beta-D-fructofuranose 1,6-bisphosphate(4-) (BioDeep_00000897475)
代谢物信息卡片
化学式: C6H10O12P2-4 (335.9648)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 100%
分子结构信息
SMILES: C(C1C(C(C(O1)(COP(=O)([O-])[O-])O)O)O)OP(=O)([O-])[O-]
InChI: InChI=1S/C6H14O12P2/c7-4-3(1-16-19(10,11)12)18-6(9,5(4)8)2-17-20(13,14)15/h3-5,7-9H,1-2H2,(H2,10,11,12)(H2,13,14,15)/p-4/t3-,4-,5+,6-/m1/s1
描述信息
D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents
D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
D007155 - Immunologic Factors
D020011 - Protective Agents
同义名列表
相关代谢途径
Reactome(6)
BioCyc(34)
- superpathway of anaerobic energy metabolism (invertebrates)
- superpathway of N-acetylneuraminate degradation
- superpathway of hexitol degradation (bacteria)
- aspartate superpathway
- superpathway of anaerobic sucrose degradation
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- glycolysis IV (plant cytosol)
- formaldehyde assimilation II (assimilatory RuMP Cycle)
- formaldehyde assimilation III (dihydroxyacetone cycle)
- formaldehyde assimilation II (RuMP Cycle)
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- mixed acid fermentation
- 1,3-propanediol biosynthesis (engineered)
- superpathway of central carbon metabolism
- superpathway of glycolysis and the Entner-Doudoroff pathway
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- Entner-Doudoroff pathway I
- pentose phosphate pathway
- gluconeogenesis I
- glycolysis II (from fructose 6-phosphate)
- glycolysis I (from glucose 6-phosphate)
- gluconeogenesis II (Methanobacterium thermoautotrophicum)
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- pyruvate fermentation to acetate and lactate II
- hexitol fermentation to lactate, formate, ethanol and acetate
- anaerobic energy metabolism (invertebrates, cytosol)
- glycolysis V (Pyrococcus)
- glycolysis III (from glucose)
- pyruvate fermentation to lactate
- glycogen biosynthesis I (from ADP-D-Glucose)
- glycolysis I
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle
- superpathway of glycolysis and Entner-Doudoroff
- glycolysis II
PlantCyc(3)
代谢反应
107 个相关的代谢反应过程信息。
Reactome(52)
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Carbohydrate metabolism:
Glu + OAA ⟶ 2OG + L-Asp
- Glycolysis:
ADP + PEP ⟶ ATP + PYR
- Gluconeogenesis:
Glu + OAA ⟶ 2OG + L-Asp
BioCyc(50)
- superpathway of central carbon metabolism:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- formaldehyde assimilation III (dihydroxyacetone cycle):
ATP + dihydroxy-acetone ⟶ ADP + H+ + dihydroxyacetone phosphate
- formaldehyde assimilation II (RuMP Cycle):
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of glycolysis and Entner-Doudoroff:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis II:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glycolysis and the Entner-Doudoroff pathway:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
β-D-fructose 1,6-bisphosphate ⟶ D-glyceraldehyde 3-phosphate + DHAP
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of N-acetylneuraminate degradation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- 1,3-propanediol biosynthesis (engineered):
1,3-propanediol + NADP+ ⟶ 3-hydroxypropionaldehyde + H+ + NADPH
- gluconeogenesis I:
β-D-fructose 1,6-bisphosphate ⟶ D-glyceraldehyde 3-phosphate + DHAP
- superpathway of hexitol degradation (bacteria):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis II (from fructose 6-phosphate):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis I (from glucose 6-phosphate):
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- oxygenic photosynthesis:
