Pyruvate (BioDeep_00000840374)
代谢物信息卡片
化学式: C3H3O3- (87.0082)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 51.39%
分子结构信息
SMILES: CC(=O)C(=O)[O-]
InChI: InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6)/p-1
描述信息
A 2-oxo monocarboxylic acid anion that is the conjugate base of pyruvic acid, arising from deprotonation of the carboxy group.
同义名列表
1 个代谢物同义名
数据库引用编号
6 个数据库交叉引用编号
- ChEBI: CHEBI:15361
- PubChem: 107735
- ChEMBL: CHEMBL181886
- MeSH: Pyruvic Acid
- CAS: 57-60-3
- MetaboLights: MTBLC15361
分类词条
相关代谢途径
Reactome(32)
- Metabolism
- Metabolism of proteins
- Post-translational protein modification
- Amino acid and derivative metabolism
- Glyoxylate metabolism and glycine degradation
- Asparagine N-linked glycosylation
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein
- Synthesis of substrates in N-glycan biosythesis
- Signaling Pathways
- Nucleotide metabolism
- Nucleotide catabolism
- Serine biosynthesis
- Tryptophan catabolism
- Selenoamino acid metabolism
- Metabolism of ingested SeMet, Sec, MeSec into H2Se
- Glycolysis
- Carbohydrate metabolism
- Glucose metabolism
- The citric acid (TCA) cycle and respiratory electron transport
- Pyruvate metabolism and Citric Acid (TCA) cycle
- Citric acid cycle (TCA cycle)
- Sulfur amino acid metabolism
- Degradation of cysteine and homocysteine
- Metabolism of RNA
- tRNA processing
- tRNA modification in the nucleus and cytosol
- Phenylalanine and tyrosine metabolism
- Phenylalanine metabolism
- Gluconeogenesis
- Signaling by Nuclear Receptors
- Signaling by Retinoic Acid
- Glutamate and glutamine metabolism
BioCyc(200)
- N-acetylneuraminate and N-acetylmannosamine degradation I
- superpathway of L-phenylalanine biosynthesis
- superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation
- acetate and ATP formation from acetyl-CoA I
- anaerobic energy metabolism (invertebrates, mitochondrial)
- superpathway of anaerobic energy metabolism (invertebrates)
- superpathway of demethylmenaquinol-8 biosynthesis I
- superpathway of N-acetylneuraminate degradation
- superpathway of L-methionine biosynthesis (transsulfuration)
- superpathway of L-homoserine and L-methionine biosynthesis
- L-methionine biosynthesis I
- superpathway of hexitol degradation (bacteria)
- lupanine biosynthesis
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I
- superpathway of aromatic amino acid biosynthesis
- chorismate biosynthesis I
- chorismate biosynthesis from 3-dehydroquinate
- 2-carboxy-1,4-naphthoquinol biosynthesis
- superpathway of L-tyrosine biosynthesis
- superpathway of menaquinol-8 biosynthesis I
- superpathway of chorismate metabolism
- aspartate superpathway
- superpathway of S-adenosyl-L-methionine biosynthesis
- superpathway of L-tryptophan biosynthesis
- superpathway of anaerobic sucrose degradation
- p-cymene degradation
- glucosinolate biosynthesis from tyrosine
- superpathway of glycol metabolism and degradation
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- glycolate and glyoxylate degradation II
- protocatechuate degradation I (meta-cleavage pathway)
- glycolysis IV (plant cytosol)
- trans-4-hydroxy-L-proline degradation II
- indolmycin biosynthesis
- L-lysine biosynthesis II
- L-lysine biosynthesis I
- superpathway of fucose and rhamnose degradation
- glucosinolate biosynthesis from hexahomomethionine
- superpathway of polyamine biosynthesis I
- superpathway of arginine and polyamine biosynthesis
- L-arginine degradation IX (arginine:pyruvate transaminase pathway)
- superpathway of aromatic compound degradation
- phosphopantothenate biosynthesis I
- glycine betaine degradation I
- superpathway of coenzyme A biosynthesis I (bacteria)
- glycine betaine degradation
- glucosinolate biosynthesis from dihomomethionine
- superpathway of pentose and pentitol degradation
- superpathway of quinolone and alkylquinolone biosynthesis
- chitin degradation to ethanol
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- 4-deoxy-L-threo-hex-4-enopyranuronate degradation
- superpathway of microbial D-galacturonate and D-glucuronate degradation
- mixed acid fermentation
- streptomycin biosynthesis
- superpathway of glyoxylate bypass and TCA
- phenolphthiocerol biosynthesis
- superpathway of testosterone and androsterone degradation
- phenazine-1-carboxylate biosynthesis
- superpathway of central carbon metabolism
- IAA biosynthesis I
- pyridoxamine anabolism
- alanine biosynthesis II
- superpathway of alanine biosynthesis
- alanine biosynthesis I
- superpathway of L-lysine degradation
- superpathway of tetrahydrofolate biosynthesis
- superpathway of tetrahydrofolate biosynthesis and salvage
- isopropanol biosynthesis (engineered)
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation
- pyruvate fermentation to acetone
- superpathway of Clostridium acetobutylicum solventogenic fermentation
- p-HBAD biosynthesis
- superpathway of glycolysis and the Entner-Doudoroff pathway
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- Entner-Doudoroff pathway I
- Entner-Doudoroff shunt
- spermidine biosynthesis I
- gluconeogenesis I
- glycolysis II (from fructose 6-phosphate)
- glycolysis I (from glucose 6-phosphate)
- seleno-amino acid biosynthesis
- glucosinolate biosynthesis from pentahomomethionine
- itaconate biosynthesis
- methionine biosynthesis
- superpathway of threonine degradation
- ammonia oxidation III
- purine nucleotides degradation IV (anaerobic)
- glutamate degradation VII (to butanoate)
- glutamate degradation VI (to pyruvate)
- alanine degradation II (to D-lactate)
- glutamine biosynthesis III
- superpathway of threonine metabolism
- glutathione-mediated detoxification
- superpathway of lysine, threonine and methionine biosynthesis II
- isoleucine biosynthesis I
- superpathway of lysine, threonine and methionine biosynthesis I
- methionine biosynthesis II
- methionine biosynthesis I
- isoleucine biosynthesis I (from threonine)
- gluconeogenesis II (Methanobacterium thermoautotrophicum)
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- superpathway of cholesterol degradation II (cholesterol dehydrogenase)
- superpathway of cholesterol degradation I (cholesterol oxidase)
- ephedrine biosynthesis
- ethylene glycol biosynthesis (engineered)
- rosmarinic acid biosynthesis II
- pyruvate fermentation to acetate and lactate II
- pyruvate fermentation to acetate I
- vitamin B6 degradation
- crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
- superpathway of rosmarinic acid biosynthesis
- Entner-Doudoroff pathway II (non-phosphorylative)
- pyruvate fermentation to (R)-acetoin II
- L-lysine degradation IX
- superpathway of Clostridium acetobutylicum acidogenic fermentation
- gliotoxin biosynthesis
- L-carnitine degradation III
- methylgallate degradation
- reductive TCA cycle I
- D-glucarate degradation I
- hexitol fermentation to lactate, formate, ethanol and acetate
- orcinol degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- 4-hydroxyphenylacetate degradation
- purine nucleobases degradation II (anaerobic)
- superpathway of aromatic compound degradation via 3-oxoadipate
- anaerobic energy metabolism (invertebrates, cytosol)
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation
- 2-hydroxypenta-2,4-dienoate degradation
- superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP)
- superpathway of (R,R)-butanediol biosynthesis
- superpathway of 2,3-butanediol biosynthesis
- taxadiene biosynthesis (engineered)
- superpathway of penicillin, cephalosporin and cephamycin biosynthesis
- L-valine biosynthesis
- gentisate degradation II
- isopenicillin N biosynthesis
- meta cleavage pathway of aromatic compounds
- superpathway of β-D-glucuronosides degradation
- 5-nitroanthranilate degradation
- glycolysis V (Pyrococcus)
- glycolysis III (from glucose)
- L-rhamnose degradation II
- catechol degradation II (meta-cleavage pathway)
- catechol degradation I (meta-cleavage pathway)
- pyruvate fermentation to lactate
- glycogen biosynthesis I (from ADP-D-Glucose)
- androstenedione degradation
- gallate degradation II
- superpathway of D-glucarate and D-galactarate degradation
- Entner-Doudoroff pathway III (semi-phosphorylative)
- mandelate degradation to acetyl-CoA
- L-malate degradation II
- methylerythritol phosphate pathway I
- methylerythritol phosphate pathway II
- superpathway of phylloquinol biosynthesis
- D-galacturonate degradation I
- D-fructuronate degradation
- D-galactonate degradation
- superpathway of hexuronide and hexuronate degradation
- superpathway of ubiquinol-8 biosynthesis (prokaryotic)
- superpathway of L-threonine metabolism
- trans-4-hydroxy-L-proline degradation I
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- superpathway of L-methionine salvage and degradation
- L-isoleucine biosynthesis IV
- L-isoleucine biosynthesis II
- glycolysis I
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle
- superpathway of glycolysis and Entner-Doudoroff
- glycolysis II
- tetrahydrofolate biosynthesis I
- D-lactate to cytochrome bo oxidase electron transfer
- proline to cytochrome bo oxidase electron transfer
- pyruvate to cytochrome bo oxidase electron transfer
- ethanolamine utilization
- pyruvate fermentation to ethanol I
- methylglyoxal degradation VI
- coenzyme M biosynthesis I
- coelimycin P1 biosynthesis
- lactate oxidation
- isoprene biosynthesis I
- γ-coniciene and coniine biosynthesis
- pyruvate fermentation to isobutanol (engineered)
- L-glutamate degradation VII (to butanoate)
- L-glutamate degradation VI (to pyruvate)
- superpathway of seleno-compound metabolism
- superpathway of L-isoleucine biosynthesis I
- prodigiosin biosynthesis
- superpathway of acetoin and butanediol biosynthesis
- polybrominated dihydroxylated diphenyl ethers biosynthesis
- spongiadioxin C biosynthesis
- glucosinolate biosynthesis from tetrahomomethionine
- ovothiol A biosynthesis
- glyoxalase pathway
- respiration (anaerobic)
- oxaloacetate degradation to pyruvate
- lysine biosynthesis VI
- lysine biosynthesis I
PlantCyc(23)
- lupanine biosynthesis
- superpathway of anaerobic sucrose degradation
- glucosinolate biosynthesis from tyrosine
- glycolysis IV (plant cytosol)
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- superpathway of Allium flavor precursors
- alliin metabolism
- glucosinolate biosynthesis from pentahomomethionine
- ephedrine biosynthesis
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- 1,4-dihydroxy-2-naphthoate biosynthesis II (plants)
- superpathway of phylloquinol biosynthesis
- rosmarinic acid biosynthesis II
- superpathway of rosmarinic acid biosynthesis
- 2-carboxy-1,4-naphthoquinol biosynthesis
- superpathway of seleno-compound metabolism
- hypoglycin biosynthesis
- L-methionine biosynthesis II
- L-methionine biosynthesis II (plants)
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II
- seleno-amino acid biosynthesis (plants)
- isoprene biosynthesis I
- glucosinolate biosynthesis from tetrahomomethionine
代谢反应
2350 个相关的代谢反应过程信息。
Reactome(250)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
L-Ala + glyoxylate ⟶ Gly + PYR
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
L-Ala + glyoxylate ⟶ Gly + PYR
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
3MPYR + MPST ⟶ PYR + Q8I5Y1
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
MTAD + Pi ⟶ Ade + MTRIBP
- Degradation of cysteine and homocysteine:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Degradation of cysteine and homocysteine:
3MPYR + MPST ⟶ PYR + Q8I5Y1
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-KYN + PYR ⟶ AP-DOBu + L-Ala
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
Glu + OAA ⟶ 2OG + L-Asp
- Glucose metabolism:
Glu + OAA ⟶ 2OG + L-Asp
- Glycolysis:
ADP + H+ + PEP ⟶ ATP + PYR
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Phenylalanine and tyrosine metabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism of RNA:
Editosome for C to U editing + H2O ⟶ C to U edited ApoB RNA:Editosome complex + ammonia
- tRNA processing:
H2O ⟶ ammonia
- tRNA modification in the nucleus and cytosol:
H2O ⟶ ammonia
- Synthesis of wybutosine at G37 of tRNA(Phe):
2OG + dioxygen ⟶ SUCCA + carbon dioxide
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
3POPA + L-Glu ⟶ 2OG + O-P-Ser
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
3POPA + L-Glu ⟶ 2OG + O-P-Ser
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Gluconeogenesis:
Glu + OAA ⟶ 2OG + L-Asp
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Gluconeogenesis:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Pyruvate metabolism:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Selenoamino acid metabolism:
H2O + SeMet ⟶ 2OBUTA + MeSeH + ammonia
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
H2O + SeMet ⟶ 2OBUTA + MeSeH + ammonia
- Carbohydrate metabolism:
Glu + OAA ⟶ 2OG + L-Asp
- Gluconeogenesis:
Glu + OAA ⟶ 2OG + L-Asp
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
BioCyc(544)
- methylgallate degradation:
H+ + oxaloacetate ⟶ CO2 + pyruvate
- protocatechuate degradation I (meta-cleavage pathway):
O2 + protocatechuate ⟶ 2-hydroxy-4-carboxymuconate-6-semialdehyde + H+
- gallate degradation II:
4-carboxy-4-hydroxy-2-oxoadipate ⟶ oxaloacetate + pyruvate
- L-cysteine degradation III:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glt
- L-cysteine degradation III:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glt
- homocysteine and cysteine interconversion:
O-acetyl-L-homoserine + cys ⟶ H+ + L-cystathionine + acetate
