disease DOPA. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-92-7 (retrieved 2024-07-01) (CAS RN: 59-92-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Dopa is a beta-hydroxylated derivative of phenylalanine. DL-Dopa is a beta-hydroxylated derivative of phenylalanine.

   

D-alpha-Aminobutyric acid

alpha-Aminobutyric acid, (+-)-isomer

C4H9NO2 (103.0633)


D-alpha-Aminobutyric acid (AABA), also known as alpha-aminobutyrate, (R)-2-aminobutanoic acid or D-homoalanine, belongs to the class of organic compounds known as D-alpha-amino acids. These are alpha amino acids which have the D-configuration of the alpha-carbon atom. D-alpha-aminobutyric acid is an optically active form of alpha-aminobutyric acid having D-configuration. It is an enantiomer of a L-alpha-aminobutyric acid and a non-proteinogenic amino acid. Alpha-aminobutyric acid is one of the three isomers of aminobutyric acid. The two others are the neurotransmitter Gamma-Aminobutyric acid (GABA) and Beta-Aminobutyric acid (BABA) which is known for inducing plant disease resistance. Optically active organic compounds found in meteorites typically exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. D-enantiomers of non-proteinogenic amino acids are known to inhibit aerobic microorganisms. D-alpha-aminobutyric acid has been shown to inhibit microbial iron reduction by a number of Geobacter strains including Geobacter bemidjiensis, Geobacter metallireducens and Geopsychrobacter electrodiphilus (PMID: 25695622). D-alpha-Aminobutyric acid is a known substrate of D-amino acid oxidase (PMID: 6127341). Constituent of seedlings of Glycine max (soybean), Dolichos lablab (hyacinth bean), Canavalia gladiata (swordbean), Arachis hypogaea (peanut), Pisum sativum (pea), Phaseolus vulgaris (kidney bean) and Vigna sesquipedalis (asparagus bean) after hydrolysis D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

3-Hydroxyanthranilic acid

2-Amino-3-hydroxy-benzoic acid

C7H7NO3 (153.0426)


3-Hydroxyanthranilic acid, also known as 2-amino-3-hydroxy-benzoate or 3-ohaa, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3-Hydroxyanthranilic acid is a drug. 3-Hydroxyanthranilic acid exists in all living species, ranging from bacteria to humans. Within humans, 3-hydroxyanthranilic acid participates in a number of enzymatic reactions. In particular, 3-hydroxyanthranilic acid and L-alanine can be biosynthesized from L-3-hydroxykynurenine through the action of the enzyme kynureninase. In addition, 3-hydroxyanthranilic acid can be converted into cinnavalininate through the action of the enzyme catalase. 3-Hydroxyanthranilic acid is an intermediate in the metabolism of tryptophan. In humans, 3-hydroxyanthranilic acid is involved in tryptophan metabolism. Outside of the human body, 3-hydroxyanthranilic acid has been detected, but not quantified in brassicas. This could make 3-hydroxyanthranilic acid a potential biomarker for the consumption of these foods. It is new antioxidant isolated from methanol extract of tempeh. It is effective in preventing autoxidation of soybean oil and powder, while antioxidant 6,7,4-trihydroxyisoflavone is not. D000975 - Antioxidants > D016166 - Free Radical Scavengers [Raw Data] CBA14_3-OH-anthranili_pos_30eV_1-6_01_808.txt [Raw Data] CBA14_3-OH-anthranili_neg_40eV_1-6_01_832.txt [Raw Data] CBA14_3-OH-anthranili_pos_40eV_1-6_01_809.txt [Raw Data] CBA14_3-OH-anthranili_neg_20eV_1-6_01_830.txt [Raw Data] CBA14_3-OH-anthranili_neg_10eV_1-6_01_829.txt [Raw Data] CBA14_3-OH-anthranili_pos_10eV_1-6_01_806.txt [Raw Data] CBA14_3-OH-anthranili_pos_20eV_1-6_01_807.txt [Raw Data] CBA14_3-OH-anthranili_neg_30eV_1-6_01_831.txt D020011 - Protective Agents > D000975 - Antioxidants Isolated from Brassica oleracea (cauliflower) 3-Hydroxyanthranilic acid is a tryptophan metabolite in the kynurenine pathway.

   

L-Threoneopterin

2-amino-6-[(1S,2S)-1,2,3-trihydroxypropyl]-4,8-dihydropteridin-4-one

C9H11N5O4 (253.0811)


L-Threoneopterin is a catabolic product of GTP. It is synthesized by macrophages upon stimulation by interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins. Neopterin is a pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections (From Stedman, 26th ed). Neopterin also serves as a precursor in the biosynthesis of biopterin. Neopterin is a catabolic product of GTP. It is synthesised by macrophages upon stimulation with interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins.A pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections. (From Stedman, 26th ed) Neopterin also serves as a precursor in the biosynthesis of biopterin. [HMDB] Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.

