Biological Pathway: BioCyc:META_PWY-7218

photosynthetic 3-hydroxybutanoate biosynthesis (engineered) related metabolites

find 86 related metabolites which is associated with the biological pathway photosynthetic 3-hydroxybutanoate biosynthesis (engineered)

this pathway object is a conserved pathway across multiple organism.

1,4-Dithiothreitol

DL-Threo-1,4-dimercapto-2,3-butanediol

C4H10O2S2 (154.01222)


Dithiothreitol (DTT) is the common name for a small-molecule redox reagent known as Clelands reagent. DTTs formula is C4H10O2S2 and the molecular structure of its reduced form is shown at the right; its oxidized form is a disulfide-bonded 6-membered ring (shown below). Its name derives from the four-carbon sugar, threose. DTT has an epimeric (sister) compound, dithioerythritol. A common use of DTT is as a reducing or "deprotecting" agent for thiolated DNA. The terminal sulfur atoms of thiolated DNA have a tendency to form dimers in solution, especially in the presence of oxygen. Dimerization greatly lowers the efficiency of subsequent coupling reactions such as DNA immobilization on gold in biosensors. Typically DTT is mixed with a DNA solution and allowed to react, and then is removed by filtration (for the solid catalyst) or by chromatography (for the liquid form). The DTT removal procedure is often called "desalting.". DTT is frequently used to reduce the disulfide bonds of proteins and, more generally, to prevent intramolecular and intermolecular disulfide bonds from forming between cysteine residues of proteins. However, even DTT cannot reduce buried (solvent-inaccessible) disulfide bonds, so reduction of disulfide bonds is sometimes carried out under denaturing conditions (e.g., at high temperatures, or in the presence of a strong denaturant such as 6 M guanidinium hydrochloride, 8 M urea, or 1\\% sodium dodecylsulfate). Conversely, the solvent exposure of different disulfide bonds can be assayed by their rate of reduction in the presence of DTT. DTT can also be used as an oxidizing agent. Its principal advantage is that effectively no mixed-disulfide species are populated, in contrast to other agents such as glutathione. In very rare cases, a DTT adduct may be formed, i.e., the two sulfur atoms of DTT may form disulfide bonds to different sulfur atoms; in such cases, DTT cannot cyclize since it has no remaining free thiols. Due to air oxidation, DTT is a relatively unstable compound whose useful life can be extended by refrigeration and handling in an inert atmosphere. Since protonated sulfurs have lowered nucleophilicities, DTT becomes less potent as the pH lowers. Tris(2-carboxyethyl)phosphine HCl (TCEP hydrochloride) is an alternative which is more stable and works even at low pH. Dithiothreitol (DTT) is the common name for a small-molecule redox reagent known as Clelands reagent. DTT has an epimeric compound, dithioerythritol. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Water

oxidane

H2O (18.0105642)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Oxygen

Molecular oxygen

O2 (31.98983)


Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Carbon dioxide

Carbonic acid anhydride

CO2 (43.98983)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

zinc ion

Zinc cation

Zn+2 (63.929145)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AB - Enzymes D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors C307 - Biological Agent > C29726 - Enzyme Replacement or Supplement Agent D004791 - Enzyme Inhibitors

   

Calcium

Calcium Cation

Ca+2 (39.962591)


   

Potassium

Liver regeneration factor 1

K+ (38.963708)


Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry. Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).