- methionine biosynthesis:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- aspartate superpathway:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- superpathway of lysine, threonine and methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- superpathway of lysine, threonine and methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- lactate oxidation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- lactate oxidation:
ATP + acetate ⟶ ADP + acetyl phosphate
- pyruvate fermentation to propionate I:
(S)-methylmalonyl-CoA + pyruvate ⟶ oxaloacetate + propanoyl-CoA
- Entner-Doudoroff pathway I:
2-dehydro-3-deoxy-D-gluconate-6-phosphate ⟶ D-glyceraldehyde-3-phosphate + pyruvate
- Entner-Doudoroff pathway III (semi-phosphorylative):
α-D-glucose ⟶ β-D-glucose
- superpathway of glycolysis and Entner-Doudoroff:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation:
N-acetyl-D-glucosamine-6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- N-acetylneuraminate and N-acetylmannosamine degradation:
N-acetyl-D-mannosamine + ATP ⟶ N-acetyl-D-mannosamine-6-phosphate + ADP + H+
- naphthalene degradation (aerobic):
H2O + trans-O-hydroxybenzylidenepyruvate ⟶ pyruvate + salicylaldehyde
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate:
O2 + catechol ⟶ H+ + HMS
- naphthalene degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- naphthalene degradation (aerobic):
H2O + NAD+ + salicylaldehyde ⟶ H+ + NADH + salicylate
- naphthalene degradation (aerobic):
H2O + trans-O-hydroxybenzylidenepyruvate ⟶ pyruvate + salicylaldehyde
- 2-methylcitrate cycle I:
ATP + coenzyme A + propionate ⟶ AMP + H+ + diphosphate + propanoyl-CoA
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of glycolysis and the Entner-Doudoroff pathway:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- mixed acid fermentation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- D-malate degradation:
(R)-malate + NAD+ ⟶ CO2 + NADH + pyruvate
- superpathway of N-acetylneuraminate degradation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of hexitol degradation (bacteria):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis II (from fructose 6-phosphate):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis I (from glucose 6-phosphate):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis IV (plant cytosol):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Entner-Doudoroff pathway I:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of anaerobic sucrose degradation:
β-D-fructofuranose + ATP ⟶ ADP + F6P + H+
- superpathway of hexitol degradation (bacteria):
an [HPr protein]-Nπ-phospho-L-histidine + galactitol ⟶ an [HPr]-L-histidine + galactitol 1-phosphate
- mixed acid fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of glycolysis and the Entner-Doudoroff pathway:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- D-malate degradation:
(R)-malate + NAD+ ⟶ CO2 + NADH + pyruvate
- glycolysis I (from glucose 6-phosphate):
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis II (from fructose 6-phosphate):
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis I (from glucose 6-phosphate):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis IV (plant cytosol):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis II (from fructose 6-phosphate):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- pyruvate fermentation to propanoate I:
(S)-methylmalonyl-CoA + pyruvate ⟶ oxaloacetate + propanoyl-CoA
- L-rhamnose degradation II:
2-dehydro-3-deoxy-L-rhamnonate ⟶ (S)-lactaldehyde + pyruvate
- prodigiosin biosynthesis:
2-methyl-3-pentyl-1H-pyrrole + 4-methoxy-2,2'-bipyrrole-5-carbaldehyde + ATP ⟶ ADP + H+ + phosphate + prodigiosin
- seleno-amino acid biosynthesis:
L-selenocysteine + O-phospho-L-homoserine ⟶ L-selenocystathionine + phosphate
- seleno-amino acid biosynthesis:
H2O + L-selenocystathionine ⟶ H+ + ammonia + pyruvate + selenohomocysteine
- gluconeogenesis:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- incomplete reductive TCA cycle:
ATP + hydrogencarbonate + pyruvate ⟶ ADP + H+ + oxaloacetate + phosphate
- gluconeogenesis III:
ATP + hydrogencarbonate + pyruvate ⟶ ADP + H+ + oxaloacetate + phosphate
- gluconeogenesis II (Methanobacterium thermoautotrophicum):
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- Methanobacterium thermoautotrophicum biosynthetic metabolism:
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- aspartate biosynthesis:
2-oxoglutarate + asp ⟶ glu + oxaloacetate
- gluconeogenesis:
ATP + oxaloacetate ⟶ ADP + CO2 + phosphoenolpyruvate
- gluconeogenesis III:
ATP + hydrogencarbonate + pyruvate ⟶ ADP + H+ + oxaloacetate + phosphate
- aspartate biosynthesis:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- aspartate biosynthesis II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- aspartate threonine lysine biosynthesis superpathway:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- Methanobacterium thermoautotrophicum biosynthetic metabolism:
2-oxoglutarate + ala ⟶ glt + pyruvate
- gluconeogenesis II (Methanobacterium thermoautotrophicum):
NADP+ + formate ⟶ CO2 + NADPH
- itaconate biosynthesis:
citrate ⟶ cis-aconitate + H2O
- itaconate biosynthesis:
citrate ⟶ cis-aconitate + H2O
- incomplete reductive TCA cycle:
2-oxoglutarate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + a reduced ferredoxin [iron-sulfur] cluster + succinyl-CoA
- incomplete reductive TCA cycle:
2-oxoglutarate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster + succinyl-CoA
- 2,5-xylenol and 3,5-xylenol degradation:
(2E)-3-methyl-4,6-dioxohept-2-enedioate + H2O ⟶ H+ + citraconate + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-4-(methylsulfanyl)butanal oxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-(methylsulfanyl)-4-aci-nitrobutane + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of microbial D-galacturonate and D-glucuronate degradation:
aldehydo-D-glucuronate ⟶ D-fructuronate
- D-galacturonate degradation III:
NADP+ + glycerol ⟶ H+ + L-glyceraldehyde + NADPH
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- 2-chloroacrylate degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- D-lactate to cytochrome bo oxidase electron transfer:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate to cytochrome bd oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bo oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- superpathway of methylglyoxal degradation:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + acetol
- methylglyoxal degradation I:
(R)-S-lactoylglutathione + H2O ⟶ (R)-lactate + H+ + glutathione
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- D-lactate to cytochrome bo oxidase electron transfer:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- superpathway of methylglyoxal degradation:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- pyruvate to cytochrome bd oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bo oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate to cytochrome bo oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- D-lactate to cytochrome bo oxidase electron transport:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate to cytochrome bd terminal oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- D-lactate to cytochrome bo oxidase electron transfer:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate to cytochrome bo oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bd oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- aerobic respiration -- electron donors reaction list:
UQ + succinate ⟶ UQH2 + fumarate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate to cytochrome bd terminal oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bd terminal oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate to cytochrome bd oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- superpathway of nicotinate degradation:
6-hydroxynicotinate + H+ + NADH + O2 ⟶ 2,5-dihydroxypyridine + CO2 + H2O + NAD+
- nicotinate degradation III:
6-oxo-1,4,5,6-tetrahydronicotinate + H2O ⟶ (S)-2-formylglutarate + ammonium
- IAA biosynthesis I:
acetate + indole ⟶ H+ + indole-3-acetate
- pyridoxamine anabolism:
pyridoxamine + pyruvate ⟶ ala + pyridoxal
- alanine biosynthesis II:
2-oxoglutarate + ala ⟶ glt + pyruvate
- alanine degradation III:
2-oxoglutarate + ala ⟶ glt + pyruvate
- alanine degradation III:
2-oxoglutarate + ala ⟶ glt + pyruvate
- superpathway of alanine biosynthesis:
pyruvate + val ⟶ 2-oxoisovalerate + ala
- pyridoxamine anabolism:
pyridoxamine + pyruvate ⟶ ala + pyridoxal
- β-alanine biosynthesis II:
FADH2 + acrylyl-CoA ⟶ FAD + H+ + propanoyl-CoA
- alanine biosynthesis II:
2-oxoglutarate + ala ⟶ glt + pyruvate
- alanine biosynthesis I:
pyruvate + val ⟶ 2-oxoisovalerate + ala
- chitin degradation to ethanol:
H2O + chitin ⟶ acetate + chitosan
- long chain fatty acid ester synthesis (engineered):
UQ + ethanol ⟶ UQH2 + acetaldehyde
- pyruvate fermentation to acetate VIII:
H2O + NADP+ + acetaldehyde ⟶ H+ + NADPH + acetate
- pyruvate fermentation to acetoin III:
acetaldehyde ⟶ acetoin
- superpathway of fermentation (Chlamydomonas reinhardtii):
H2 + an oxidized ferredoxin [iron-sulfur] cluster ⟶ H+ + a reduced ferredoxin [iron-sulfur] cluster
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- p-cymene degradation:
p-cymene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 4-isopropylbenzyl alcohol + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- p-cumate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + catechol ⟶ H+ + HMS
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2-hydroxypenta-2,4-dienoate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- meta cleavage pathway of aromatic compounds:
O2 + catechol ⟶ H+ + HMS
- catechol degradation II (meta-cleavage pathway):
O2 + catechol ⟶ H+ + HMS
- catechol degradation I (meta-cleavage pathway):
O2 + catechol ⟶ H+ + HMS
- toluene degradation I (aerobic) (via o-cresol):
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- L-tryptophan degradation IX:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- toluene degradation IV (aerobic) (via catechol):
O2 + catechol ⟶ H+ + HMS
- mandelate degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- L-tryptophan degradation XII (Geobacillus):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- toluene degradation II (aerobic) (via 4-methylcatechol):
H+ + NADH + O2 + toluene ⟶ 4-methylphenol + H2O + NAD+
- toluene degradation V (aerobic) (via toluene-cis-diol):
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of aerobic toluene degradation:
4-methylphenol + H2O + an oxidized azurin ⟶ 4-hydroxybenzyl alcohol + H+ + a reduced azurin
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation:
3-(3-hydroxyphenyl)propanoate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- 2-hydroxypenta-2,4-dienoate degradation:
(S)-4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- acetoin biosynthesis III:
H+ + acetaldehyde + pyruvate ⟶ CO2 + acetoin
- superpathway of acetoin and butanediol biosynthesis:
H+ + acetaldehyde + pyruvate ⟶ CO2 + acetoin
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- chitin degradation to ethanol:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to acetate VIII:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- 3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation:
3-(3-hydroxyphenyl)propionate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + trp ⟶ N-formylkynurenine
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- 3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation:
3-(3-hydroxyphenyl)propionate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- 3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation:
3-(3-hydroxyphenyl)propionate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ephedrine biosynthesis:
(+)-norpseudoephedrine + SAM ⟶ H+ + SAH + pseudoephedrine
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinopyruvate + glu
- superpathway of methionine degradation:
2-oxobutanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + propanoyl-CoA
- (R)-cysteate degradation:
(2R)-3-sulfolactate ⟶ H+ + pyruvate + sulfite
- L-cysteine degradation I:
3-sulfinopyruvate + H2O ⟶ H+ + pyruvate + sulfite
- sulfolactate degradation III:
H2O + L-cysteate ⟶ H+ + ammonium + pyruvate + sulfite
- superpathway of sulfolactate degradation:
H2O + L-cysteate ⟶ H+ + ammonium + pyruvate + sulfite
- sulfolactate degradation I:
(2R)-3-sulfolactate ⟶ H+ + pyruvate + sulfite
- superpathway of L-methionine salvage and degradation:
L-homocysteine + glycine betaine ⟶ N,N-dimethylglycine + met
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- superpathway of methionine degradation:
S-adenosyl-L-homocysteine + H2O ⟶ L-homocysteine + adenosine
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinopyruvate + glt
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfino-L-alanine ⟶ 3-sulfinopyruvate + glu
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinopyruvate + glt
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- ammonia oxidation III:
A(H2) + O2 + ammonia ⟶ A + H2O + hydroxylamine
- ammonia oxidation III:
A(H2) + O2 + ammonia ⟶ A + H2O + hydroxylamine
- L-rhamnose degradation II:
H2O + L-lactaldehyde + NADP+ ⟶ (S)-lactate + H+ + NADPH
- tetrahydrofolate biosynthesis I:
6-hydroxymethyl-7,8-dihydropterin + ATP ⟶ 6-hydroxymethyl-dihydropterin diphosphate + AMP + H+
- lysine biosynthesis VI:
2-oxoglutarate + L,L-diaminopimelate ⟶ H2O + H+ + glt + tetrahydrodipicolinate
- lysine biosynthesis I:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + glt
- methylglyoxal degradation VII:
H2O + NAD+ + methylglyoxal ⟶ H+ + NADH + pyruvate
- methylglyoxal degradation II:
H2O + NADP+ + methylglyoxal ⟶ H+ + NADPH + pyruvate
- superpathway of threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- isoleucine biosynthesis I:
thr ⟶ 2-oxobutanoate + H+ + ammonia
- isoleucine biosynthesis I (from threonine):
thr ⟶ 2-oxobutanoate + H+ + ammonia
- superpathway of central carbon metabolism:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis II:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- coelimycin P1 biosynthesis:
(2E,5S,6E,8E,10E)-1-aminododeca-2,6,8,10-tetraen-5-ol + pyruvate ⟶ (2E,5S,6E,8E,10E)-5-hydroxydodeca-2,6,8,10-tetraenal + ala
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- sulfolactate degradation III:
(R)-cysteate + H2O ⟶ H+ + ammonia + bisulfite + pyruvate
- (R)-cysteate degradation:
(R)-cysteate + 2-oxoglutarate ⟶ 3-sulfopyruvate + glt
- glucosinolate biosynthesis from tryptophan:
1-hydroxyglucobrassicin + SAM ⟶ H+ + SAH + neoglucobrassicin
- L-carnitine degradation III:
H+ + L-carnitine + NAD(P)H + O2 ⟶ H2O + L-malic semialdehyde + NAD(P)+ + trimethylamine
- anaerobic energy metabolism (invertebrates, mitochondrial):
ATP + hydrogencarbonate + propanoyl-CoA ⟶ (S)-methylmalonyl-CoA + ADP + H+ + phosphate
- superpathway of anaerobic energy metabolism (invertebrates):
ATP + hydrogencarbonate + propanoyl-CoA ⟶ (S)-methylmalonyl-CoA + ADP + H+ + phosphate
- 4-hydroxyphenylacetate degradation:
(4Z)-2-oxohept-4-enedioate + H2O ⟶ (4S)-4-hydroxy-2-oxoheptanedioate
- anaerobic energy metabolism (invertebrates, cytosol):
GTP + oxaloacetate ⟶ CO2 + GDP + phosphoenolpyruvate
- gluconeogenesis I:
β-D-fructose 1,6-bisphosphate ⟶ D-glyceraldehyde 3-phosphate + DHAP
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- androstenedione degradation:
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- gallate degradation II:
2-hydroxy-4-oxobutane-1,2,4-tricarboxylate ⟶ oxaloacetate + pyruvate
- L-malate degradation II:
(S)-malate + NAD+ ⟶ CO2 + NADH + pyruvate
- C4 photosynthetic carbon assimilation cycle, NAD-ME type:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- gluconeogenesis I:
(S)-malate + NADP+ ⟶ CO2 + NADPH + pyruvate
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + O2 ⟶ (1E,2Z)-3-hydroxy-5,9,17-trioxo-4,5:9,10-disecoandrosta-1 (10),2-dien-4-oate + H+
- androstenedione degradation:
3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + O2 ⟶ (1E,2Z)-3-hydroxy-5,9,17-trioxo-4,5:9,10-disecoandrosta-1 (10),2-dien-4-oate + H+
- ergothioneine biosynthesis I (bacteria):
ergothioneine (thione form) ⟶ ergothioneine
- ergothioneine biosynthesis II (fungi):
ergothioneine (thione form) ⟶ ergothioneine
- ergothioneine biosynthesis I (bacteria):
ergothioneine (thione form) ⟶ ergothioneine
- Entner-Doudoroff pathway II (non-phosphorylative):
D-glucopyranose + NADP+ ⟶ D-glucono-1,5-lactone + H+ + NADPH
- Entner-Doudoroff pathway II (non-phosphorylative):
α-D-glucose ⟶ β-D-glucose
- 4-nitrotoluene degradation II:
(S)-4-hydroxy-2-oxohexanoate + A ⟶ (3Z)-4-hydroxy-2-oxohexenoate + A(H2)
- superpathway of cholesterol degradation I (cholesterol oxidase):
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- superpathway of testosterone and androsterone degradation:
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
- superpathway of testosterone and androsterone degradation:
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
- androstenedione degradation:
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
- superpathway of cholesterol degradation I (cholesterol oxidase):
O2 + cholesterol ⟶ cholest-5-en-3-one + hydrogen peroxide
- androstenedione degradation:
5-hydroxy-3-[(3aS,4S,5R,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA + NADP+ ⟶ 3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA + H+ + NADPH
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
NAD+ + cholesterol ⟶ H+ + NADH + cholest-5-en-3-one
- androstenedione degradation:
5-hydroxy-3-[(3aS,4S,5R,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA + NADP+ ⟶ 3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA + H+ + NADPH
- pyruvate oxidation pathway:
ATP + acetate + coenzyme A ⟶ AMP + acetyl-CoA + diphosphate
- purine nucleobases degradation II (anaerobic):
3,5-dihydro-4H-imidazol-4-one + H2O ⟶ N-formimino-glycine
- D-galactarate degradation I:
ATP + D-glycerate ⟶ 2-phospho-D-glycerate + ADP + H+
- D-glucarate degradation I:
ATP + D-glycerate ⟶ 2-phospho-D-glycerate + ADP + H+
- superpathway of D-glucarate and D-galactarate degradation:
ATP + D-glycerate ⟶ 2-phospho-D-glycerate + ADP + H+
- juglone degradation:
3,5-dihydroxy-1,4-naphthoquinol + H2O + O2 ⟶ 2,3-dihydroxybenzoate + H+ + pyruvate
- superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose-6-phosphate + H+ + ammonia
- N-acetylneuraminate and N-acetylmannosamine degradation:
N-acetyl-D-mannosamine + ATP ⟶ N-acetyl-D-mannosamine-6-phosphate + ADP + H+
- superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose-6-phosphate + H+ + ammonia
- N-acetylneuraminate and N-acetylmannosamine degradation:
N-acetyl-D-mannosamine + ATP ⟶ N-acetyl-D-mannosamine-6-phosphate + ADP + H+
- 2,4-dinitrotoluene degradation:
2,4-dinitrotoluene + NADH + O2 ⟶ 4-methyl-5-nitrocatechol + NAD+ + nitrite
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
2-oxoglutarate + 4-aminobutanoate ⟶ glu + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-hydroxybutanoate + NAD(P)+ ⟶ H+ + NAD(P)H + succinate semialdehyde
- 4-hydroxyphenylacetate degradation:
4-hydroxyphenylacetate + FADH2 + O2 ⟶ 3,4-dihydroxyphenylacetate + FAD + H+ + H2O
- 4-aminobutyrate degradation IV:
4-aminobutyrate + pyruvate ⟶ ala + succinate semialdehyde
- glutamate degradation IV:
4-aminobutyrate + pyruvate ⟶ ala + succinate semialdehyde
- glutamate degradation IV:
4-aminobutyrate + pyruvate ⟶ ala + succinate semialdehyde
- 4-hydroxyphenylacetate degradation:
4-hydroxyphenylacetate + FADH2 + O2 ⟶ 3,4-dihydroxyphenylacetate + FAD + H+ + H2O
- 4-hydroxyphenylacetate degradation:
4-hydroxyphenylacetate + FADH2 + O2 ⟶ 3,4-dihydroxyphenylacetate + FAD + H+ + H2O
- 4-hydroxyphenylacetate degradation:
4-hydroxyphenylacetate + FADH2 + O2 ⟶ 3,4-dihydroxyphenylacetate + FAD + H2O
- Bifidobacterium shunt:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to lactate:
(S)-lactate + NAD+ ⟶ H+ + NADH + pyruvate
- hydrogen sulfide biosynthesis II (mammalian):
H2O + cys ⟶ ammonium + hydrogen sulfide + pyruvate
- L-cysteine degradation II:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glu
- hydrogen sulfide biosynthesis II (mammalian):
H2O + cys ⟶ ammonium + hydrogen sulfide + pyruvate
- L-cysteine degradation III:
3-mercaptopyruvate + a reduced thioredoxin ⟶ an oxidized thioredoxin + hydrogen sulfide + pyruvate
- hydrogen sulfide biosynthesis I:
3-mercaptopyruvate ⟶ hydrogen sulfide + pyruvate
- hydrogen sulfide biosynthesis I:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glu
- L-cysteine degradation II:
H2O + cys ⟶ H+ + ammonia + hydrogen sulfide + pyruvate
- hydrogen sulfide biosynthesis I:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glt
- hydrogen sulfide biosynthesis I:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glt
- L-cysteine degradation II:
H2O + cys ⟶ H+ + ammonia + hydrogen sulfide + pyruvate
- L-cysteine degradation II:
H2O + cys ⟶ H+ + ammonia + hydrogen sulfide + pyruvate
- glutathione-mediated detoxification I:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of seleno-compound metabolism:
NADP+ + glutathione + hydrogen selenide ⟶ H+ + NADPH + glutathioselenol
- seleno-amino acid biosynthesis (plants):
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-tryptophan degradation II (via pyruvate):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- coenzyme M biosynthesis II:
3-phospho-L-serine + H+ + sulfite ⟶ L-cysteate + phosphate
- coenzyme M biosynthesis I:
(2R)-phospho-3-sulfolactate ⟶ H+ + phosphoenolpyruvate + sulfite
- gliotoxin biosynthesis:
3-benzyl-3,6 -dithio-6-(hydroxymethyl)-diketopiperazine + O2 ⟶ 3-benzyl-3,6 -disulfide-6-(hydroxymethyl)-diketopiperazine + hydrogen peroxide
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation I:
D-ala + H2O + an electron-transfer quinone ⟶ ammonium + an electron-transfer quinol + pyruvate
- glycine betaine degradation I:
H2O + O2 + sarcosine ⟶ formaldehyde + gly + hydrogen peroxide
- glucosinolate biosynthesis from tetrahomomethionine:
L-tetrahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-7-(methyltsulfanyl)heptanal oxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from phenylalanine:
(Z)-2-phenyl-1-thioacetohydroximate + UDP-α-D-glucose ⟶ UDP + desulfoglucotropaeolin
- glucosinolate biosynthesis from pentahomomethionine:
(E)-8-(methylsulfanyl)octanal oxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-(methylsulfanyl)-8-aci-nitrooctane + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from dihomomethionine:
4-(methylsulfanyl)butyl-desulfoglucosinolate + PAPS ⟶ 3',5'-ADP + 4-(methylsulfanyl)butyl-glucosinolate + H+
- glucosinolate biosynthesis from hexahomomethionine:
1-(methylsulfanyl)-9-aci-nitrononane + glutathione ⟶ (E)-1-(glutathion-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O
- glucosinolate biosynthesis from trihomomethionine:
(E)-6-(methylsulfanyl)hexanal oxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-(methylsulfanyl)-6-aci-nitrohexane + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from tyrosine:
PAPS + desulfosinalbin ⟶ 3',5'-ADP + H+ + sinalbin
- superpathway of L-methionine biosynthesis (transsulfuration):
L-homocysteine + a 5-methyltetrahydrofolate ⟶ a tetrahydrofolate + met
- L-methionine biosynthesis II (plants):
ATP + L-homoserine ⟶ ADP + H+ + O-phospho-L-homoserine
- superpathway of L-homoserine and L-methionine biosynthesis:
L-homocysteine + a 5-methyltetrahydrofolate ⟶ a tetrahydrofolate + met
- L-methionine biosynthesis I:
L-homocysteine + a 5-methyltetrahydrofolate ⟶ a tetrahydrofolate + met
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-cysteine biosynthesis (fungi):
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- homocysteine and cysteine interconversion:
H2O + L-cystathionine ⟶ 2-oxobutanoate + ammonium + cys
- superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae):
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I:
ATP + L-homoserine ⟶ ADP + H+ + O-phospho-L-homoserine
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
ATP + L-homoserine ⟶ ADP + H+ + O-phospho-L-homoserine
- (Z)-phenylmethanethial S-oxide biosynthesis:
phenylmethanesulfenate ⟶ H2O + petivericin
- propanethial S-oxide biosynthesis:
(E) 1-propenylsulfenate ⟶ (Z)-propanethial S-oxide
- glutathione-mediated detoxification I:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- ethiin metabolism:
S-ethyl-L-cysteine + H2O + O2 ⟶ ethiin + hydrogen peroxide
- methiin metabolism:
methanesulfenate ⟶ H2O + dimethyl thiosulfinate
- superpathway of Allium flavor precursors:
(E) 1-propenylsulfenate ⟶ (Z)-propanethial S-oxide
- alliin metabolism:
allicin ⟶ allylsulfenate + thioacrolein
- L-cysteine degradation II:
cys ⟶ 2-aminoprop-2-enoate + hydrogen sulfide
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- aspartate superpathway:
ATP + L-homoserine ⟶ ADP + H+ + O-phospho-L-homoserine
- superpathway of S-adenosyl-L-methionine biosynthesis:
ATP + H2O + met ⟶ SAM + diphosphate + phosphate
- superpathway of S-adenosyl-L-methionine biosynthesis:
ATP + asp ⟶ ADP + L-aspartyl-4-phosphate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I:
2-oxoglutarate + asp ⟶ glu + oxaloacetate
- L-tryptophan degradation II (via pyruvate):
trp ⟶ 2-aminoprop-2-enoate + indole
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-alanine degradation I:
ala ⟶ D-ala
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis I:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- aspartate superpathway:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- superpathway of L-homoserine and L-methionine biosynthesis:
ATP + asp ⟶ ADP + L-aspartyl-4-phosphate
- superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae):
ATP + H+ + sulfate ⟶ APS + diphosphate
- homocysteine and cysteine interconversion:
H2O + L-cystathionine ⟶ L-homocysteine + ammonium + pyruvate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- cysteine biosynthesis IV (fungi):
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- L-cysteine degradation II:
cys ⟶ 2-aminoprop-2-enoate + H+ + hydrogen sulfide
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-methionine biosynthesis (transsulfuration):
2-oxoglutarate + asp ⟶ Glu + oxaloacetate
- L-homoserine and L-methionine biosynthesis:
ATP + asp ⟶ ADP + L-aspartyl-4-phosphate
- L-methionine biosynthesis I:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-tryptophan degradation II (via pyruvate):
trp ⟶ 2-aminoprop-2-enoate + indole
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-alanine degradation I:
ala ⟶ D-ala
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + Glu
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- aspartate superpathway:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- D-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- alanine degradation I:
ala ⟶ D-ala
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- tryptophan degradation II (via pyruvate):
trp ⟶ 2-aminoprop-2-enoate + H+ + indole
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- alanine degradation I:
ala ⟶ D-ala
- alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
D-serine ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- alanine degradation I:
ala ⟶ D-alanine
- tryptophan degradation II (via pyruvate):
H2O + trp ⟶ ammonium + indole + pyruvate
- D-serine degradation:
D-serine ⟶ ammonium + pyruvate
- alanine degradation I:
ala ⟶ D-alanine
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- methionine biosynthesis I:
H2O + L-cystathionine ⟶ L-homocysteine + ammonium + pyruvate
- superpathway of methionine biosynthesis (transsulfuration):
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- homoserine and methionine biosynthesis:
L-aspartate-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- L-serine degradation:
ser ⟶ ammonium + pyruvate
- superpathway of S-adenosyl-L-methionine biosynthesis:
L-aspartate-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation I:
D-ala + H2O + an electron-transfer quinone ⟶ ammonium + an electron-transfer quinol + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glycine betaine degradation I:
H2O + O2 + sarcosine ⟶ formaldehyde + gly + hydrogen peroxide
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-alanine degradation I:
ala ⟶ D-ala
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- glycine betaine degradation I:
H2O + O2 + sarcosine ⟶ formaldehyde + gly + hydrogen peroxide
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- superpathway of S-adenosyl-L-methionine biosynthesis:
L-aspartate 4-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis I:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-homoserine and L-methionine biosynthesis:
L-aspartate 4-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- glutathione-mediated detoxification I:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- alanine degradation I:
ala ⟶ D-alanine
- tryptophan degradation II (via pyruvate):
H2O + trp ⟶ ammonium + indole + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
D-serine ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
D-serine ⟶ ammonium + pyruvate
- alanine degradation I:
ala ⟶ D-alanine
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- tryptophan degradation II (via pyruvate):
H2O + trp ⟶ ammonium + indole + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- tryptophan degradation II (via pyruvate):
trp ⟶ 2-aminoprop-2-enoate + H+ + indole
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- coenzyme M biosynthesis I:
H2O + sulfoethylcysteine ⟶ ammonium + coenzyme M + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- oxaloacetate degradation to pyruvate:
(S)-malate + NADP+ ⟶ CO2 + NADPH + pyruvate
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis I:
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- Bifidobacterium shunt:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis II:
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- gluconeogenesis I:
(S)-malate + NAD+ ⟶ CO2 + NADH + pyruvate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycolysis IV (plant cytosol):
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glycolysis and Entner-Doudoroff:
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- reductive TCA cycle I:
2-oxoglutarate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + a reduced ferredoxin [iron-sulfur] cluster + succinyl-CoA
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis I:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis V (Pyrococcus):
β-D-glucose + ADP ⟶ β-D-glucose-6-phosphate + AMP + H+
- gluconeogenesis I:
ATP + oxaloacetate ⟶ ADP + CO2 + phosphoenolpyruvate
- glycolysis I:
3-phospho-D-glycerate + ATP ⟶ 1,3-diphosphateglycerate + ADP + H+
- glycolysis I:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- mixed acid fermentation:
citrate ⟶ cis-aconitate + H2O
- respiration (anaerobic):
citrate ⟶ cis-aconitate + H2O
- glycolysis II:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- gluconeogenesis I:
3-phospho-D-glycerate + ATP ⟶ 1,3-diphosphateglycerate + ADP + H+
- γ-coniciene and coniine biosynthesis:
5-oxooctanal + ala ⟶ 8-aminooctan-4-one + pyruvate
- ethylene glycol biosynthesis (engineered):
H+ + NADPH + glycolaldehyde ⟶ NADP+ + ethylene glycol
- L-arabinose degradation IV:
H2O + L-arabinono-1,4-lactone ⟶ H+ + L-arabinonate
- D-xylose degradation IV:
D-xylopyranose + NAD(P)+ ⟶ D-xylono-1,5-lactone + H+ + NAD(P)H
- superpathway of pentose and pentitol degradation:
H2O + L-arabinono-1,4-lactone ⟶ H+ + L-arabinonate
- L-arabinose degradation IIIb:
2-dehydro-3-deoxy-L-arabinonate ⟶ glycolaldehyde + pyruvate
- 2-chloroacrylate degradation II:
2-chloro-2-hydroxypropanoate ⟶ H+ + chloride + pyruvate
- superpathway of (R,R)-butanediol biosynthesis:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- superpathway of (R,R)-butanediol biosynthesis:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- wybutosine biosynthesis:
7-[(3S)-4-methoxy-(3-amino-3-carboxypropyl)]-wyosine37 in tRNAPhe + CO2 + SAM ⟶ H+ + SAH + wybutosine37 in tRNAPhe
- 7-(3-amino-3-carboxypropyl)-wyosine biosynthesis:
SAM + an N1-methylguanine37 in tRNAPhe + pyruvate ⟶ 4-demethylwyosine37 in tRNAPhe + 5'-deoxyadenosine + CO2 + H2O + met
- wybutosine biosynthesis:
4-demethylwyosine37 in tRNAPhe + SAM ⟶ 7-[(3S)-3-amino-3-carboxypropyl]-4-demethylwyosine37 in tRNAPhe + S-methyl-5'-thioadenosine + H+
- methylwyosine biosynthesis:
SAM + an N1-methylguanine37 in tRNAPhe + pyruvate ⟶ 4-demethylwyosine37 in tRNAPhe + 5'-deoxyadenosine + CO2 + H2O + met
- 7-(3-amino-3-carboxypropyl)-wyosine biosynthesis:
4-demethylwyosine37 in tRNAPhe + SAM ⟶ 7-[(3S)-3-amino-3-carboxypropyl]-4-demethylwyosine37 in tRNAPhe + S-methyl-5'-thioadenosine + H+
- wybutosine biosynthesis:
7-[(3S)-4-methoxy-(3-amino-3-carboxypropyl)]-wyosine37 in tRNAPhe + CO2 + SAM ⟶ H+ + SAH + wybutosine37 in tRNAPhe
- 7-(3-amino-3-carboxypropyl)-wyosine biosynthesis:
SAM + an N1-methylguanine37 in tRNAPhe + pyruvate ⟶ 4-demethylwyosine37 in tRNAPhe + 5'-deoxyadenosine + CO2 + H2O + met
- phenolphthiocerol biosynthesis:
19-(4-hydroxyphenyl)nonadecanoyl adenylate + holo-(phenol)carboxyphthiodiolenone synthase ⟶ AMP + H+ + a 19-(4-hydroxyphenyl)-nonadecanoyl-[(phenol)carboxyphthiodiolenone synthase]
- p-HBAD biosynthesis:
dTDP-β-L-rhamnose + p-HBAD-I ⟶ O-methyl-4-O-[α-L-rhamnopyranosyl-(1→3)-2-O-methyl-α-L-rhamnopyranosyl]-hydroxybenzoate + H+ + dTDP
- 4-hydroxybenzoate biosynthesis II (bacteria):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- tetrahydromethanopterin biosynthesis:
7,8-dihydroneopterin ⟶ 6-(hydroxymethyl)-7,8-dihydropterin + glycolaldehyde
- polybrominated phenols biosynthesis:
2,4-dibromophenol + H+ + NADPH + O2 + bromide ⟶ 2,4,6-tribromophenol + H2O + NADP+
- superpathway of polybrominated aromatic compound biosynthesis:
2,4-dibromophenol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 2-bromo-4-(2,4-dibromophenoxy)phenol + H2O + an oxidized ferredoxin [iron-sulfur] cluster + bromide
- polybrominated dihydroxylated diphenyl ethers biosynthesis:
3,5-dibromocatechol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 3-bromo-5-(3,5-dibromo-2-hydroxyphenoxy)benzene-1,2-diol + H2O + an oxidized ferredoxin [iron-sulfur] cluster + bromide
- spongiadioxin C biosynthesis:
2,4-dibromophenol + 3,5-dibromocatechol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 6,6'-oxybis(2,4-dibromophenol) + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of chorismate metabolism:
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-8 biosynthesis (eukaryotic):
3-methoxy-4-hydroxy-5-all-trans-octaprenylbenzoate + H+ ⟶ 2-methoxy-6-(all-trans-octaprenyl)phenol + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- 4-hydroxybenzoate biosynthesis II (bacteria):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of chorismate metabolism:
2-oxoglutarate + phe ⟶ 3-phenyl-2-oxopropanoate + glu
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- 4-hydroxybenzoate biosynthesis II (microbes):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvoyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- 4-hydroxybenzoate biosynthesis II (microbes):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- superpathway of chorismate:
glt + phenylpyruvate ⟶ 2-oxoglutarate + phe
- 4-hydroxybenzoate biosynthesis II (bacteria):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- p-HBAD biosynthesis:
dTDP-β-L-rhamnose + p-HBAD-I ⟶ O-methyl-4-O-[α-L-rhamnopyranosyl-(1→3)-2-O-methyl-α-L-rhamnopyranosyl]-hydroxybenzoate + H+ + dTDP
- phenolphthiocerol biosynthesis:
19-(4-hydroxyphenyl)nonadecanoyl adenylate + holo-(phenol)carboxyphthiodiolenone synthase ⟶ AMP + H+ + a 19-(4-hydroxyphenyl)-nonadecanoyl-[(phenol)carboxyphthiodiolenone synthase]
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- ubiquinol-8 biosynthesis (eukaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- 4-hydroxybenzoate biosynthesis II (microbes):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of chorismate metabolism:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinone-8 biosynthesis (eukaryotic):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of chorismate metabolism:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- ubiquinol-8 biosynthesis (eukaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ + NADPH + O2 ⟶ 3,4-dihydroxy-5-all-trans-octaprenylbenzoate + H2O + NADP+
- tetrahydromethanopterin biosynthesis:
4-(β-D-ribofuranosyl)-N-succinylaminobenzene 5'-phosphate ⟶ 4-(β-D-ribofuranosyl)aminobenzene-5'-phosphate + fumarate
- 4-hydroxybenzoate biosynthesis II (microbes):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
WikiPathways(13)
- Primary carbon metabolism:
malic acid ⟶ pyruvate
- Glycolysis:
malic acid ⟶ pyruvate
- Pyruvate dehydrogenase pathway:
pyruvate ⟶ S-Acetyldihydrolipoamide
- TCA cycle (Krebs cycle):
citrate ⟶ isocitrate
- Lipid metabolism pathway:
Acetate ⟶ Acetyl-CoA(cyt)
- Thiamine metabolic pathways:
alpha-ketoglutarate ⟶ succinate
- Effect of L-carnitine on metabolism:
Phosphoenolpyruvate ⟶ pyruvate
- Ketogenesis and ketolysis:
ACA ⟶ BHB
- TCA cycle in senescence:
Malate ⟶ Pyruvate
- Neuroinflammation and glutamatergic signaling:
L-serine ⟶ D-serine
- Metabolic reprogramming in pancreatic cancer:
lactate ⟶ pyruvate
- Aspartate biosynthesis:
pyruvate ⟶ oxaloacetic acid
- Cori cycle:
erythroses ⟶ D-Fructose-6-phosphate
Plant Reactome(24)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphonooxyethyl)thiazole + ADP
- Folate biosynthesis:
6-hydroxymethyl-dihydropterin + ATP ⟶ 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine diphosphate + AMP
- Tetrahydrofolate biosynthesis II:
6-hydroxymethyl-dihydropterin + ATP ⟶ 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine diphosphate + AMP
- Pyridoxamine anabolism:
PXA + PYR ⟶ L-Ala + PXL
- Lysine biosynthesis I:
L-Glu + N-succinyl-2-amino-6-ketopimelate ⟶ 2OG + N-succinyl-L,L-2,6-diaminopimelate
- Lysine biosynthesis II:
H2O + N-acetyl-L,L-2,6-diaminopimelate ⟶ CH3COO- + L,L-diaminopimelate
- Lysine biosynthesis VI:
H2O + L-2,3,4,5-Tetrahydrodipicolinate + L-Glu ⟶ 2OG + LL-2,6-Diaminopimelate
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Ehrlich pathway:
L-Phe + PYR ⟶ L-Ala + phenylpyruvate
- vitamin K1:
ATP + CoA-SH + O-succinylbenzoate ⟶ 4-(2'-carboxyphenyl)-4-oxobutyryl-CoA + AMP + PPi
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
INOH(0)
PlantCyc(1518)
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation V:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycolysis II (from fructose 6-phosphate):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis IV (plant cytosol):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis I (from glucose 6-phosphate):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- glycolysis IV:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis I (from glucose 6-phosphate):
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis I (from glucose 6-phosphate):
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis IV (plant cytosol):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis II (from fructose 6-phosphate):
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle:
H2O + acetyl-CoA + oxaloacetate ⟶ H+ + citrate + coenzyme A
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycolysis IV (plant cytosol):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis I (from glucose 6-phosphate):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis II (from fructose 6-phosphate):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of anaerobic sucrose degradation:
β-D-fructofuranose + ATP ⟶ ADP + F6P + H+
- superpathway of anaerobic sucrose degradation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- hypoglycin biosynthesis:
glutathione + hypoglycin A ⟶ L-cysteinylglycine + hypoglycin B
- lupanine biosynthesis:
cadaverine + pyruvate ⟶ 17-oxosparteine + H+ + H2O + ala
- lupanine biosynthesis:
cadaverine + pyruvate ⟶ 17-oxosparteine + H+ + H2O + ala
- seleno-amino acid biosynthesis (plants):
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- seleno-amino acid biosynthesis (plants):
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
ATP + hydrogencarbonate + pyruvate ⟶ ADP + H+ + oxaloacetate + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
ATP + hydrogencarbonate + pyruvate ⟶ ADP + H+ + oxaloacetate + phosphate
- gluconeogenesis III:
ATP + hydrogencarbonate + pyruvate ⟶ ADP + H+ + oxaloacetate + phosphate
- reductive TCA cycle I:
ATP + hydrogencarbonate + pyruvate ⟶ ADP + H+ + oxaloacetate + phosphate
- glucosinolate biosynthesis from homomethionine:
H2O + O2 + glucoiberin ⟶ 3-hydroxypropyl-glucosinolate + H+ + methanesulfonate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
O2 + glucoiberin ⟶ H+ + methanesulfonate + sinigrin
- glucosinolate biosynthesis from homomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
H2O + O2 + glucoiberin ⟶ 3-hydroxypropyl-glucosinolate + H+ + methanesulfonate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to acetoin III:
H+ + acetaldehyde + pyruvate ⟶ CO2 + acetoin
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to acetoin III:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of anaerobic sucrose degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of fermentation (Chlamydomonas reinhardtii):