   

Phosphonoacetate

Disodium phosphonoacetate monohydrate

C2H5O5P (139.9875)


Phosphonoacetate, also known as fosfonet or phosphonacetic acid, belongs to the class of organic compounds known as organic phosphonic acids. These are organic compounds containing phosphonic acid. Phosphonoacetate exists in all living organisms, ranging from bacteria to humans. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AD - Phosphonic acid derivatives A simple organophosphorus compound that inhibits DNA polymerase, especially in viruses and is used as an antiviral agent. [HMDB] D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent KEIO_ID P082 Phosphonoacetic acid is an endogenous metabolite. Phosphonoacetic acid also has anti-orthopoxvirus activity[1].

   

dTDP

{[hydroxy({[(2R,3S,5R)-3-hydroxy-5-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)oxolan-2-yl]methoxy})phosphoryl]oxy}phosphonic acid

C10H16N2O11P2 (402.0229)


Is an intermediate in the Thymidylate kinase (EC 2.7.4.9; ATP:dTMP phosphotransferase) catalyzes the phosphorylation of dTMP (to form dTDP) in the dTTP synthesis pathway for DNA synthesis. (OMIM 188345 ) [HMDB]. dTDP is found in many foods, some of which are bog bilberry, poppy, garden tomato, and chanterelle. Is an intermediate in the Thymidylate kinase (EC 2.7.4.9; ATP:dTMP phosphotransferase) catalyzes the phosphorylation of dTMP (to form dTDP) in the dTTP synthesis pathway for DNA synthesis. (OMIM 188345 ) Acquisition and generation of the data is financially supported in part by CREST/JST. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

4-Hydroxytamoxifen

4-[(1Z)-1-{4-[2-(dimethylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl]phenol

C26H29NO2 (387.2198)


4-Hydroxytamoxifen (Afimoxifene) is a metabolite of Tamoxifen. Afimoxifene (4-hydroxytamoxifen) is a selective estrogen receptor modulator which is the active metabolite of tamoxifen. Afimoxifene is a transdermal gel formulation and is being developed by Ascend Therapeutics, Inc. under the trademark TamoGel. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent

   

Spectinomycin

(1R,3S,5R,8R,10R,11S,12S,13R,14S)-8,12,14-trihydroxy-5-methyl-11,13-bis(methylamino)-2,4,9-trioxatricyclo[8.4.0.0³,⁸]tetradecan-7-one

C14H24N2O7 (332.1583)


Spectinomycin is only found in individuals that have used or taken this drug. It is an antibiotic produced by Streptomyces spectabilis. It is active against gram-negative bacteria and used for the treatment of gonorrhea. Spectinomycin is an inhibitor of protein synthesis in the bacterial cell; the site of action is the 30S ribosomal subunit. It is bactericidal in its action. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID S044; [MS2] KO009242 KEIO_ID S044

   

Primolut depot

Pregn-4-ene-3,20-dione, 17-[(1-oxohexyl)oxy]-

C27H40O4 (428.2926)


CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10390; ORIGINAL_PRECURSOR_SCAN_NO 10389 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10271; ORIGINAL_PRECURSOR_SCAN_NO 10269 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10375; ORIGINAL_PRECURSOR_SCAN_NO 10374 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10383; ORIGINAL_PRECURSOR_SCAN_NO 10381 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10318; ORIGINAL_PRECURSOR_SCAN_NO 10317 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10339; ORIGINAL_PRECURSOR_SCAN_NO 10337 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

Moexipril

[3S-[2[R*(R*)],3R*]]-2-[2-[[1-(ethoxycarbonyl)-3-phenylpropyl]amino]-1-oxopropyl]-1,2,3,4tetrahydro-6,7-dimethoxy-3-isoquinolinecarboxylic acid, monohydrochloride;[3S-[2[R*(R*)],3R*]]-2-[2-[[1-(ethoxycarbonyl)-3-phenylpropyl]amino]-1-oxopropyl]-1,2,3,4tetrahydro-6,7-dimethoxy-3-isoquinolinecarboxylic acid, monohydrochloride

C27H34N2O7 (498.2366)


Moexipril is a non-sulfhydryl containing precursor of the active angiotensin-converting enzyme (ACE) inhibitor moexiprilat. It is used to treat high blood pressure (hypertension). It works by relaxing blood vessels, causing them to widen. Lowering high blood pressure helps prevent strokes, heart attacks and kidney problems. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Indole-3-acetamide