   

Magnesium

Magnesium Cation

Mg+2 (23.98505)


   

Superoxide

Superoxide anion radical

O2- (31.98983)


Superoxide is the anionic form O2. It is important as the product of the one-electron reduction of dioxygen (oxygen gas), which occurs widely in nature. With one unpaired electron, the superoxide ion is a free radical. It is also paramagnetic. The biological toxicity of superoxide is due to its capacity to inactivate iron-sulfur cluster containing enzymes (which are critical in a wide variety of metabolic pathways), thereby liberating free iron in the cell, which can undergo fenton-chemistry and generate the highly reactive hydroxyl radical. In its HO2 form, superoxide can also initiate lipid peroxidation of polyunsaturated fatty acids. It also reacts with carbonyl compounds and halogenated carbons to create toxic peroxy radicals. As such, superoxide is a main cause of oxidative stress. Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to Methemoglobin. Because superoxide is toxic, nearly all organisms living in the presence of oxygen contain isoforms of the superoxide scavenging enzyme, superoxide dismutase, or SOD. SOD is an extremely efficient enzyme; it catalyzes the neutralization of superoxide nearly as fast as the two can diffuse together spontaneously in solution. Genetic inactivation ("knockout") of SOD produces deleterious phenotypes in organisms ranging from bacteria to mice. The latter species dies around 21 days after birth if the mitochondrial variant of SOD (Mn-SOD) is inactivated, and suffers from multiple pathologies, including reduced lifespan, liver cancer, muscle atrophy, cataracts and female infertility when the cytoplasmic (Cu, Zn -SOD) variant is inactivated. With one unpaired electron, the superoxide ion is a free radical and therefore paramagnetic. In living organisms, superoxide dismutase protects the cell from the deleterious effects of superoxides. Superoxide is the anionic form O2. It is important as the product of the one-electron reduction of dioxygen (oxygen gas), which occurs widely in nature. With one unpaired electron, the superoxide ion is a free radical. It is also paramagnetic. The biological toxicity of superoxide is due to its capacity to inactivate iron-sulfur cluster containing enzymes (which are critical in a wide variety of metabolic pathways), thereby liberating free iron in the cell, which can undergo fenton-chemistry and generate the highly reactive hydroxyl radical. In its HO2 form, superoxide can also initiate lipid peroxidation of polyunsaturated fatty acids. It also reacts with carbonyl compounds and halogenated carbons to create toxic peroxy radicals. As such, superoxide is a main cause of oxidative stress.; Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to Methemoglobin. D009676 - Noxae > D016877 - Oxidants > D013481 - Superoxides D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Fluoride

Fluorine anion

F- (18.9984032)


Fluorine (Latin: fluere, meaning "to flow"), is the chemical element with the symbol F and atomic number 9. It is a nonmetallic, diatomic gas that is a trace element and member of the halogen family. Pure fluorine (F2) is a corrosive, poisonous, pale yellowish brown gas that is a powerful oxidizing agent. It is the most reactive and electronegative of all the elements (4.0), and readily forms compounds with most other elements. Fluorine even combines with the noble gases, krypton, xenon, and radon. Even in dark, cool conditions, fluorine reacts explosively with hydrogen. It is so reactive that glass, metals, and even water, as well as other substances, burn with a bright flame in a jet of fluorine gas. It is far too reactive to be found in elemental form and has such an affinity for most elements, including silicon, that it can neither be prepared nor be kept in ordinary glass vessels. Instead, it must be kept in specialized quartz tubes lined with a very thin layer of fluorocarbons. In moist air it reacts with water to form also-dangerous hydrofluoric acid. Elemental fluorine is a powerful oxidizer which can cause organic material, combustibles, or other flammable materials to ignite. Both elemental fluorine and fluoride ions are highly toxic and must be handled with great care and any contact with skin and eyes should be strictly avoided. Physiologically, fluorine. exists as an ion in the body. When it is a free element, fluorine has a characteristic pungent odor that is detectable in concentrations as low as 20 nL/L. Fluorine is used in dentistry as flouride (Fluorides) to prevent dental caries. Sodium and stannous salts of fluorine are commonly used in dentifrices. Contact of exposed skin with HF (hydrofluoric acid) solutions posses one of the most extreme and insidious industrial threats-- one which is exacerbated by the fact that HF damages nerves in such a way as to make such burns initially painless. The HF molecule is capable of rapidly migrating through lipid layers of cells which would ordinarily stop an ionized acid, and the burns are typically deep. HF may react with calcium, permanently damaging the bone. More seriously, reaction with the bodys calcium can cause cardiac arrhythmias, followed by cardiac arrest brought on by sudden chemical changes within the body. These cannot always be prevented with local or intravenous injection of calcium salts. HF spills over just 2.5\\% of the bodys surface area, despite copious immediate washing, have been fatal If the patient survives, HF burns typically produce open wounds of an especially slow-healing nature. Fluorine in the form of fluorspar (also called fluorite) (calcium fluoride) was described in 1530 by Georgius Agricola for its use as a flux , which is a substance that is used to promote the fusion of metals or minerals. In 1670 Schwanhard found that glass was etched when it was exposed to fluorspar that was treated with acid. Karl Scheele and many later researchers, including Humphry Davy, Gay-Lussac, Antoine Lavoisier, and Louis Thenard all would experiment with hydrofluoric acid, easily obtained by treating calcium fluoride (fluorspar) with concentrated sulfuric acid. Fluoride is the anion F-, the reduced form of fluorine F. Compounds containing fluoride anions and those containing covalent bonds to fluorine are called fluorides. Fluoride is found in many foods, some of which are rum, black-eyed pea, pear, and corn chip. D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides D001697 - Biomedical and Dental Materials