H2 + an oxidized ferredoxin [iron-sulfur] cluster ⟶ H+ + a reduced ferredoxin [iron-sulfur] cluster
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- superpathway of fermentation (Chlamydomonas reinhardtii):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- ephedrine biosynthesis:
(+)-norpseudoephedrine + SAM ⟶ H+ + SAH + pseudoephedrine
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- pyruvate fermentation to acetate IV:
ATP + acetate ⟶ ADP + acetyl phosphate
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to acetate IV:
ATP + acetate ⟶ ADP + acetyl phosphate
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cysteinylglycin-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + gly
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (Z)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tryptophan:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O ⟶ (Z)-2-(1H-indol-3-yl)-1-thioacetohydroximate + H+ + ammonium + pyruvate
- C4 photosynthetic carbon assimilation cycle, NAD-ME type:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
2-oxoglutarate + 4-aminobutanoate ⟶ glu + succinate semialdehyde
- 4-aminobutanoate degradation IV:
H2O + NAD+ + succinate semialdehyde ⟶ H+ + NADH + succinate
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- (Z)-phenylmethanethial S-oxide biosynthesis:
2-aminoprop-2-enoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
5-methyltetrahydropteroyl tri-L-glutamate + L-homocysteine ⟶ met + tetrahydropteroyl tri-L-glutamate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- seleno-amino acid biosynthesis (plants):
5-methyltetrahydropteroyl tri-L-glutamate + seleno-L-homocysteine ⟶ SeMet + tetrahydropteroyl tri-L-glutamate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
5-methyltetrahydropteroyl tri-L-glutamate + L-homocysteine ⟶ met + tetrahydropteroyl tri-L-glutamate
- homocysteine and cysteine interconversion:
H2O + L-cystathionine ⟶ L-homocysteine + ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of seleno-compound metabolism:
H2O + O2 + dimethylselenopropanoate-amine ⟶ 3-dimethylselenopropionaldehyde + ammonium + hydrogen peroxide
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- (Z)-phenylmethanethial S-oxide biosynthesis:
2-aminoprop-2-enoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- homocysteine and cysteine interconversion:
H2O + L-cystathionine ⟶ L-homocysteine + ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-oxoglutarate + L,L-diaminopimelate ⟶ (S)-2,3,4,5-tetrahydrodipicolinate + H+ + H2O + glu
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- homocysteine and cysteine interconversion:
H2O + L-cystathionine ⟶ L-homocysteine + ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis (plants):
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- methiin metabolism:
a methylated methyl donor + glutathione ⟶ S-methylglutathione + a demethylated methyl donor
- superpathway of Allium flavor precursors:
(E) 1-propenylsulfenate ⟶ (Z)-propanethial S-oxide
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- ethiin metabolism:
O-acetyl-L-serine + ethanethiol ⟶ S-ethyl-L-cysteine + H+ + acetate
- superpathway of seleno-compound metabolism:
H+ + glutathione + selenite ⟶ GSSG + H2O + selenodiglutathione
- (Z)-phenylmethanethial S-oxide biosynthesis:
phenylmethanesulfenate ⟶ H2O + petivericin
- L-methionine biosynthesis II (plants):
5-methyltetrahydropteroyl tri-L-glutamate + L-homocysteine ⟶ met + tetrahydropteroyl tri-L-glutamate
- propanethial S-oxide biosynthesis:
(E) 1-propenylsulfenate ⟶ (Z)-propanethial S-oxide
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
5-methyltetrahydropteroyl tri-L-glutamate + L-homocysteine ⟶ met + tetrahydropteroyl tri-L-glutamate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- alliin metabolism:
S-allyl-L-cysteine + H2O + O2 ⟶ alliin + hydrogen peroxide
- seleno-amino acid biosynthesis (plants):
5-methyltetrahydropteroyl tri-L-glutamate + seleno-L-homocysteine ⟶ SeMet + tetrahydropteroyl tri-L-glutamate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- (Z)-phenylmethanethial S-oxide biosynthesis:
2-aminoprop-2-enoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of seleno-compound metabolism:
H2O + O2 + dimethylselenopropanoate-amine ⟶ 3-dimethylselenopropionaldehyde + ammonium + hydrogen peroxide
- seleno-amino acid biosynthesis (plants):
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- (Z)-phenylmethanethial S-oxide biosynthesis:
2-aminoprop-2-enoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis (plants):
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- (Z)-phenylmethanethial S-oxide biosynthesis:
2-aminoprop-2-enoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis:
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
4-(methylsulfanyl)butyl-desulfoglucosinolate + PAPS ⟶ 3',5'-ADP + 4-(methylsulfanyl)butyl-glucosinolate + H+
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- homocysteine and cysteine interconversion:
H2O + L-cystathionine ⟶ 2-oxobutanoate + ammonium + cys
- glucosinolate biosynthesis from pentahomomethionine:
L-pentahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-8-(methylsulfanyl)octanal oxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from phenylalanine:
PAPS + desulfoglucotropaeolin ⟶ 3',5'-ADP + H+ + glucotropaeolin
- glucosinolate biosynthesis from trihomomethionine:
L-trihomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-6-(methylsulfanyl)hexanal oxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from hexahomomethionine:
L-hexahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-9-(methylsulfanyl)nonanal oxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from tetrahomomethionine:
L-tetrahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-7-(methyltsulfanyl)heptanal oxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- homocysteine and cysteine interconversion:
H2O + L-cystathionine ⟶ L-homocysteine + ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from tyrosine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(4-hydroxyphenyl)ethan-1-imine + H2O ⟶ (Z)-N-hydroxy-2-(4-hydroxyphenyl)acetimidothioate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tyrosine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(4-hydroxyphenyl)ethan-1-imine + H2O ⟶ (Z)-N-hydroxy-2-(4-hydroxyphenyl)acetimidothioate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- homocysteine and cysteine interconversion:
H2O + L-cystathionine ⟶ L-homocysteine + ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tyrosine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(4-hydroxyphenyl)ethan-1-imine + H2O ⟶ (Z)-N-hydroxy-2-(4-hydroxyphenyl)acetimidothioate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
L-aspartate 4-semialdehyde + pyruvate ⟶ (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H+ + H2O
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid detoxification and volatilization III:
Se-methyl-L-selenocysteine + H2O ⟶ ammonium + methaneselenol + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
4-(methylsulfanyl)butyl-desulfoglucosinolate + PAPS ⟶ 3',5'-ADP + 4-(methylsulfanyl)butyl-glucosinolate + H+
- homocysteine and cysteine interconversion:
H2O + L-cystathionine ⟶ 2-oxobutanoate + ammonium + cys
- glutathione-mediated detoxification II:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from tyrosine:
(Z)-N-hydroxy-2-(4-hydroxyphenyl)acetimidothioate + UDP-α-D-glucose ⟶ UDP + desulfosinalbin
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
5-methyltetrahydropteroyl tri-L-glutamate + L-homocysteine ⟶ met + tetrahydropteroyl tri-L-glutamate
- superpathway of seleno-compound metabolism:
H+ + glutathione + selenite ⟶ GSSG + H2O + selenodiglutathione
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- seleno-amino acid biosynthesis (plants):
5-methyltetrahydropteroyl tri-L-glutamate + seleno-L-homocysteine ⟶ SeMet + tetrahydropteroyl tri-L-glutamate
- glucosinolate biosynthesis from phenylalanine:
PAPS + desulfoglucotropaeolin ⟶ 3',5'-ADP + H+ + glucotropaeolin
- L-methionine biosynthesis II (plants):
5-methyltetrahydropteroyl tri-L-glutamate + L-homocysteine ⟶ met + tetrahydropteroyl tri-L-glutamate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-9-(methylsulfanyl)nonanal oxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-(methylsulfanyl)-9-aci-nitrononane + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from pentahomomethionine:
(E)-8-(methylsulfanyl)octanal oxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-(methylsulfanyl)-8-aci-nitrooctane + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from tetrahomomethionine:
L-tetrahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-7-(methyltsulfanyl)heptanal oxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from trihomomethionine:
(E)-6-(methylsulfanyl)hexanal oxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-(methylsulfanyl)-6-aci-nitrohexane + H2O + an oxidized [NADPH-hemoprotein reductase]
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
L-trihomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-6-(methylsulfanyl)hexanal oxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from phenylalanine:
(Z)-2-phenyl-1-thioacetohydroximate + UDP-α-D-glucose ⟶ UDP + desulfoglucotropaeolin
- glucosinolate biosynthesis from tetrahomomethionine:
L-tetrahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-7-(methyltsulfanyl)heptanal oxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from hexahomomethionine:
L-hexahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-9-(methylsulfanyl)nonanal oxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from dihomomethionine:
4-(methylsulfanyl)butyl-desulfoglucosinolate + PAPS ⟶ 3',5'-ADP + 4-(methylsulfanyl)butyl-glucosinolate + H+
- glucosinolate biosynthesis from tyrosine:
PAPS + desulfosinalbin ⟶ 3',5'-ADP + H+ + sinalbin
- glucosinolate biosynthesis from pentahomomethionine:
(E)-8-(methylsulfanyl)octanal oxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-(methylsulfanyl)-8-aci-nitrooctane + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of seleno-compound metabolism:
H+ + glutathione + selenite ⟶ GSSG + H2O + selenodiglutathione
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tyrosine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(4-hydroxyphenyl)ethan-1-imine + H2O ⟶ (Z)-N-hydroxy-2-(4-hydroxyphenyl)acetimidothioate + H+ + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tyrosine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(4-hydroxyphenyl)ethan-1-imine + H2O ⟶ (Z)-N-hydroxy-2-(4-hydroxyphenyl)acetimidothioate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from phenylalanine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O ⟶ (Z)-2-phenyl-1-thioacetohydroximate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tyrosine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-2-(4-hydroxyphenyl)ethan-1-imine + H2O ⟶ (Z)-N-hydroxy-2-(4-hydroxyphenyl)acetimidothioate + H+ + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from trihomomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)hexan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)hexyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from pentahomomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)octan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)octyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from tetrahomomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)heptyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from dihomomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)pentyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from hexahomomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)nonyl-thiohydroximate + ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- homocysteine and cysteine interconversion:
H2O + L-cystathionine ⟶ L-homocysteine + ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glucosinolate biosynthesis from tyrosine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-(4-hydroxyphenyl)ethan-1-imine + H2O ⟶ (Z)-N-hydroxy-2-(4-hydroxyphenyl)acetimidothioate + H+ + ammonium + pyruvate
- glucosinolate biosynthesis from tyrosine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-2-(4-hydroxyphenyl)ethan-1-imine + H2O ⟶ (Z)-N-hydroxy-2-(4-hydroxyphenyl)acetimidothioate + H+ + ammonium + pyruvate
- methylglyoxal degradation I:
(R)-S-lactoylglutathione ⟶ glutathione + methylglyoxal
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- 4-hydroxybenzoate biosynthesis II (bacteria):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Alexander S Shashkov, Natalia V Potekhina, Elena M Tul'skaya, Andrey S Dmitrenok, Sof'ya N Senchenkova, Vladimir I Torgov, Lubov V Dorofeeva, Lyudmila I Evtushenko. New lactate- and pyruvate-containing polysaccharide and rhamnomannan with xylose residues from the cell wall of Rathayibacter oskolensis VKM Ac-2121T.
Carbohydrate research.
2024 Jun; 540(?):109145. doi:
10.1016/j.carres.2024.109145
. [PMID: 38759341] - Anne Jahn, Maike Petersen. Hydroxy(phenyl)pyruvic acid reductase in Actaea racemosa L.: a putative enzyme in cimicifugic and fukinolic acid biosynthesis.
Planta.
2024 Mar; 259(5):102. doi:
10.1007/s00425-024-04382-6
. [PMID: 38549005] - Linshuang Wang, Fengxue Qu, Xueyun Yu, Sixia Yang, Binbin Zhao, Yaojing Chen, Pengbo Li, Zhanjun Zhang, Junying Zhang, Xuejie Han, Dongfeng Wei. Cortical lipid metabolic pathway alteration of early Alzheimer's disease and candidate drugs screen.
European journal of medical research.