Indole-3-acetamide (6ci,8ci)

C10H10N2O (174.0793)


Indole-3-acetamide, also known as 2-(3-indolyl)acetamide or IAM, belongs to the class of organic compounds known as 3-alkylindoles. 3-Alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-acetamide has been detected, but not quantified, in several different foods, such as Alaska wild rhubarbs, lingonberries, butternut squash, pineapples, and agaves. Indole-3-acetamide is also found in the common pea and has been isolated from the etiolated seedlings of the black gram (Phaseolus mungo). Isolated from etiolated seedlings of the black gram (Phaseolus mungo). 1H-Indole-3-acetamide is found in many foods, some of which are elderberry, barley, american cranberry, and herbs and spices. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids KEIO_ID I030 Indole-3-acetamide is a biosynthesis intermediate of indole-3-acetic acid (HY-18569). Indole-3-acetic acid is the most common natural plant growth hormone of the auxin class[1].

   

Dihydroxyindole

2,3-Dihydroxyindole

C8H7NO2 (149.0477)


   

Manganese

Manganese

Mn (54.938)


D018977 - Micronutrients > D014131 - Trace Elements Manganese is a chemical element, designated by the symbol Mn. It has the atomic number 25. Manganese(II) ions function as cofactors for a number of enzymes in higher organisms, where they are essential in detoxification of superoxide free radicals. The element is a required trace mineral for all known living organisms. [Wikipedia]. Manganese is found in many foods, some of which are egg roll, hyacinth bean, popcorn, and nutmeg.

   

Dopaquinone

(2S)-2-amino-3-(3,4-dioxocyclohexa-1,5-dien-1-yl)propanoic acid

C9H9NO4 (195.0532)


Dopaquinone, also known as o-dopaquinone or L-dopaquinone, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha-amino acids which have the L-configuration of the alpha-carbon atom. Dopaquinone is slightly soluble (in water) and a moderately acidic compound (based on its pKa). L-Dopaquinone is a metabolite of L-DOPA and a precursor of melanin. Melanin is synthesized from tyrosine by hydroxylation to dihydroxyphenylalanine (DOPA) and subsequent oxidation to dopaquinone. Both reactions are catalyzed by the enzyme tyrosinase, which is the rate-limiting step. Dopaquinone has an ortho-quinone ring, which is known to be neurotoxic and highly reactive with many other compounds (PMID: 413870). Dopaquinone typically combines with cysteine to form pheomelanin (a pigment-polymer). Alternatively, dopaquinone can be converted to leucodopachrome and eventually to eumelanin (also a pigment-polymer). Dopaquinone can be found in skin and feces. Within the cell, dopaquinone is primarily located in the cytoplasm. Dopaquinone is involved in several metabolic disorders, some of which include transient tyrosinemia, hawkinsinuria, tyrosinemia type I, and alkaptonuria. Chronically high levels of dopaquinone are associated with Parkinsons disease (PD). Many Parkinsons patients are treated with L-DOPA. However, long-term treatment with L-DOPA may actually worsen symptoms or result in neurotic and psychotic symptoms. These may be due to dopachrome and dopaquinone accumulating in the brain of L-DOPA treated patients (PMID: 19131041, PMID: 12373519). Dopaquinone is a substrate of enzyme monophenol monooxygenase [EC 1.14.18.1] in tyrosine metabolism pathway (KEGG). [HMDB]

   

Sakebiose

(2R,3S,4S,5S,6R)-2-(hydroxymethyl)-6-{[(2S,3R,4S,5S,6R)-2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.1162)


3-O-alpha-D-Mannopyranosyl-D-galactose is found in fruits. 3-O-alpha-D-Mannopyranosyl-D-galactose is isolated from enzymic hydrolysate of peach gum. Isolated from enzymic hydrolysate of peach gum. 3-O-alpha-D-Mannopyranosyl-D-galactose is found in fruits.