   

Lithium

Lithium, ion (li1+)

Li+ (7.016005)


Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). Lithium is found in many foods, some of which are endive, yellow zucchini, romaine lettuce, and common bean. Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AN - Lithium Same as: D08133

   

Nickel cation

Nickel cation

Ni+2 (57.935347)


   

Manganous cation

Manganous cation

Mn+2 (54.938046)


   

Ammonium

Ammonium compounds

H4N+ (18.0343724)


Ammonium, also known as ammonium(1+) or nh4+, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Ammonium can be found in a number of food items such as irish moss, sago palm, sorghum, and malabar spinach, which makes ammonium a potential biomarker for the consumption of these food products. Ammonium can be found primarily in blood and sweat. Ammonium exists in all living species, ranging from bacteria to humans. In humans, ammonium is involved in the the oncogenic action of 2-hydroxyglutarate. Ammonium is also involved in a couple of metabolic disorders, which include the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria and the oncogenic action of l-2-hydroxyglutarate in hydroxygluaricaciduria. Moreover, ammonium is found to be associated with n-acetylglutamate synthetase deficiency. The ammonium cation is a positively charged polyatomic ion with the chemical formula NH+ 4. It is formed by the protonation of ammonia (NH3). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations (NR+ 4), where one or more hydrogen atoms are replaced by organic groups (indicated by R) . Ammonium is an important source of nitrogen for many plant species, especially those growing on hypoxic soils. However, it is also toxic to most crop species and is rarely applied as a sole nitrogen source. The ammonium (more obscurely: aminium) cation is a positively charged polyatomic cation with the chemical formula NH4+. It is formed by the protonation of ammonia (NH3). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations (NR4+), where one or more hydrogen atoms are replaced by organic radical groups (indicated by R). Ammonium is found to be associated with N-acetylglutamate synthetase deficiency, which is an inborn error of metabolism.

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

Potassium chloride

Monopotassium chloride

ClK (73.93256099999999)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions Added to food as a flavour enhancer, flavouring agent, nutrient supplement, pH control agent, stabiliser or thickener A - Alimentary tract and metabolism > A12 - Mineral supplements > A12B - Potassium > A12BA - Potassium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent

   

iodoacetamide

iodoacetamide

C2H4INO (184.9337644)


D009676 - Noxae > D000477 - Alkylating Agents > D007461 - Iodoacetates D004791 - Enzyme Inhibitors

   

H2O

oxidane

H2O (18.0105642)


An oxygen hydride consisting of an oxygen atom that is covalently bonded to two hydrogen atoms. Water. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7732-18-5 (retrieved 2024-10-17) (CAS RN: 7732-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Azanium

Ammonium Chloride

H4N+ (18.0343724)


   