2024 Mar; 29(1):199. doi:
10.1186/s40001-024-01730-w
. [PMID: 38528586] - Elton T Montrazi, Keren Sasson, Lilach Agemy, Avigdor Scherz, Lucio Frydman. Molecular imaging of tumor metabolism: Insight from pyruvate- and glucose-based deuterium MRI studies.
Science advances.
2024 Mar; 10(11):eadm8600. doi:
10.1126/sciadv.adm8600
. [PMID: 38478615] - Sonia E Evans, Anya E Franks, Matthew E Bergman, Nasha S Sethna, Mark A Currie, Michael A Phillips. Plastid ancestors lacked a complete Entner-Doudoroff pathway, limiting plants to glycolysis and the pentose phosphate pathway.
Nature communications.
2024 Feb; 15(1):1102. doi:
10.1038/s41467-024-45384-y
. [PMID: 38321044] - Shuying Gu, Taju Wu, Junqi Zhao, Tao Sun, Zhen Zhao, Lu Zhang, Jingen Li, Chaoguang Tian. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila.
Microbial biotechnology.
2024 Jan; ?(?):e14410. doi:
10.1111/1751-7915.14410
. [PMID: 38298109] - María-Graciela Delgado, Ricardo Delgado. Transient Synaptic Enhancement Triggered by Exogenously Supplied Monocarboxylate in Drosophila Motoneuron Synapse.
Neuroscience.
2024 Jan; 539(?):66-75. doi:
10.1016/j.neuroscience.2024.01.003
. [PMID: 38220128] - João Vitor Alcantara da Silva, Jessica Ispada, Ricardo Perecin Nociti, Aldcejam Martins da Fonseca Junior, Camila Bruna De Lima, Erika Cristina Dos Santos, Marcos Roberto Chiaratti, Marcella Pecora Milazzotto. The central role of pyruvate metabolism on the epigenetic maturation and transcriptional profile of bovine oocytes.
Reproduction (Cambridge, England).
2024 Jan; ?(?):. doi:
10.1530/rep-23-0181
. [PMID: 38271822] - Josepheena Joseph, Sanjib Bal Samant, Kapuganti Jagadis Gupta. Mitochondrial alternative oxidase pathway helps in nitrooxidative stress tolerance in germinating chickpea.
Journal of biosciences.
2024; 49(?):. doi:
"
. [PMID: 38726824] - Elton T Montrazi, Keren Sasson, Lilach Agemy, Dana C Peters, Ori Brenner, Avigdor Scherz, Lucio Frydman. High-sensitivity deuterium metabolic MRI differentiates acute pancreatitis from pancreatic cancers in murine models.
Scientific reports.
2023 11; 13(1):19998. doi:
10.1038/s41598-023-47301-7
. [PMID: 37968574] - Toshiharu Onodera, May-Yun Wang, Joseph M Rutkowski, Stanislaw Deja, Shiuhwei Chen, Michael S Balzer, Dae-Seok Kim, Xuenan Sun, Yu A An, Bianca C Field, Charlotte Lee, Ei-Ichi Matsuo, Monika Mizerska, Ina Sanjana, Naoto Fujiwara, Christine M Kusminski, Ruth Gordillo, Laurent Gautron, Denise K Marciano, Ming Chang Hu, Shawn C Burgess, Katalin Susztak, Orson W Moe, Philipp E Scherer. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization.
Nature communications.
2023 10; 14(1):6531. doi:
10.1038/s41467-023-42188-4
. [PMID: 37848446] - Jiang Wenjing, Jiang Huaying, Yuan Lihua, S A Yuanhong, Xiao Jimei, Sun Hongqi, Song Jingyan, Sun Zhengao. Xiaoyi Yusi decoction improves fertilization and embryo transfer outcomes in patients with endometriosis.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2023 10; 43(5):1026-1033. doi:
10.19852/j.cnki.jtcm.2023.05.006
. [PMID: 37679991] - Amal S Othman, Nashwa A Ahmed, Mona S Elneklawi, Mansour M Hassan, Mahmoud Abd El-Mongy. Generation of green electricity from sludge using photo-stimulated bacterial consortium as a sustainable technology.
Microbial cell factories.
2023 Sep; 22(1):183. doi:
10.1186/s12934-023-02187-y
. [PMID: 37715250] - Lili Ren, Hongxia Zhang, Jiao Zhou, Yajing Wu, Bo Liu, Shuping Wang, Xin Liu, Xin Hao, Lilin Zhao. Unique and generic crossed metabolism in response to four sub-lethal environmental stresses in the oriental fruit fly, Bactrocera dorsalis Hendel.
Ecotoxicology and environmental safety.
2023 Sep; 264(?):115434. doi:
10.1016/j.ecoenv.2023.115434
. [PMID: 37690174] - Hira Shakoor, Jaleel Kizhakkayil, Mariyam Khalid, Amar Mahgoub, Carine Platat. Effect of Moderate-Intense Training and Detraining on Glucose Metabolism, Lipid Profile, and Liver Enzymes in Male Wistar Rats: A Preclinical Randomized Study.
Nutrients.
2023 Aug; 15(17):. doi:
10.3390/nu15173820
. [PMID: 37686852] - An-Hui Jin, Yi-Fan Qian, Jiong Ren, Jin-Gang Wang, Fang Qiao, Mei-Ling Zhang, Zhen-Yu Du, Yuan Luo. PDK inhibition promotes glucose utilization, reduces hepatic lipid deposition, and improves oxidative stress in largemouth bass (Micropterus salmoides) by increasing pyruvate oxidative phosphorylation.
Fish & shellfish immunology.
2023 Jul; 140(?):108969. doi:
10.1016/j.fsi.2023.108969
. [PMID: 37488039] - Yanping Zhao, Xu Geng, Xiaoling Zhou, Li Xu, Shuai Li, Zhengqiang Li, Yi Guo, Chen Li. A novel high-stability bioelectrochemical sensor based on sol-gel immobilization of lactate dehydrogenase and AuNPs-rGO signal enhancement for serum pyruvate detection.
Analytica chimica acta.
2023 Jul; 1265(?):341335. doi:
10.1016/j.aca.2023.341335
. [PMID: 37230575] - Ju-Yi Hsieh, Kun-Chi Chen, Chun-Hsiung Wang, Guang-Yaw Liu, Jie-An Ye, Yu-Tung Chou, Yi-Chun Lin, Cheng-Jhe Lyu, Rui-Ying Chang, Yi-Liang Liu, Yen-Hsien Li, Mau-Rong Lee, Meng-Chiao Ho, Hui-Chih Hung. Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration.
Communications biology.
2023 May; 6(1):548. doi:
10.1038/s42003-023-04930-y
. [PMID: 37217557] - Ning Zhang, Sisheng Wang, Simin Zhao, Daiying Chen, Hongyan Tian, Jia Li, Lingran Zhang, Songgang Li, Lu Liu, Chaonan Shi, Xiaodong Yu, Yan Ren, Feng Chen. Global crotonylatome and GWAS revealed a TaSRT1-TaPGK model regulating wheat cold tolerance through mediating pyruvate.
Science advances.
2023 05; 9(19):eadg1012. doi:
10.1126/sciadv.adg1012
. [PMID: 37163591] - Timothy R Koves, Guo-Fang Zhang, Michael T Davidson, Alec B Chaves, Scott B Crown, Jordan M Johnson, Dorothy H Slentz, Paul A Grimsrud, Deborah M Muoio. Pyruvate-supported flux through medium-chain ketothiolase promotes mitochondrial lipid tolerance in cardiac and skeletal muscles.
Cell metabolism.
2023 Apr; ?(?):. doi:
10.1016/j.cmet.2023.03.016
. [PMID: 37060901] - Tobias Schwanemann, Maike Otto, Benedikt Wynands, Jan Marienhagen, Nick Wierckx. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis.
Metabolic engineering.
2023 Apr; 77(?):219-230. doi:
10.1016/j.ymben.2023.04.001
. [PMID: 37031949] - Sang R Lee, Moeka Mukae, Kang Joo Jeong, Se Hee Park, Hi Jo Shin, Sang Woon Kim, Young Suk Won, Hyo-Jung Kwun, In-Jeoung Baek, Eui-Ju Hong. PGRMC1 Ablation Protects from Energy-Starved Heart Failure by Promoting Fatty Acid/Pyruvate Oxidation.
Cells.
2023 02; 12(5):. doi:
10.3390/cells12050752
. [PMID: 36899888] - Qian Luo, Nana Ding, Yunfeng Liu, Hailing Zhang, Yu Fang, Lianghong Yin. Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds.
Molecules (Basel, Switzerland).
2023 Feb; 28(3):. doi:
10.3390/molecules28031418
. [PMID: 36771084] - Saad Alrashdi, Federica Casolari, Aziz Alabed, Kwaku Kyeremeh, Hai Deng. Chemoenzymatic Synthesis of Indole-Containing Acyloin Derivatives.
Molecules (Basel, Switzerland).
2023 Jan; 28(1):. doi:
10.3390/molecules28010354
. [PMID: 36615552] - R Mohammad, M Al Kattan. SMOKING JEOPARDIZED MITOCHONDRIAL FUNCTION VITIATING LIPID PROFILE.
Georgian medical news.
2023 Jan; ?(334):49-51. doi:
"
. [PMID: 36864792] - Jingyu Ni, Hao Zhang, Xiaodan Wang, Zhihao Liu, Tong Nie, Lan Li, Jing Su, Yan Zhu, Chuanrui Ma, Yuting Huang, Jingyuan Mao, Xiumei Gao, Guanwei Fan. Rg3 regulates myocardial pyruvate metabolism via P300-mediated dihydrolipoamide dehydrogenase 2-hydroxyisobutyrylation in TAC-induced cardiac hypertrophy.
Cell death & disease.
2022 12; 13(12):1073. doi:
10.1038/s41419-022-05516-y
. [PMID: 36572672] - Shan Tang, Ning Guo, Qingqing Tang, Fei Peng, Yunhao Liu, Hui Xia, Shaoping Lu, Liang Guo. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus.
Plant biotechnology journal.
2022 12; 20(12):2406-2417. doi:
10.1111/pbi.13922
. [PMID: 36056567] - Kuenzang Om, Nico N Arias, Chaney C Jambor, Alexandra MacGregor, Ashley N Rezachek, Carlan Haugrud, Hans-Henning Kunz, Zhonghui Wang, Pu Huang, Quan Zhang, Josh Rosnow, Thomas P Brutnell, Asaph B Cousins, Chris J Chastain. Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis.
Plant physiology.
2022 09; 190(2):1117-1133. doi:
10.1093/plphys/kiac333
. [PMID: 35876823] - Faizan Abul Qais, Suliman Yousef Alomar, Mohammad Azhar Imran, Md Amiruddin Hashmi. In-Silico Analysis of Phytocompounds of Olea europaea as Potential Anti-Cancer Agents to Target PKM2 Protein.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27185793
. [PMID: 36144527] - Evelyn Silva Moreira, Ana Paula Ames-Sibin, Carla Indianara Bonetti, Luana Eloísa Leal, Rosane Marina Peralta, Anacharis Babeto de Sá-Nakanishi, Jurandir Fernando Comar, Adelar Bracht, Lívia Bracht. The short-term effects of berberine in the liver: Narrow margins between benefits and toxicity.
Toxicology letters.
2022 Sep; 368(?):56-65. doi:
10.1016/j.toxlet.2022.08.005
. [PMID: 35963428] - Michael L Bender, Xin-Guang Zhu, Paul Falkowski, Fangfang Ma, Kevin Griffin. On the rate of phytoplankton respiration in the light.
Plant physiology.
2022 08; 190(1):267-279. doi:
10.1093/plphys/kiac254
. [PMID: 35652738] - Wei Gao, Yue Zhang, Lai Chen, Xiaoyu Liu, Kun Li, Lijun Han, Zhenwu Yu, Jinzhou Ren, Liangfu Tang, Zhijin Fan. Novel [1,2,4]-Triazolo[3,4-b]-[1,3,4]thiadizoles as Potent Pyruvate Kinase Inhibitors for Fungal Control.
Journal of agricultural and food chemistry.
2022 Aug; 70(33):10170-10181. doi:
10.1021/acs.jafc.2c03758
. [PMID: 35960265] - Jiaxin Cui, Georg Hölzl, Tobias Karmainski, Till Tiso, Sonja Kubicki, Stephan Thies, Lars M Blank, Karl-Erich Jaeger, Peter Dörmann. The Glycine-Glucolipid of Alcanivorax borkumensis Is Resident to the Bacterial Cell Wall.
Applied and environmental microbiology.
2022 08; 88(16):e0112622. doi:
10.1128/aem.01126-22
. [PMID: 35938787] - Kiran Kumar Adepu, Dipendra Bhandari, Andriy Anishkin, Sean H Adams, Sree V Chintapalli. Myoglobin-Pyruvate Interactions: Binding Thermodynamics, Structure-Function Relationships, and Impact on Oxygen Release Kinetics.
International journal of molecular sciences.
2022 Aug; 23(15):. doi:
10.3390/ijms23158766
. [PMID: 35955898] - Dorota Lechniak, Ewa Sell-Kubiak, Ewelina Warzych. The metabolic profile of bovine blastocysts is affected by in vitro culture system and the pattern of first zygotic cleavage.
Theriogenology.
2022 Aug; 188(?):43-51. doi:
10.1016/j.theriogenology.2022.05.021
. [PMID: 35661988] - Nadia Turton, Neve Cufflin, Mollie Dewsbury, Olivia Fitzpatrick, Rahida Islam, Lowidka Linares Watler, Cara McPartland, Sophie Whitelaw, Caitlin Connor, Charlotte Morris, Jason Fang, Ollie Gartland, Liv Holt, Iain P Hargreaves. The Biochemical Assessment of Mitochondrial Respiratory Chain Disorders.