   

L-Dopachrome

(2S)-2,3,5,6-Tetrahydro-5,6-dioxo-1H-indole-2-carboxylic acid

C9H7NO4 (193.0375)


Dopachrome is a cyclization product of L-DOPA and is an intermediate in the biosynthesis of melanin. Dopaquinone has an ortho-quinone ring, which is known to be neurotoxic and highly reactive with many other compounds (PMID: 413870). Dopachrome spontaneously gives rise to 5,6-dihydroxyindole (DHI) or it can be enzymatically metabolized by dopachrome tautomerase to give 5,6-dihydroxyindole-2-carboxylic acid (DHICA). DHI and its oxidation products are also toxic to cells. Many Parkinsons patients are treated with L-DOPA. However, long-term treatment with L-DOPA may actually worsen symptoms or may result in neurotic and psychotic symptoms. These may be due to dopachrome and dopaquinone accumulating in the brain of L-DOPA treated patients (PMID: 19131041, PMID: 12373519). The non-decarboxylative tautomerization of L-dopachrome to 5,6-dihydroxyindole-2-carboxylic acid in the melanin biosynthetic pathway is catalyzed by Tyrosinase-related protein-2, a melanocyte-specific enzyme. (PMID 11095412) [HMDB]

   

1H-Indol-3-amine

1H-indol-3-amine

C8H8N2 (132.0687)


   

5,6-Dihydroxyindole-2-carboxylic acid

5,6-Dihydroxy-1H-indole-2-carboxylic acid

C9H7NO4 (193.0375)


5,6-Dihydroxyindole-2-carboxylic acid is an intermediate in the metabolism of Tyrosine. It is a substrate for Dopachrome tautomerase. [HMDB] 5,6-Dihydroxyindole-2-carboxylic acid is an intermediate in the metabolism of Tyrosine. It is a substrate for Dopachrome tautomerase.

   

Indole-5,6-quinone

5,6-dihydro-1H-indole-5,6-dione

C8H5NO2 (147.032)


Indole-5,6-quinone is involved in the tyrosine metabolism pathway. More specifically, indole-5,6-quinone is an intermediate in the production of melanin. Indole-5,6-quinone is produced from 5,6-dihydroxyindole by tyrosinase [EC:1.14.18.1]. [HMDB] Indole-5,6-quinone is involved in the tyrosine metabolism pathway. More specifically, indole-5,6-quinone is an intermediate in the production of melanin. Indole-5,6-quinone is produced from 5,6-dihydroxyindole by tyrosinase [EC:1.14.18.1].

   

Coproporphyrin III

3-[9,15,19-tris(2-carboxyethyl)-5,10,14,20-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),2,4,6(24),7,9,11,13(22),14,16,18-undecaen-4-yl]propanoic acid

C36H38N4O8 (654.269)


Coproporphyrin III is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life. Coproporphyrin III is a tetrapyrrole dead-end product from the spontaneous oxidation of the methylene bridges of coproporphynogen, arising from heme synthesis and secreted in feces and urine. Increased levels of coproporphyrins can indicate congenital erythropoietic porphyria or sideroblastic anaemia, which are inherited disorders. Porphyria is a pathological state characterised by abnormalities of porphyrin metabolism and results in the excretion of large quantities of porphyrins in the urine and in extreme sensitivity to light. A large number of factors are capable of increasing porphyrin excretion, owing to different and multiple causes and etiologies: 1) the main site of the chronic hepatic porphyria disease process concentrates on the liver, 2) a functional and morphologic liver injury is almost regularly associated with this chronic porphyria, 3) the toxic form due to occupational and environmental exposure takes mainly a subclinical course. Hepatic factors includes disturbance in coproporphyrinogen metabolism, which results from inhibition of coproporphyrinogen oxidase as well as from the rapid loss from, and diminished utilization of coproporphyrinogen in the hepatocytes, which may also explain why coproporphyrin, its autoxidation product, predominates physiologically in the urine; decreased biliary excretion of coproporphyrin leading to a compensatory urinary excretion, so that the coproporphyrin ring isomer ratio (1:III) becomes a sensitive index for impaired liver function and intrahepatic cholestasis; and disturbed activity of hepatic uroporphyrinogen decarboxylase. In itself, secondary coproporphyrinuria is not associated with porphyria symptoms of a hepatologic-gastroenterologic, neurologic, or dermatologic order, even though coproporphyrinuria can occur with such symptoms. (PMID: 3327428). Excreted in small amounts in urine and faeces, found in blood, yeast, microorganisms etc. By-product of Haem formation in vivo, due to oxidation of the porphyrinogen (CCD) Coproporphyrin III (Zincphyrin) is a naturally occurring porphyrin derivative that is mainly found in urine[1][2].