DL-Dithiothreitol

(2S,3S)-1,4-Dimercaptobutane-2,3-diol

C4H10O2S2 (154.01222)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Sulfate Ion

Sulfate Ion

O4S-2 (95.951732)


   

Citrate

Citrate

C6H5O7-3 (189.00352800000002)


D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents D006401 - Hematologic Agents > D000925 - Anticoagulants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide

C21H26N7O14P2- (662.1012936000001)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Coenzyme II

Coenzyme II

C21H25N7O17P3-3 (740.051977)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pyruvate

Pyruvate

C3H3O3- (87.00821880000001)


A 2-oxo monocarboxylic acid anion that is the conjugate base of pyruvic acid, arising from deprotonation of the carboxy group.

   

Phosphonatoenolpyruvate

Phosphonatoenolpyruvate

C3H2O6P-3 (164.95890219999998)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   
   
   

3-Bromopyruvate

3-Bromopyruvate

C3H2BrO3- (164.9187302)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels D004791 - Enzyme Inhibitors

   

Ferrous cation

Ferrous cation

Fe+2 (55.934939)


   

potassium chloride

potassium chloride

ClK (73.93256099999999)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions A - Alimentary tract and metabolism > A12 - Mineral supplements > A12B - Potassium > A12BA - Potassium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent

   

2-Oxobutanoate

2-Oxobutanoate

C4H5O3- (101.02386800000001)


A 2-oxo monocarboxylic acid anion that is the conjugate base of 2-oxobutanoic acid, obtained by deprotonation of the carboxy group. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(R)-3-Hydroxybutyrate

(R)-3-Hydroxybutyrate

C4H7O3- (103.0395172)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

C10H12N5O13P3-4 (502.9644492)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

coenzyme A(4-)

coenzyme A(4-)

C21H32N7O16P3S-4 (763.0839062)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Glycerone phosphate(2-)

Glycerone phosphate(2-)

C3H5O6P-2 (167.98237600000002)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

beta-NADH

beta-NADH

C21H27N7O14P2-2 (663.1091182000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-diphosphate

Adenosine-diphosphate

C10H12N5O10P2-3 (424.0059412)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-phosphonato-D-glycerate(3-)

3-phosphonato-D-glycerate(3-)

C3H4O7P-3 (182.9694664)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-5-monophosphate(2-)

Adenosine-5-monophosphate(2-)

C10H12N5O7P-2 (345.0474332)


   

beta-D-fructofuranose 1,6-bisphosphate(4-)

beta-D-fructofuranose 1,6-bisphosphate(4-)

C6H10O12P2-4 (335.96475200000003)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D007155 - Immunologic Factors D020011 - Protective Agents

   

Glyoxylate

Glyoxylate

C2HO3- (72.9925696)


The conjugate base of glyoxylic acid.

   

3-Hydroxypyruvate

3-Hydroxypyruvate

C3H3O4- (103.0031338)


A hydroxy monocarboxylic acid anion that results from the deprotonation of the carboxylic acid group of 3-hydroxypyruvic acid. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Thiamine(1+) diphosphate(3-)

Thiamine(1+) diphosphate(3-)

C12H16N4O7P2S-2 (422.0214926)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-Fluoro-2-oxopropanoate

3-Fluoro-2-oxopropanoate

C3H2FO3- (104.9987974)


   

Xylulose 5-phosphate

Xylulose 5-phosphate

C5H9O8P-2 (228.0035044)


   

Succinyl-CoA

Succinyl-CoA

C25H35N7O19P3S-5 (862.092125)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

acetyl-CoA(4-)

acetyl-CoA(4-)

C23H34N7O17P3S-4 (805.0944704000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

acetoacetyl-CoA(4-)

acetoacetyl-CoA(4-)

C25H36N7O18P3S-4 (847.1050346000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

D-glyceraldehyde 3-phosphate(2-)

D-glyceraldehyde 3-phosphate(2-)

C3H5O6P-2 (167.98237600000002)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5-O-phosphonato-D-ribulose