β-D-fructose 1,6-bisphosphate ⟶ D-glyceraldehyde 3-phosphate + DHAP
- ethylene biosynthesis V (engineered):
2-oxoglutarate + H+ + O2 ⟶ CO2 + H2O + ethene
- superpathway of hexitol degradation (bacteria):
an [HPr protein]-Nπ-phospho-L-histidine + galactitol ⟶ an [HPr]-L-histidine + galactitol 1-phosphate
- superpathway of glycolysis and the Entner-Doudoroff pathway:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- gluconeogenesis I:
(S)-malate + NADP+ ⟶ CO2 + NADPH + pyruvate
- glycolysis I (from glucose 6-phosphate):
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis II (from fructose 6-phosphate):
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- chorismate biosynthesis II (archaea):
NADP+ + shikimate ⟶ 3-dehydroshikimate + H+ + NADPH
- 3-dehydroquinate biosynthesis II (archaea):
enolaldehyde ⟶ methylglyoxal
- 3-dehydroquinate biosynthesis II (archaea):
2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate + H2O + NAD+ ⟶ 3-dehydroquinate + H+ + NADH + ammonium
- chorismate biosynthesis II (archaea):
NADP+ + shikimate ⟶ 3-dehydroshikimate + H+ + NADPH
- glycolysis V (Pyrococcus):
D-glyceraldehyde 3-phosphate + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ 3-phospho-D-glycerate + H+ + a reduced ferredoxin [iron-sulfur] cluster
- glycolysis I:
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- glycolysis II:
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- formaldehyde assimilation II (RuMP Cycle):
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- glycolysis IV (plant cytosol):
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glycolysis and Entner-Doudoroff:
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis I:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis I:
3-phospho-D-glycerate + ATP ⟶ 1,3-diphosphateglycerate + ADP + H+
- glycolysis I:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis II:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- furaneol and mesifurane biosynthesis:
furaneol glucopyranoside + malonyl-CoA ⟶ coenzyme A + malonyl-furaneol glucopyranoside
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Calvin cycle:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
INOH(0)
PlantCyc(2)
- furaneol and mesifurane biosynthesis:
SAM + furaneol (enol form) ⟶ H+ + SAH + mesifurane (enol form)
- furaneol and mesifurane biosynthesis:
SAM + furaneol (enol form) ⟶ H+ + SAH + mesifurane (enol form)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Tongqing Chen, Duan Chen, Lu Chen, Zhengxu Chen, Baolong Wang, Daoping Zhou. The effects of fructose diphosphate on routine coagulation tests in vitro.
Scientific reports.
2022 01; 12(1):304. doi:
10.1038/s41598-021-04263-y
. [PMID: 34997135] - Zongwei Zhang, Wei Liang, Qiang Luo, Hongtu Hu, Keju Yang, Jijia Hu, Zhaowei Chen, Jili Zhu, Jun Feng, Zijing Zhu, Qingjia Chi, Guohua Ding. PFKP Activation Ameliorates Foot Process Fusion in Podocytes in Diabetic Kidney Disease.
Frontiers in endocrinology.
2021; 12(?):797025. doi:
10.3389/fendo.2021.797025
. [PMID: 35095764] - Yanhong Pan, Wei Wang, Shuai Huang, Wenting Ni, Zhonghong Wei, Yuzhu Cao, Suyun Yu, Qi Jia, Yuanyuan Wu, Chuan Chai, Qian Zheng, Lei Zhang, Aiyun Wang, Zhiguang Sun, Shile Huang, Shijun Wang, Wenxing Chen, Yin Lu. Beta-elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation.
Journal of cellular and molecular medicine.
2019 10; 23(10):6846-6858. doi:
10.1111/jcmm.14568
. [PMID: 31343107] - Jun Wang, Qi Wu, Jianxin Qiu. Accumulation of fructose 1,6-bisphosphate protects clear cell renal cell carcinoma from oxidative stress.
Laboratory investigation; a journal of technical methods and pathology.