   

Silver

Silver atomic spectroscopy standard concentrate 1.00 g ag

Ag (106.9051)


Among metals, pure silver has the highest thermal conductivity (the non-metal diamond and superfluid helium II are higher) and one of the highest optical reflectivity. (Aluminium slightly outdoes silver in parts of the visible spectrum, and silver is a poor reflector of ultraviolet light). Silver also has the lowest contact resistance of any metal. Silver halides are photosensitive and are remarkable for their ability to record a latent image that can later be developed chemically. Silver is stable in pure air and water, but tarnishes when it is exposed to air or water containing ozone or hydrogen sulfide to form a black layer of silver sulfide which can be cleaned off with dilute hydrochloric acid. The most common oxidation state of silver is +1 (for example, silver nitrate: AgNO3); in addition, +2 compounds (for example, silver(II) fluoride: AgF2) and +3 compounds (for example, potassium tetrafluoroargentate: K[AgF4]) are known.; Hippocrates, the "father of medicine", wrote that silver had beneficial healing and anti-disease properties, and the Phoenicians used to store water, wine, and vinegar in silver bottles to prevent spoiling. In the early 1900s people would put silver dollars in milk bottles to prolong the milks freshness. Its germicidal effects increased its value in utensils and as jewellery. The exact process of silvers germicidal effect is still not well understood, although theories exist. One of these is the oligodynamic effect, which explains the effect on microorganisms but would not explain antiviral effects.; Jewellery and silverware are traditionally made from sterling silver (standard silver), an alloy of 92.5\\% silver with 7.5\\% copper. In the United States, only an alloy consisting of at least 92.5\\% fine silver can be marketed as "silver". Sterling silver is harder than pure silver, and has a lower melting point (893 °C) than either pure silver or pure copper. Britannia silver is an alternative hallmark-quality standard containing 95.8\\% silver, often used to make silver tableware and wrought plate. With the addition of germanium, the patented modified alloy Argentium Sterling Silver is formed, with improved properties including resistance to firescale.; Silver bromide is a yellow, low hardness salt.; Silver is a chemical element with the chemical symbol Ag (Latin: argentum) and atomic number 47. A soft, white, lustrous transition metal, it has the highest electrical conductivity of any element and the highest thermal conductivity of any metal. The metal occurs naturally in its pure, free form (native silver), as an alloy with gold (electrum) and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a by-product of copper, gold, lead, and zinc refining.; Silver is a constituent of almost all colored carat gold alloys and carat gold solders, giving the alloys paler colour and greater hardness. White 9 carat gold contains 62.5\\% silver and 37.5\\% gold, while 22 carat gold contains up to 8.4\\% silver or 8.4\\% copper.; Silver is a very ductile and malleable (slightly harder than gold) monovalent coinage metal with a brilliant white metallic luster that can take a high degree of polish. It has the highest electrical conductivity of all metals, even higher than copper, but its greater cost and tarnishability have prevented it from being widely used in place of copper for electrical purposes, though 13,540 tons were used in the electromagnets used for enriching uranium during World War II (mainly because of the wartime shortage of copper). Another notable exception is in high-end audio cables.; Silver is commonly used in catheters. Silver alloy catheters are more effective than standard catheters for reducing bacteriuria in adults in hospital having short term catheterisation.This meta-analysis clarifies discrepant results among trials of silver-coated urinary catheters by revealing that silver alloy catheters are significantly more effective in preventing urinary tract infectio... Silver is widely distributed in the earths crust and is found in soil, fresh and sea water, and the air. It is readily absorbed into the human body with food and drink and through inhalation, but the low levels of silver commonly present in the bloodstream (< 2.3 b.mu g/L) and in key tissues like liver and kidney have not been associated with any disease or disability. Silver is not an acknowledged trace element in the human body and fulfills no physiological or biochemical role in any tissue even though it interacts with several essential elements including zinc and calcium. Physiologically, it exists as an ion in the body. Silver has a long history in the treatment of human diseases, including epilepsy, neonatal eye disease, venereal diseases, and wound infections. It has been employed in water purification and is currently used to safeguard hospital hot water systems against Legionella infections. Principle routes of human exposure to silver nowadays are through its widespread use as an antimicrobial agent in wound care products and medical devices, including in-dwelling catheters, bone cements, cardiac valves and prostheses, orthopedic pins, and dental devices. In each case, the antimicrobial properties of silver are dependent upon release of biologically active silver ion (Ag*) from metallic silver (including nanocrystalline forms), silver nitrate, silver sulfadiazine, and other silver compounds incorporated in the various devices, and its lethal effect on pathogenic organisms. Experience has shown that a large proportion of the silver ion released from medical devices not required for antimicrobial action is disseminated into tissue fluids and exudates, where it combines with albumins and macroglobulins. These silver-protein complexes are absorbed into the systemic circulation to be deposited in key soft tissues, including the skin, liver, kidney, spleen, lungs, and brain. As a xenobiotic material, silver must be presumed to present a health risk to exposed persons under some circumstances. Unlike the well-documented neurotoxic metals including lead and mercury, silver does not appear to be a cumulative poison and is eliminated from the body through the urine and feces. Excretion of silver by these routes may be a measure of mean daily intake, but since this view is based largely on the clinical use of silver nitrate and silver sulfadiazine used in burn wound therapy, its true relevance in the metabolism of silver used in the wider context of medical devices is questionable. Argyria is the most widely publicized clinical condition associated with silver accumulation in blood and soft tissues. It commonly occurs in individuals exposed to high levels of silver occupationally (metallurgy, photography, and mining industries), or consuming or inhaling silver hygiene products (including colloidal silver products) for long periods. Silver is absorbed into the body and deposited in the perivascular regions of the skin and other soft tissues as black granules of silver sulfide or silver selenide. The resulting slate grey discoloration of the skin occasionally associated with melanogenic changes, is semipermanent and cosmetically undesirable but is not known to be life-threatening. (PMID: 17453933). D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AL - Silver compounds COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Metiamide