5-O-phosphonato-D-ribulose

C5H9O8P-2 (228.0035044)


   

2,2,2,2-(Ethane-1,2-diyldiammonio)tetraacetate

2,2,2,2-(Ethane-1,2-diyldiammonio)tetraacetate

C10H14N2O8-2 (290.0750124)


   

2-phosphonato-D-glycerate(3-)

2-phosphonato-D-glycerate(3-)

C3H4O7P-3 (182.9694664)


   
   

(S)-3-hydroxybutanoyl-CoA(4-)

(S)-3-hydroxybutanoyl-CoA(4-)

C25H38N7O18P3S-4 (849.1206838)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

beta-D-fructofuranose 6-phosphate(2-)

beta-D-fructofuranose 6-phosphate(2-)

C6H11O9P-2 (258.01406860000003)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-phosphonato-D-glyceroyl phosphate(4-)

3-phosphonato-D-glyceroyl phosphate(4-)

C3H4O10P2-4 (261.9279744)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

beta-D-Fructose 2,6-bisphosphate

beta-D-Fructose 2,6-bisphosphate

C6H10O12P2-4 (335.96475200000003)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(S)-3-Hydroxybutyrate

(S)-3-Hydroxybutyrate

C4H7O3- (103.0395172)


The conjugate base of (S)-3-hydroxybutyric acid.

   

D-erythrose 4-phosphate(2-)

D-erythrose 4-phosphate(2-)

C4H7O7P-2 (197.9929402)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

aldehydo-D-arabinose 5-phosphate(2-)

aldehydo-D-arabinose 5-phosphate(2-)

C5H9O8P-2 (228.0035044)


   

Dithionitrobenzoic acid

Dithionitrobenzoic acid

C14H6N2O8S2-2 (393.9565596)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D013439 - Sulfhydryl Reagents

   

D-Sedoheptulose 7-phosphate

D-Sedoheptulose 7-phosphate

C7H13O10P-2 (288.0246328)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

D-ribofuranose 5-phosphate(2-)

D-ribofuranose 5-phosphate(2-)

C5H9O8P-2 (228.0035044)


   
   

Sedoheptulose 1,7-bisphosphate(4-)

Sedoheptulose 1,7-bisphosphate(4-)

C7H12O13P2-4 (365.9753162)


   

FAD trianion

FAD trianion

C27H30N9O15P2-3 (782.1336550000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

D-ribulose 1,5-bisphosphate(4-)

D-ribulose 1,5-bisphosphate(4-)

C5H8O11P2-4 (305.9541878)


   
   
   

Carbon Dioxide

carbon dioxide

CO2 (43.98983)


A one-carbon compound with formula CO2 in which the carbon is attached to each oxygen atom by a double bond. A colourless, odourless gas under normal conditions, it is produced during respiration by all animals, fungi and microorganisms that depend directly or indirectly on living or decaying plants for food. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Oxygen

Dioxygen

O2 (31.98983)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

fluoride

FLUORIDE ion

F- (18.9984032)


D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides D001697 - Biomedical and Dental Materials

   

Ammonium

Ammonium

H4N+ (18.0343724)


An onium cation obtained by protonation of ammonia.

   

Potassium cation

Potassium cation

K+ (38.963708)


   

Calcium Cation

Calcium Cation

Ca+2 (39.962591)


   

Magnesium Cation

Magnesium Cation

Mg+2 (23.98505)


   

Zinc cation

Zinc cation

Zn+2 (63.929145)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AB - Enzymes D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors C307 - Biological Agent > C29726 - Enzyme Replacement or Supplement Agent D004791 - Enzyme Inhibitors

   

Superoxide

Superoxide

O2- (31.98983)


D009676 - Noxae > D016877 - Oxidants > D013481 - Superoxides D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Hydrogen cation

Hydrogen cation

H+ (1.0078246)


   

Lithium cation

lithium(I) cation

Li+ (7.016005)