2019 06; 99(6):898-908. doi:
10.1038/s41374-019-0203-3
. [PMID: 30760861] - Ruohua Chen, Xiang Zhou, Gang Huang, Jianjun Liu. Fructose 1,6-Bisphosphatase 1 Expression Reduces 18F-FDG Uptake in Clear Cell Renal Cell Carcinoma.
Contrast media & molecular imaging.
2019; 2019(?):9463926. doi:
10.1155/2019/9463926
. [PMID: 30723389] - Richard Bertram, Leslie S Satin, Arthur S Sherman. Closing in on the Mechanisms of Pulsatile Insulin Secretion.
Diabetes.
2018 03; 67(3):351-359. doi:
10.2337/dbi17-0004
. [PMID: 29463575] - Ling Li, Yifei Wu, Fangyuan Yin, Qin Feng, Xiaoliang Dong, Ruhui Zhang, Zhimin Yin, Lan Luo. Fructose 1, 6-diphosphate prevents alcohol-induced liver injury through inhibiting oxidative stress and promoting alcohol metabolism in mice.
European journal of pharmacology.
2017 Nov; 815(?):274-281. doi:
10.1016/j.ejphar.2017.09.034
. [PMID: 28943104] - Mingxiu Guan, Yingna Tong, Xiaobin Liu, Dong Dong, Yunli Zhou. Enzyme Kinetic Assay to Measure the Activity of Tumor M2 Pyruvate Kinase in Breast Cancer Patients.
Annals of clinical and laboratory science.
2017 Nov; 47(6):676-686. doi:
NULL
. [PMID: 29263041] - Stefanie Gehrig, Jamie A Macpherson, Paul C Driscoll, Alastair Symon, Stephen R Martin, James I MacRae, Jens Kleinjung, Franca Fraternali, Dimitrios Anastasiou. An engineered photoswitchable mammalian pyruvate kinase.
The FEBS journal.
2017 09; 284(18):2955-2980. doi:
10.1111/febs.14175
. [PMID: 28715126] - Henrique Bregolin Dias, Gabriele Catyana Krause, Eamin Daidrê Squizani, Kelly Goulart Lima, Aline Daniele Schuster, Leonardo Pedrazza, Bruno de Souza Basso, Bianca Andrade Martha, Fernanda Cristina de Mesquita, Fernanda Bordignon Nunes, Márcio Vinicius Donadio, Jarbas Rodrigues de Oliveira. Fructose-1,6-bisphosphate reverts iron-induced phenotype of hepatic stellate cells by chelating ferrous ions.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2017 08; 30(4):549-558. doi:
10.1007/s10534-017-0025-y
. [PMID: 28639108] - Natalia Comino, Javier O Cifuente, Alberto Marina, Ane Orrantia, Ander Eguskiza, Marcelo E Guerin. Mechanistic insights into the allosteric regulation of bacterial ADP-glucose pyrophosphorylases.
The Journal of biological chemistry.
2017 04; 292(15):6255-6268. doi:
10.1074/jbc.m116.773408
. [PMID: 28223362] - Matías D Hartman, Carlos M Figueroa, Diego G Arias, Alberto A Iglesias. Inhibition of Recombinant Aldose-6-Phosphate Reductase from Peach Leaves by Hexose-Phosphates, Inorganic Phosphate and Oxidants.
Plant & cell physiology.
2017 01; 58(1):145-155. doi:
10.1093/pcp/pcw180
. [PMID: 28011870] - Javier O Cifuente, Natalia Comino, Julene Madariaga-Marcos, Sonia López-Fernández, Mikel García-Alija, Jon Agirre, David Albesa-Jové, Marcelo E Guerin. Structural Basis of Glycogen Biosynthesis Regulation in Bacteria.
Structure (London, England : 1993).
2016 09; 24(9):1613-22. doi:
10.1016/j.str.2016.06.023
. [PMID: 27545622] - Norma Alva, Ronald Alva, Teresa Carbonell. Fructose 1,6-Bisphosphate: A Summary of Its Cytoprotective Mechanism.