International journal of molecular sciences.
2022 Jul; 23(13):. doi:
10.3390/ijms23137487
. [PMID: 35806492] - Rodney C Daniels, Mohamad H Tiba, Brandon C Cummings, Yan Rou Yap, Sardar Ansari, Brendan M McCracken, Yihan Sun, Theodore S Jennaro, Kevin R Ward, Kathleen A Stringer. Redox Potential Correlates with Changes in Metabolite Concentrations Attributable to Pathways Active in Oxidative Stress Response in Swine Traumatic Shock.
Shock (Augusta, Ga.).
2022 06; 57(6):282-290. doi:
10.1097/shk.0000000000001944
. [PMID: 35670453] - Yiru Shao, Zhiyong Xie, Shusheng Liang, Cuiying Chen, Douglas R Tocher, Li Lin, Yanhua Huang, Yuanyou Li, Dizhi Xie, Yucong Hong, Shuqi Wang, Cuihong You. Dietary calcium pyruvate could improve growth performance and reduce excessive lipid deposition in juvenile golden pompano (Trachinotus ovatus) fed a high fat diet.
Fish physiology and biochemistry.
2022 Jun; 48(3):555-570. doi:
10.1007/s10695-022-01077-1
. [PMID: 35461391] - Xuyen H Le, Chun Pong Lee, Dario Monachello, A Harvey Millar. Metabolic evidence for distinct pyruvate pools inside plant mitochondria.
Nature plants.
2022 06; 8(6):694-705. doi:
10.1038/s41477-022-01165-3
. [PMID: 35681019] - Yan-Yan Zhao, Li-Jun Zhang, Xiang-Yan Liang, Xiao-Chun Zhang, Jin-Rui Chang, Man Shi, Huan Liu, Ying Zhou, Zhuo Sun, Yu-Feng Zhao. Pyruvate Upregulates Hepatic FGF21 Expression by Activating PDE and Inhibiting cAMP-Epac-CREB Signaling Pathway.
International journal of molecular sciences.
2022 May; 23(10):. doi:
10.3390/ijms23105490
. [PMID: 35628302] - Elie R Chalhoub, Joanne M Belovich. Quantitative analysis of the interaction of ethanol metabolism with gluconeogenesis and fatty acid oxidation in the perfused liver of fasted rats.
Archives of biochemistry and biophysics.
2022 03; 718(?):109148. doi:
10.1016/j.abb.2022.109148
. [PMID: 35143783] - William K Chu, Charles K Rono, Banothile C E Makhubela. New Triazolyl N^N Bidentate Rh(III), Ir(III), Ru(II) and Os(II) Complexes: Synthesis and Characterization, Probing Possible Relations between Cytotoxicity with Transfer Hydrogenation Efficacy and Interaction with Model Biomolecules.
Molecules (Basel, Switzerland).
2022 Mar; 27(7):. doi:
10.3390/molecules27072058
. [PMID: 35408457] - Fernando Guzman-Chavez, Anibal Arce, Abhinav Adhikari, Sandra Vadhin, Jose Antonio Pedroza-Garcia, Chiara Gandini, Jim W Ajioka, Jenny Molloy, Sobeida Sanchez-Nieto, Jeffrey D Varner, Fernan Federici, Jim Haseloff. Constructing Cell-Free Expression Systems for Low-Cost Access.
ACS synthetic biology.
2022 03; 11(3):1114-1128. doi:
10.1021/acssynbio.1c00342
. [PMID: 35259873] - Jun-Sheng Tian, Wen-Ze Wu, Shao-Bo Liu, Ting Ling-Hu, Yun-Hao Zhao, Yao Gao, Xue-Mei Qin. Stable Isotope-Resolved Metabolomics Studies on Corticosteroid-Induced PC12 Cells: A Strategy for Evaluating Glucose Catabolism in an in Vitro Model of Depression.
Journal of proteome research.
2022 03; 21(3):788-797. doi:
10.1021/acs.jproteome.1c00516
. [PMID: 34699232] - Ling Wang, Meng Li, Bingting Yu, Shaojun Shi, Jiaye Liu, Ruyi Zhang, Ibrahim Ayada, Monique M A Verstegen, Luc J W van der Laan, Maikel P Peppelenbosch, Wanlu Cao, Qiuwei Pan. Recapitulating lipid accumulation and related metabolic dysregulation in human liver-derived organoids.
Journal of molecular medicine (Berlin, Germany).
2022 03; 100(3):471-484. doi:
10.1007/s00109-021-02176-x
. [PMID: 35059746] - Giulia Cisbani, Alex Koppel, Adam H Metherel, Mackenzie E Smith, Kankana N Aji, Ana C Andreazza, Romina Mizrahi, Richard P Bazinet. Serum lipid analysis and isotopic enrichment is suggestive of greater lipogenesis in young long-term cannabis users: A secondary analysis of a case-control study.
Lipids.
2022 03; 57(2):125-140. doi:
10.1002/lipd.12336
. [PMID: 35075659] - Henning Kirst, Bryan H Ferlez, Steffen N Lindner, Charles A R Cotton, Arren Bar-Even, Cheryl A Kerfeld. Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate.
Proceedings of the National Academy of Sciences of the United States of America.
2022 02; 119(8):. doi:
10.1073/pnas.2116871119
. [PMID: 35193962] - Sabrina Kahina Bech, Haiyun Qi, Christian Østergaard Mariager, Esben Søvsø Szocska Hansen, Efe Ilicak, Frank G Zöllner, Christoffer Laustsen. The number of glomeruli and pyruvate metabolism is not strongly coupled in the healthy rat kidney.
Magnetic resonance in medicine.
2022 02; 87(2):896-903. doi:
10.1002/mrm.29025
. [PMID: 34554602] - Kang Mao, Guwei Lu, Yanjiao Li, Yitian Zang, Xianghui Zhao, Qinghua Qiu, Mingren Qu, Kehui Ouyang. Effects of rumen-protected creatine pyruvate on blood biochemical parameters and rumen fluid characteristics in transported beef cattle.
BMC veterinary research.
2022 Jan; 18(1):35. doi:
10.1186/s12917-021-03134-y
. [PMID: 35033088] - Emine Can, Jessica A M Bastiaansen, Dominique-Laurent Couturier, Rolf Gruetter, Hikari A I Yoshihara, Arnaud Comment. [13C]bicarbonate labelled from hyperpolarized [1-13C]pyruvate is an in vivo marker of hepatic gluconeogenesis in fasted state.
Communications biology.
2022 01; 5(1):10. doi:
10.1038/s42003-021-02978-2
. [PMID: 35013537] - Eleanor H Oates, Maciek R Antoniewicz. Coordinated reprogramming of metabolism and cell function in adipocytes from proliferation to differentiation.
Metabolic engineering.
2022 01; 69(?):221-230. doi:
10.1016/j.ymben.2021.12.005
. [PMID: 34929419] - Jingjing Jia, Yang Luo, Xue Zhong, Ling He. Methicillin-Resistant Staphylococcus Aureus (MRSA) Pyruvate Kinase (PK) Inhibitors and their Antimicrobial Activities.
Current medicinal chemistry.
2022; 29(5):908-923. doi:
10.2174/0929867328666210322103340
. [PMID: 33749550] - Najma Tabussam, Rashid Mehmood Rana, Muhammad Kausar Nawaz Shah, Muhammad Sheeraz Ahmad, Muhammad Sajjad, Yongqiang Lu. Nutraceutical profiling of elite onion germplasm and breeding hybrids with improved nutraceutical quality.
PloS one.
2022; 17(1):e0262705. doi:
10.1371/journal.pone.0262705
. [PMID: 35045129] - G Godoy, P B Travassos, M M Antunes, C C Iwanaga, A B Sá-Nakanishi, R Curi, J F Comar, R B Bazotte. Strenuous swimming raises blood non-enzymatic antioxidant capacity in rats.
Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.
2022; 55(?):e11891. doi:
10.1590/1414-431x2022e11891
. [PMID: 35239782] - Ningwei Xu, Zhenxing Wu, Xiangling Li, Min Yang, Jinling Han, Bin Lu, Bingshe Lu, Jian Wang. Effects of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.).
PloS one.
2022; 17(10):e0276606. doi:
10.1371/journal.pone.0276606
. [PMID: 36269745] - Xuyen Le, A Harvey Millar, Chun Pong Lee. Assessing the Kinetics of Metabolite Uptake and Utilization by Isolated Mitochondria Using Selective Reaction Monitoring Mass Spectrometry (SRM-MS).
Methods in molecular biology (Clifton, N.J.).
2022; 2363(?):85-100. doi:
10.1007/978-1-0716-1653-6_8
. [PMID: 34545488] - W W Zhang, R Xue, T Y Mi, X M Shen, J C Li, S Li, Y Zhang, Y Li, L X Wang, X L Yin, H L Wang, Y Z Zhang. Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1α and accelerating fatty acids beta-oxidation.
Biochemical and biophysical research communications.
2022 01; 586(?):121-128. doi:
10.1016/j.bbrc.2021.11.073
. [PMID: 34839190] - Ya Zhang, Ke Gao, Chong Wang, Shuangqing Liu. A Novel Antibacterial Component and the Mechanisms of an Amaranthus tricolor Leaf Ethyl Acetate Extract against Acidovorax avenae subsp. citrulli.
International journal of molecular sciences.
2021 Dec; 23(1):. doi:
10.3390/ijms23010312
. [PMID: 35008738] - Brendan M O'Leary. Swapping acids: the ins and outs of plant mitochondrial metabolism.
The Plant cell.
2021 12; 33(12):3608-3609. doi:
10.1093/plcell/koab238
. [PMID: 35231126] - Alexander S Shashkov, Nataliya V Potekhina, Deborah Kim, Andrey S Dmitrenok, Sof'ya N Senchenkova, Lubov V Dorofeeva, Lyudmila I Evtushenko, Elena M Tul'skaya. Cell wall galactofuranan and pyruvate-containing galactomannan in the cell walls of Clavibacter strains.
Carbohydrate research.
2021 Dec; 510(?):108435. doi:
10.1016/j.carres.2021.108435
. [PMID: 34597981] - Lauren M Smith, Conrad B Pitts, Lanette J Friesen-Waldner, Neetin H Prabhu, Katherine E Mathers, Kevin J Sinclair, Trevor P Wade, Timothy R H Regnault, Charles A McKenzie. In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1-13 C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non-Alcoholic Fatty Liver Disease Development After Life-Long Western Diet Consumption.
Journal of magnetic resonance imaging : JMRI.
2021 11; 54(5):1404-1414. doi:
10.1002/jmri.27677
. [PMID: 33970520] - Jae Mo Park, Sonal Josan, Ralph E Hurd, James Graham, Peter J Havel, David Bendahan, Dirk Mayer, Youngran Chung, Daniel M Spielman, Thomas Jue. Hyperpolarized NMR study of the impact of pyruvate dehydrogenase kinase inhibition on the pyruvate dehydrogenase and TCA flux in type 2 diabetic rat muscle.
Pflugers Archiv : European journal of physiology.
2021 11; 473(11):1761-1773. doi:
10.1007/s00424-021-02613-3
. [PMID: 34415396] - Shamil N Galimov, Julia Y Gromenko, Kirill V Bulygin, Kamil Sh Galimov, Elmira F Galimova, Mikhail Y Sinelnikov. The level of secondary messengers and the redox state of NAD+/NADH are associated with sperm quality in infertility.
Journal of reproductive immunology.
2021 11; 148(?):103383. doi:
10.1016/j.jri.2021.103383
. [PMID: 34534880] - Lotte Bonde Bertelsen, Esben Søvsø Szocska Hansen, Thorsten Sadowski, Sven Ruf, Christoffer Laustsen. Hyperpolarized pyruvate to measure the influence of PKM2 activation on glucose metabolism in the healthy kidney.
NMR in biomedicine.
2021 11; 34(11):e4583. doi:
10.1002/nbm.4583
. [PMID: 34240478] - Anna F Bekebrede, Thirza van Deuren, Walter J J Gerrits, Jaap Keijer, Vincent C J de Boer. Butyrate Alters Pyruvate Flux and Induces Lipid Accumulation in Cultured Colonocytes.
International journal of molecular sciences.
2021 Oct; 22(20):. doi:
10.3390/ijms222010937
. [PMID: 34681598] - Madhu Manti Patra, Poulami Ghosh, Shreya Sengupta, Sujoy K Das Gupta. DNA binding and gene regulatory functions of MSMEG_2295, a repressor encoded by the dinB2 operon of Mycobacterium smegmatis.
Microbiology (Reading, England).
2021 10; 167(10):. doi:
10.1099/mic.0.001097
. [PMID: 34665112] - Yuika Osada, Shunsaku Nakagawa, Kanako Ishibe, Shota Takao, Aimi Shimazaki, Kotaro Itohara, Satoshi Imai, Atsushi Yonezawa, Takayuki Nakagawa, Kazuo Matsubara. Antibiotic-induced microbiome depletion alters renal glucose metabolism and exacerbates renal injury after ischemia-reperfusion injury in mice.
American journal of physiology. Renal physiology.