3-methyl-1-(2-{[(5-methyl-1H-imidazol-4-yl)methyl]sulfanyl}ethyl)thiourea

C9H16N4S2 (244.0816)


Metiamide belongs to the class of organic compounds known as imidazoles. These are compounds containing an imidazole ring, which is an aromatic five-member ring with two nitrogen atoms at positions 1 and 3, and three carbon atoms. C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Metiamide (SK&F 92058) is a histamine H2-receptor antagonist developed from another H2 antagonist, burimamide.

   

Brinzolamide

(R)-4-(Ethylamino)-3,4-dihydro-2-(3-methoxypropyl)-2H-thieno(3,2-e)-1,2-thiazine-6-sulfonamide 1,1-dioxide

C12H21N3O5S3 (383.0643)


Brinzolamide is a highly specific, non-competitive, reversible carbonic anhydrase inhibitor. Carbonic anhydrase (CA) is an enzyme found in many tissues of the body including the eye. It catalyzes the reversible reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In humans, carbonic anhydrase exists as a number of isoenzymes, the most active being carbonic anhydrase II (CA-II). Inhibition of carbonic anhydrase in the ciliary processes of the eye decreases aqueous humor secretion, presumably by slowing the formation of bicarbonate ions with subsequent reduction in sodium and fluid transport. The result is a reduction in intraocular pressure. Brinzolamide is indicated in the treatment of elevated intraocular pressure in patients with ocular hypertension or open-angle glaucoma. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor

   

Biapenem

CLI 86815;L 627;LJC 10627

C15H18N4O4S (350.1049)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DH - Carbapenems D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D013845 - Thienamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01057

   

N-Methylformamide

N-Monomethylformamide

C2H5NO (59.0371)


N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959) [HMDB] N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959). C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents

   

Lamtidine

Lamtidine

C18H28N6O (344.2324)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist

   

dTDP-D-desosamine

dTDP-D-desosamine; dTDP-3-dimethylamino-3,4,6-trideoxy-D-glucose; dTDP-alpha-D-desosamine; dTDP-3-dimethylamino-3,4,6-trideoxy-alpha-D-glucose; dTDP-3-dimethylamino-3,4,6-trideoxy-alpha-D-glucopyranose

C18H31N3O13P2 (559.1332)


   

Pikromycin

Albomycetin

C28H47NO8 (525.3302)


A macrolide antibiotic that is biosynthesised by Streptomyces venezuelae.

   

BPAquinone

4,5-Bisphenol-o-quinone

C15H14O3 (242.0943)


   

Deforolimus

Ridaforolimus (Deforolimus, MK-8669)

C53H84NO14P (989.5629)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor Same as: D08900

   

concanamycin a

[6-[2-[4-[(4E,6E,14E,16Z)-11-ethyl-10,12-dihydroxy-3,17-dimethoxy-7,9,13,15-tetramethyl-18-oxo-1-oxacyclooctadeca-4,6,14,16-tetraen-2-yl]-3-hydroxypentan-2-yl]-2-hydroxy-5-methyl-6-[(E)-prop-1-enyl]oxan-4-yl]oxy-4-hydroxy-2-methyloxan-3-yl] carbamate

C46H75NO14 (865.5187)


A concanamycin in which the lactone ring contains 4 double bonds and is substituted by 4 methyl groups, 2 hydroxy groups, 2 methoxy groups and an ethyl group. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

Aplidine

Dehydrodidemnin B

C57H87N7O15 (1109.626)


A didemnin that is didemin B in which the hydroxy group of the 1-(2-hydroxypropanoyl)-L-prolinamide moiety has been oxidised to the corresponding ketone. It was originally isolated from the Mediterranean tunicate Aplidium albicans. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents C784 - Protein Synthesis Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Plitidepsin (Aplidine) is a potent anti-cancer agent by targeting eEF1A2 (?KD=80?nM)[1]. Plitidepsin possesses antiviral activity and is against SARS-CoV-2 with an IC90 of 0.88 nM. Plitidepsin is usually used for multiple myeloma and advanced cancer research, and has the potential for COVID-19 research[1][2].