Current medicinal chemistry.
2016; 23(39):4396-4417. doi:
10.2174/0929867323666161014144250
. [PMID: 27758716] - J Li, Y Hu, Q Zhang, B Ma, Z Wu, Y Wang, J Sun, J Zhu, H Ying, P Ouyang. Strontium fructose 1, 6-diphosphate alleviate cyclophosphamide-induced oligozoospermia by improving antioxidant and inhibiting testicular apoptosis via FAS/FASL pathway.
Andrologia.
2015 Nov; 47(9):995-1003. doi:
10.1111/and.12369
. [PMID: 25382543] - Shijun Li, Lifu Liao, Rurong Wu, Yanyan Yang, Li Xu, Xilin Xiao, Changming Nie. Resonance light scattering detection of fructose bisphosphates using uranyl-salophen complex-modified gold nanoparticles as optical probe.
Analytical and bioanalytical chemistry.
2015 Nov; 407(29):8911-8. doi:
10.1007/s00216-015-9050-2
. [PMID: 26403237] - Ting-Ting Li, Jian-Zhong Xie, Ling Wang, Yang-Yang Gao, Xue-Hua Jiang. Rational application of fructose-1,6-diphosphate: From the perspective of pharmacokinetics.
Acta pharmaceutica (Zagreb, Croatia).
2015 Jun; 65(2):147-57. doi:
10.1515/acph-2015-0020
. [PMID: 26011931] - Guilherme Vargas Bochi, Vanessa Dorneles Torbitz, Lara Peruzzolo Cargnin, José Antonio Mainardi de Carvalho, Patrícia Gomes, Rafael Noal Moresco. An alternative pathway through the Fenton reaction for the formation of advanced oxidation protein products, a new class of inflammatory mediators.
Inflammation.
2014 Apr; 37(2):512-21. doi:
10.1007/s10753-013-9765-1
. [PMID: 24193368] - Fernanda C de Mesquita, Shanna Bitencourt, Eduardo Caberlon, Gabriela V da Silva, Bruno S Basso, Julia Schmid, Gabriela A Ferreira, Fernanda Dos Santos de Oliveira, Jarbas R de Oliveira. Fructose-1,6-bisphosphate induces phenotypic reversion of activated hepatic stellate cell.
European journal of pharmacology.
2013 Nov; 720(1-3):320-5. doi:
10.1016/j.ejphar.2013.09.067
. [PMID: 24144957] - Lei Lv, Yan-Ping Xu, Di Zhao, Fu-Long Li, Wei Wang, Naoya Sasaki, Ying Jiang, Xin Zhou, Ting-Ting Li, Kun-Liang Guan, Qun-Ying Lei, Yue Xiong. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization.
Molecular cell.
2013 Nov; 52(3):340-52. doi:
10.1016/j.molcel.2013.09.004
. [PMID: 24120661] - Bo Ma, Xiaotian Li, Qi Zhang, Di Wu, Guangji Wang, Jiye A, Jianguo Sun, Jing Li, Yinhui Liu, Yonglu Wang, Hanjie Ying. Metabonomic profiling in studying anti-osteoporosis effects of strontium fructose 1,6-diphosphate on estrogen deficiency-induced osteoporosis in rats by GC/TOF-MS.
European journal of pharmacology.
2013 Oct; 718(1-3):524-32. doi:
10.1016/j.ejphar.2013.06.030
. [PMID: 23872379] - Misty L Kuhn, Carlos M Figueroa, Alberto A Iglesias, Miguel A Ballicora. The ancestral activation promiscuity of ADP-glucose pyrophosphorylases from oxygenic photosynthetic organisms.
BMC evolutionary biology.
2013 Feb; 13(?):51. doi:
10.1186/1471-2148-13-51
. [PMID: 23433303] - Norma Alva, David Cruz, Sergio Sanchez, Juana Ma Valentín, Jordi Bermudez, Teresa Carbonell. Nitric oxide as a mediator of fructose 1,6-bisphosphate protection in galactosamine-induced hepatotoxicity in rats.