2021 10; 321(4):F455-F465. doi:
10.1152/ajprenal.00111.2021
. [PMID: 34423680] - Hiromasa Tanaka, Yugo Hosoi, Kenji Ishikawa, Jun Yoshitake, Takahiro Shibata, Koji Uchida, Hiroshi Hashizume, Masaaki Mizuno, Yasumasa Okazaki, Shinya Toyokuni, Kae Nakamura, Hiroaki Kajiyama, Fumitaka Kikkawa, Masaru Hori. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified.
Scientific reports.
2021 09; 11(1):18488. doi:
10.1038/s41598-021-98020-w
. [PMID: 34531507] - Min Yang, Jiang Li, Xiao-Meng Lv, Li-Rong Dai, Ke-Jia Wu, Bo Tu, Paul A Lawson, Yue-Qin Tang, Lei Cheng. Thermosynergistes pyruvativorans gen. nov., sp. nov., an anaerobic, pyruvate-degrading bacterium from Shengli oilfield, and proposal of Thermosynergistaceae fam. nov. in the phylum Synergistetes.
International journal of systematic and evolutionary microbiology.
2021 Sep; 71(9):. doi:
10.1099/ijsem.0.005031
. [PMID: 34582328] - Brendan M O'Leary. Playing with Pyr: alternate sources of mitochondrial pyruvate fuel plant respiration.
The Plant cell.
2021 08; 33(8):2519-2520. doi:
10.1093/plcell/koab147
. [PMID: 35233626] - Xuyen H Le, Chun-Pong Lee, A Harvey Millar. The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism.
The Plant cell.
2021 08; 33(8):2776-2793. doi:
10.1093/plcell/koab148
. [PMID: 34137858] - O S Vlasova, F A Bichkaeva. Age-related changes in the parameters of carbohydrate metabolism and supply of vitamins B1, B2 in residents of two northern regions.
Klinicheskaia laboratornaia diagnostika.
2021 Aug; 66(8):465-471. doi:
10.51620/0869-2084-2021-66-8-465-471
. [PMID: 34388316] - Young-Suk Choi, Joonsung Lee, Han-Sol Lee, Jae Eun Song, Dong-Hyun Kim, Ho-Taek Song. Offset of apparent hyperpolarized 13 C lactate flux by the use of adjuvant metformin in ionizing radiation therapy in vivo.
NMR in biomedicine.
2021 08; 34(8):e4561. doi:
10.1002/nbm.4561
. [PMID: 34080736] - Shuyu Tang, Maxwell V Meng, James B Slater, Jeremy W Gordon, Daniel B Vigneron, Bradley A Stohr, Peder E Z Larson, Zhen Jane Wang. Metabolic imaging with hyperpolarized 13 C pyruvate magnetic resonance imaging in patients with renal tumors-Initial experience.
Cancer.
2021 08; 127(15):2693-2704. doi:
10.1002/cncr.33554
. [PMID: 33844280] - Bohdan O Manko, Olha O Bilonoha, Dariia M Voloshyn, Anastasiia M Zub, Iryna I Ivasechko, Volodymyr V Manko. Pyruvate and Glutamine Define the Effects of Cholecystokinin and Ethanol on Mitochondrial Oxidation, Necrosis, and Morphology of Rat Pancreatic Acini.
Pancreas.
2021 08; 50(7):972-981. doi:
10.1097/mpa.0000000000001864
. [PMID: 34629447] - Sagar S Manoli, Kyle Kisor, Bradley A Webb, Diane L Barber. Ethyl isopropyl amiloride decreases oxidative phosphorylation and increases mitochondrial fusion in clonal untransformed and cancer cells.
American journal of physiology. Cell physiology.
2021 07; 321(1):C147-C157. doi:
10.1152/ajpcell.00001.2021
. [PMID: 34038242] - Yi Rao, Seth T Gammon, Margie N Sutton, Niki M Zacharias, Pratip Bhattacharya, David Piwnica-Worms. Excess exogenous pyruvate inhibits lactate dehydrogenase activity in live cells in an MCT1-dependent manner.
The Journal of biological chemistry.
2021 07; 297(1):100775. doi:
10.1016/j.jbc.2021.100775
. [PMID: 34022218] - Gabriel Martiñón-Gutiérrez, María Luna-Castro, Rolando Hernández-Muñoz. Role of insulin/glucagon ratio and cell redox state in the hyperglycaemia induced by exposure to a 60-Hz magnetic field in rats.
Scientific reports.
2021 06; 11(1):11666. doi:
10.1038/s41598-021-91228-w
. [PMID: 34083675] - Nicholas R Perkons, Omar Johnson, Gabrielle Pilla, Terence P F Gade. Pharmacodynamics and pharmacokinetics of hyperpolarized [1-13 C]-pyruvate in a translational oncologic model.
NMR in biomedicine.
2021 06; 34(6):e4502. doi:
10.1002/nbm.4502
. [PMID: 33772910] - Wei Ye, Yan Lin, Tedros Bezabeh, Changchun Ma, Jiahao Liang, Jiayun Zhao, Ting Ouyang, Wan Tang, Renhua Wu. 1 H NMR-based metabolomics of paired esophageal tumor tissues and serum samples identifies specific serum biomarkers for esophageal cancer.
NMR in biomedicine.
2021 06; 34(6):e4505. doi:
10.1002/nbm.4505
. [PMID: 33783927] - Ana-Marija Vučković, Rina Venerando, Elena Tibaldi, Valentina Bosello Travain, Antonella Roveri, Luciana Bordin, Giovanni Miotto, Giorgio Cozza, Stefano Toppo, Matilde Maiorino, Fulvio Ursini. Aerobic pyruvate metabolism sensitizes cells to ferroptosis primed by GSH depletion.
Free radical biology & medicine.
2021 05; 167(?):45-53. doi:
10.1016/j.freeradbiomed.2021.02.045
. [PMID: 33711415] - Peter B Soeters, Alan Shenkin, Lubos Sobotka, Maarten R Soeters, Peter W de Leeuw, Robert R Wolfe. The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease.
Clinical nutrition (Edinburgh, Scotland).
2021 05; 40(5):2988-2998. doi:
10.1016/j.clnu.2021.02.012
. [PMID: 33674148] - Lei Chen, Haley J Abel, Indraniel Das, David E Larson, Liron Ganel, Krishna L Kanchi, Allison A Regier, Erica P Young, Chul Joo Kang, Alexandra J Scott, Colby Chiang, Xinxin Wang, Shuangjia Lu, Ryan Christ, Susan K Service, Charleston W K Chiang, Aki S Havulinna, Johanna Kuusisto, Michael Boehnke, Markku Laakso, Aarno Palotie, Samuli Ripatti, Nelson B Freimer, Adam E Locke, Nathan O Stitziel, Ira M Hall. Association of structural variation with cardiometabolic traits in Finns.
American journal of human genetics.
2021 04; 108(4):583-596. doi:
10.1016/j.ajhg.2021.03.008
. [PMID: 33798444] - Alexander S Shashkov, Elena M Tul'skaya, Natalia V Potekhina, Andrey S Dmitrenok, Sofia N Senchenkova, Vlad A Zaychikov, Lubov V Dorofeeva, Lyudmila I Evtushenko. D-Rhamnan and Pyruvate-Containing Teichuronic Acid from the Cell Wall of Rathayibacter sp. VKM Ac-2759.
Biochemistry. Biokhimiia.
2021 Apr; 86(4):506-516. doi:
10.1134/s0006297921040118
. [PMID: 33941071] - Adam J Bittel, Daniel C Bittel, Bettina Mittendorfer, Bruce W Patterson, Adewole L Okunade, Nada A Abumrad, Dominic N Reeds, William Todd Cade. A Single Bout of Premeal Resistance Exercise Improves Postprandial Glucose Metabolism in Obese Men with Prediabetes.
Medicine and science in sports and exercise.
2021 04; 53(4):694-703. doi:
10.1249/mss.0000000000002538
. [PMID: 33044441] - Keith A Michel, Mukundan Ragavan, Christopher M Walker, Matthew E Merritt, Stephen Y Lai, James A Bankson. Comparison of selective excitation and multi-echo chemical shift encoding for imaging of hyperpolarized [1-13C]pyruvate.
Journal of magnetic resonance (San Diego, Calif. : 1997).
2021 04; 325(?):106927. doi:
10.1016/j.jmr.2021.106927
. [PMID: 33607386] - Edward V Prochownik, Huabo Wang. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells.
Cells.
2021 03; 10(4):. doi:
10.3390/cells10040762
. [PMID: 33808495] - Louise Crovesy, Tatiana El-Bacha, Eliane Lopes Rosado. Modulation of the gut microbiota by probiotics and symbiotics is associated with changes in serum metabolite profile related to a decrease in inflammation and overall benefits to metabolic health: a double-blind randomized controlled clinical trial in women with obesity.
Food & function.
2021 Mar; 12(5):2161-2170. doi:
10.1039/d0fo02748k
. [PMID: 33565558] - Fayyaz Ahamed, Mark Van Criekinge, Zhen J Wang, John Kurhanewicz, Peder Larson, Renuka Sriram. Modeling hyperpolarized lactate signal dynamics in cells, patient-derived tissue slice cultures and murine models.
NMR in biomedicine.
2021 03; 34(3):e4467. doi:
10.1002/nbm.4467
. [PMID: 33415771] - Jeremy W Gordon, Hsin-Yu Chen, Nicholas Dwork, Shuyu Tang, Peder E Z Larson. Fast Imaging for Hyperpolarized MR Metabolic Imaging.
Journal of magnetic resonance imaging : JMRI.
2021 03; 53(3):686-702. doi:
10.1002/jmri.27070
. [PMID: 32039520] - Xinxin Song, Jiao Liu, Feimei Kuang, Xin Chen, Herbert J Zeh, Rui Kang, Guido Kroemer, Yangchun Xie, Daolin Tang. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis.
Cell reports.
2021 02; 34(8):108767. doi:
10.1016/j.celrep.2021.108767
. [PMID: 33626342] - Thomas Olsen, Bente Øvrebø, Cheryl Turner, Nasser E Bastani, Helga Refsum, Kathrine J Vinknes. Effects of short-term methionine and cysteine restriction and enrichment with polyunsaturated fatty acids on oral glucose tolerance, plasma amino acids, fatty acids, lactate and pyruvate: results from a pilot study.
BMC research notes.
2021 Feb; 14(1):43. doi:
10.1186/s13104-021-05463-5
. [PMID: 33531059] - Eva M Marwali, Putri Caesa, Muhammad Rayhan, Poppy S Roebiono, Dicky Fakhri, Nikolaus A Haas, Masaki Kajimoto, Michael A Portman. The effect of oral triiodothyronine supplementation on lactate and pyruvate after paediatric cardiac surgery.
Cardiology in the young.
2021 Feb; 31(2):205-211. doi:
10.1017/s1047951120003698
. [PMID: 33168128] - Camilo Hernández-Avilés, Luisa Ramírez-Agámez, Charles C Love, Macy Friedrich, Mariah Pearson, Dale E Kelley, Anne M N Beckham, Sheila R Teague, Katrina A LaCaze, Steven P Brinsko, Dickson D Varner. The effects of metabolic substrates glucose, pyruvate, and lactate added to a skim milk-based semen extender for cooled storage of stallion sperm.
Theriogenology.
2021 Feb; 161(?):83-97. doi:
10.1016/j.theriogenology.2020.11.017
. [PMID: 33302166] - Beibei Zheng, Li Zhao, Xiaohan Jiang, Sylvia Cherono, JingJing Liu, Collins Ogutu, Charmaine Ntini, Xiujun Zhang, Yuepeng Han. Assessment of organic acid accumulation and its related genes in peach.
Food chemistry.
2021 Jan; 334(?):127567. doi:
10.1016/j.foodchem.2020.127567
. [PMID: 32707362] - Gisle Kjøsen, Kristina Rydenfelt, Rune Horneland, Einar Martin Aandahl, Pål-Dag Line, Eric Dorenberg, Audun Elnæs Berstad, Knut Brabrand, Gaute Hagen, Sören Erik Pischke, Gisli Björn Bergmann, Espen Nordheim, Trond Geir Jenssen, Tor Inge Tønnessen, Håkon Haugaa. Early detection of complications in pancreas transplants by microdialysis catheters, an observational feasibility study.
PloS one.
2021; 16(3):e0247615. doi:
10.1371/journal.pone.0247615
. [PMID: 33705460] - Babar Usman, Gul Nawaz, Neng Zhao, Shanyue Liao, Baoxiang Qin, Fang Liu, Yaoguang Liu, Rongbai Li. Programmed Editing of Rice (Oryza sativa L.) OsSPL16 Gene Using CRISPR/Cas9 Improves Grain Yield by Modulating the Expression of Pyruvate Enzymes and Cell Cycle Proteins.
International journal of molecular sciences.
2020 Dec; 22(1):. doi:
10.3390/ijms22010249
. [PMID: 33383688] - Matheus Pinto De Oliveira, Marc Liesa. The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival.
Cells.
2020 12; 9(12):. doi:
10.3390/cells9122600
. [PMID: 33291682] - Michaela Veliova, Caroline M Ferreira, Ilan Y Benador, Anthony E Jones, Kiana Mahdaviani, Alexandra J Brownstein, Brandon R Desousa, Rebeca Acín-Pérez, Anton Petcherski, Essam A Assali, Linsey Stiles, Ajit S Divakaruni, Marc Prentki, Barbara E Corkey, Marc Liesa, Marcus F Oliveira, Orian S Shirihai. Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling.
EMBO reports.
2020 12; 21(12):e49634. doi:
10.15252/embr.201949634
. [PMID: 33275313]