   

Actinamine

4,6-bis(methylamino)cyclohexane-1,2,3,5-tetrol

C8H18N2O4 (206.1267)


   

Imetit

{[2-(1H-imidazol-5-yl)ethyl]sulfanyl}methanimidamide

C6H10N4S (170.0626)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists

   

Cnidin

4-[(3-Methyl-2-buten-1-yl)oxy]-7H-Furo[3,2-g][1]benzopyran-7-one; 7H-Furo[3,2-g][1]benzopyran-7-one, 4-[(3-methyl-2-butenyl)oxy]- (8CI,9CI); Isoimperatorin (6CI); 4-[(3-Methyl-2-buten-1-yl)oxy]-7H-furo[3,2-g][1]benzopyran-7-one

C16H14O4 (270.0892)


Isoimperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as a metabolite and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. Isoimperatorin is a natural product found in Ferulago sylvatica, Prangos trifida, and other organisms with data available. Isoimperatorin is a tumor necrosis factor antagonist isolated from Glehniae root or from Poncirus trifoliate Raf (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. See also: Angelica archangelica root (part of). A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

Deforolimus

4-(2-{1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.0^{4,9}]hexatriaconta-16,24,26,28-tetraen-12-yl}propyl)-2-methoxycyclohexyl dimethylphosphinate

C53H84NO14P (989.5629)


   

Afimoxifene

4-(1-{4-[2-(dimethylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl)phenol

C26H29NO2 (387.2198)


   

concanamycin a

{[6-({2-[4-(11-ethyl-10,12-dihydroxy-3,17-dimethoxy-7,9,13,15-tetramethyl-18-oxo-1-oxacyclooctadeca-4,6,14,16-tetraen-2-yl)-3-hydroxypentan-2-yl]-2-hydroxy-5-methyl-6-(prop-1-en-1-yl)oxan-4-yl}oxy)-4-hydroxy-2-methyloxan-3-yl]oxy}methanimidate

C46H75NO14 (865.5187)


   

H-D-Abu-OH

(R)-2-Aminobutanoic acid

C4H9NO2 (103.0633)


[Spectral] D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] D-2-Aminobutyrate (exact mass = 103.06333) and L-Cysteine (exact mass = 121.01975) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

H-D-Abu-OH

D-alpha-Aminobutyric acid

C4H9NO2 (103.0633)


An optically active form of alpha-aminobutyric acid having D-configuration. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

Spectinomycin

Spectinomycin

C14H24N2O7 (332.1583)


A pyranobenzodioxin and antibiotic that is active against gram-negative bacteria and used (as its dihydrochloride pentahydrate) to treat gonorrhea. It is produced by the bacterium Streptomyces spectabilis. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic relative retention time with respect to 9-anthracene Carboxylic Acid is 0.046 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.045

   

Coproporphyrin III

Coproporphyrin III

C36H38N4O8 (654.269)


Coproporphyrin III (Zincphyrin) is a naturally occurring porphyrin derivative that is mainly found in urine[1][2].

   

3-Hydroxyanthranilic acid

3-Hydroxyanthranilic acid

C7H7NO3 (153.0426)


An aminobenzoic acid that is benzoic acid substituted at C-2 by an amine group and at C-3 by a hydroxy group. It is an intermediate in the metabolism of the amino acid tryptophan. D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WJXSWCUQABXPFS-UHFFFAOYSA-N_STSL_0003_3-hydroxyanthranillic acid_8000fmol_180416_S2_LC02_MS02_37; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 3-Hydroxyanthranilic acid is a tryptophan metabolite in the kynurenine pathway.

   

indole-3-acetamide

indole-3-acetamide

C10H10N2O (174.0793)


A member of the class of indoles that is acetamide substituted by a 1H-indol-3-yl group at position 2. It is an intermediate in the production of plant hormone indole acetic acid (IAA). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids Indole-3-acetamide is a biosynthesis intermediate of indole-3-acetic acid (HY-18569). Indole-3-acetic acid is the most common natural plant growth hormone of the auxin class[1].

   

Phosphonoacetic acid

Acetic acid,2-phosphono-

C2H5O5P (139.9875)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AD - Phosphonic acid derivatives D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent Phosphonoacetic acid is an endogenous metabolite. Phosphonoacetic acid also has anti-orthopoxvirus activity[1].