Nitric oxide : biology and chemistry.
2013 Jan; 28(?):17-23. doi:
10.1016/j.niox.2012.09.004
. [PMID: 23032643] - Guilherme Vargas Bochi, Vanessa Dorneles Torbitz, Lara Peruzzolo Cargnin, Manuela Borges Sangoi, Roberto Christ Vianna Santos, Patrícia Gomes, Rafael Noal Moresco. Fructose-1,6-bisphosphate and N-acetylcysteine attenuate the formation of advanced oxidation protein products, a new class of inflammatory mediators, in vitro.
Inflammation.
2012 Dec; 35(6):1786-92. doi:
10.1007/s10753-012-9498-6
. [PMID: 22777066] - J Musembi Mutuku, Akihiro Nose. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.
Plant & cell physiology.
2012 Jun; 53(6):1017-32. doi:
10.1093/pcp/pcs047
. [PMID: 22492233] - Bo Ma, Qi Zhang, Di Wu, Yong-lu Wang, Ying-ying Hu, Yan-ping Cheng, Zhen-dong Yang, Ya-ya Zheng, Han-Jie Ying. Strontium fructose 1,6-diphosphate prevents bone loss in a rat model of postmenopausal osteoporosis via the OPG/RANKL/RANK pathway.
Acta pharmacologica Sinica.
2012 Apr; 33(4):479-89. doi:
10.1038/aps.2011.177
. [PMID: 22426695] - V R Camacho, R S de Fraga, R S Fraga, C T Cerski, J R de Oliveira, J R Oliveira, M R Álvares-da-Silva, M R Alvares-Dasilva. Relationship between ischemia/reperfusion injury and the stimulus of fibrogenesis in an experimental model: comparison among different preservation solutions.
Transplantation proceedings.
2011 Dec; 43(10):3634-7. doi:
10.1016/j.transproceed.2011.08.114
. [PMID: 22172818] - Karina van der Linde, Nora Gutsche, Hans-Martin Leffers, Christian Lindermayr, Bernd Müller, Simone Holtgrefe, Renate Scheibe. Regulation of plant cytosolic aldolase functions by redox-modifications.
Plant physiology and biochemistry : PPB.
2011 Sep; 49(9):946-57. doi:
10.1016/j.plaphy.2011.06.009
. [PMID: 21782461] - Claudia Vanesa Piattoni, Diego Martín Bustos, Sergio Adrián Guerrero, Alberto Álvaro Iglesias. Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase is phosphorylated in wheat endosperm at serine-404 by an SNF1-related protein kinase allosterically inhibited by ribose-5-phosphate.
Plant physiology.
2011 Jul; 156(3):1337-50. doi:
10.1104/pp.111.177261
. [PMID: 21546456] - Norma Alva, Teresa Carbonell, Teresa Roig, Jordi Bermúdez, Jesús Palomeque. Fructose 1,6 biphosphate administration to rats prevents metabolic acidosis and oxidative stress induced by deep hypothermia and rewarming.
European journal of pharmacology.
2011 Jun; 659(2-3):259-64. doi:
10.1016/j.ejphar.2011.03.034
. [PMID: 21463624] - R S de Fraga, P E T Heinen, C R P Kruel, S D Molin, S M Mota, C T S Cerski, G Gasperin, A A Souto, J R de Oliveira, M R Alvares-da-Silva. Fructose 1-6 bisphosphate versus University of Wisconsin solution for rat liver preservation: does FBP prevent early mitochondrial injury?.
Transplantation proceedings.
2011 Jun; 43(5):1468-73. doi:
10.1016/j.transproceed.2011.02.023
. [PMID: 21693219] - Ying-ying Hu, Qi Zhang, Bo Ma, Ya-jun Wang, Jing-ya Yi, Ying Liu. [Strontium fructose 1,6-diphosphate (FDP-Sr) alleviates oligozoospermia induced by multiglycosides of tripterygium wilfordii in rats].