   

Isoimperatorin

Isoimperatorin

C16H14O4 (270.0892)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Origin: Plant, Coumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

4-hydroxytamoxifen

(E/Z)-4-hydroxy Tamoxifen

C26H29NO2 (387.2198)


CONFIDENCE standard compound; INTERNAL_ID 2716

   

silver

silver

Ag (106.9051)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AL - Silver compounds COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

dTDP-alpha-D-desosamine

dTDP-alpha-D-desosamine

C18H31N3O13P2 (559.1332)


   

Plitidepsin

Plitidepsin

C57H87N7O15 (1109.626)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents C784 - Protein Synthesis Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Plitidepsin (Aplidine) is a potent anti-cancer agent by targeting eEF1A2 (?KD=80?nM)[1]. Plitidepsin possesses antiviral activity and is against SARS-CoV-2 with an IC90 of 0.88 nM. Plitidepsin is usually used for multiple myeloma and advanced cancer research, and has the potential for COVID-19 research[1][2].

   

Ridaforolimus

Ridaforolimus (Deforolimus, MK-8669)

C53H84NO14P (989.5629)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor

   

482-45-1

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-((3-methyl-2-butenyl)oxy)-

C16H14O4 (270.0892)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

nigerose

Sakebiose

C12H22O11 (342.1162)


Detected in saké. Can be obtained preparatively by hydrolysis of the D-glucan from fruiting bodies of the bracket fungus Laetiporus sulphureus (sulphur polypore) (Takeo et al). Sakebiose is found in mushrooms and alcoholic beverages.

   

42-(Dimethylphosphinate)rapamycin

Ridaforolimus (Deforolimus, MK-8669)

C53H84NO14P (989.5629)


   

Dacarbazine

Dacarbazine, Pharmaceutical Secondary Standard; Certified Reference Material

C6H10N6O (182.0916)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents Dacarbazine appears as white to ivory microcrystals or off-white crystalline solid. (NTP, 1992) (E)-dacarbazine is a dacarbazine in which the N=N double bond adopts a trans-configuration. An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564). Dacarbazine with Oblimersen is in clinical trials for the treatment of malignant melanoma. Dacarbazine is an Alkylating Drug. The mechanism of action of dacarbazine is as an Alkylating Activity. Dacarbazine (also known as DTIC) is an intravenously administered alkylating agent used in the therapy of Hodgkin disease and malignant melanoma. Dacarbazine therapy has been associated with serum enzyme elevations during therapy and occasional cases of severe and distinctive acute hepatic failure, probably caused by acute sinusoidal obstruction syndrome. Dacarbazine is a triazene derivative with antineoplastic activity. Dacarbazine alkylates and cross-links DNA during all phases of the cell cycle, resulting in disruption of DNA function, cell cycle arrest, and apoptosis. (NCI04) An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564) C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

hydroxyprogesterone caproate

hydroxyprogesterone caproate

C27H40O4 (428.2926)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

Brinzolamide

Brinzolamide

C12H21N3O5S3 (383.0643)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor

   

METIAMIDE

METIAMIDE

C9H16N4S2 (244.0816)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Metiamide (SK&F 92058) is a histamine H2-receptor antagonist developed from another H2 antagonist, burimamide.

   

Moexipril

Moexipril

C27H34N2O7 (498.2366)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

5,6-dihydroxyindole-2-carboxylic acid

5,6-Dihydroxy-1H-indole-2-carboxylic acid

C9H7NO4 (193.0375)


A dihydroxyindole that is indole-2-carboxylic acid substituted by hydroxy groups at positions 5 and 6.

   

Thymidine-5-diphosphate

Thymidine-5-diphosphate

C10H16N2O11P2 (402.0229)


A thymidine phosphate having a diphosphate group at the 5-position. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

2,3-Dihydroxyindole

2,3-Dihydroxyindole

C8H7NO2 (149.0477)


   

imetit

imetit

C6H10N4S (170.0626)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists

   

Indole-5,6-quinone

Indole-5,6-quinone

C8H5NO2 (147.032)


   

1H-indol-3-amine

1H-indol-3-amine

C8H8N2 (132.0687)


   

Dopaquinone

L-dopaquinone

C9H9NO4 (195.0532)


An L-phenylalanine derivative in which the phenyl group of L-phenylalanine is replaced by a 3,4-dioxocyclohexa-1,5-dien-1-yl group.

   

4,5-Bisphenol-o-quinone

4,5-Bisphenol-o-quinone

C15H14O3 (242.0943)


   

N-METHYLFORMAMIDE

N-METHYLFORMAMIDE

C2H5NO (59.0371)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents

   

Dopachrome

Dopachrome

C9H7NO4 (193.0375)