Zhonghua nan ke xue = National journal of andrology.
2011 May; 17(5):396-400. doi:
NULL
. [PMID: 21837946] - Bo Ma, Qi Zhang, Guanji Wang, Zimei Wu, John P Shaw, Yinying Hu, Yubin Wang, Yaya Zheng, Zhendong Yang, Hanjie Ying. Synthesis and pharmacokinetics of strontium fructose 1,6-diphosphate (Sr-FDP) as a potential anti-osteoporosis agent in intact and ovariectomized rats.
Journal of inorganic biochemistry.
2011 Apr; 105(4):563-8. doi:
10.1016/j.jinorgbio.2011.01.001
. [PMID: 21345324] - Alan Arrieira Azambuja, Adroaldo Lunardelli, Fernanda Bordignon Nunes, Patrick Barcelos Gaspareto, Márcio Vinícius Fagundes Donadio, Carlos Eduardo Poli de Figueiredo, Jarbas Rodrigues de Oliveira. Effect of fructose-1,6-bisphosphate on the nephrotoxicity induced by cisplatin in rats.
Inflammation.
2011 Feb; 34(1):67-71. doi:
10.1007/s10753-010-9212-5
. [PMID: 20419391] - M Xu, D Z Dai, Q Zhang, Y S Cheng, Y Dai. Upregulated NADPH oxidase contributes to diabetic testicular complication and is relieved by strontium fructose 1,6-diphosphate.
Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association.
2010 Jul; 118(7):459-65. doi:
10.1055/s-0030-1248325
. [PMID: 20200810] - Indika Gawarammana, Fahim Mohamed, Steven J Bowe, Ashoka Rathnathilake, Shantha K Narangoda, Shifa Azher, Andrew H Dawson, Nick A Buckley. Fructose-1, 6-diphosphate (FDP) as a novel antidote for yellow oleander-induced cardiac toxicity: a randomized controlled double blind study.
BMC emergency medicine.
2010 Jun; 10(?):15. doi:
10.1186/1471-227x-10-15
. [PMID: 20587052] - Luciana M de Oliveira, Melissa G Simões Pires, Alessandra B Magrisso, Terezinha P Munhoz, Rafael Roesler, Jarbas R de Oliveira. Fructose-1,6-bisphosphate inhibits in vitro and ex vivo platelet aggregation induced by ADP and ameliorates coagulation alterations in experimental sepsis in rats.
Journal of thrombosis and thrombolysis.
2010 May; 29(4):387-94. doi:
10.1007/s11239-009-0387-2
. [PMID: 19705256] - D A Valério, F I Ferreira, T M Cunha, J C Alves-Filho, F O Lima, J R De Oliveira, S H Ferreira, F Q Cunha, R H Queiroz, W A Verri. Fructose-1,6-bisphosphate reduces inflammatory pain-like behaviour in mice: role of adenosine acting on A1 receptors.
British journal of pharmacology.
2009 Sep; 158(2):558-68. doi:
10.1111/j.1476-5381.2009.00325.x
. [PMID: 19645715] - Roser Calafell, Jordi Boada, Antonio F Santidrian, Joan Gil, Teresa Roig, Jose C Perales, Jordi Bermudez. Fructose 1,6-bisphosphate reduced TNF-alpha-induced apoptosis in galactosamine sensitized rat hepatocytes through activation of nitric oxide and cGMP production.
European journal of pharmacology.
2009 May; 610(1-3):128-33. doi:
10.1016/j.ejphar.2009.03.044
. [PMID: 19324037] - Meng Wang, Jun Yao, Jia-Ying Chen, Wen-Xia Bai, Sheng-Yao Mei, Wei-Na Pan, Yu-Ying Pan, Fei-Long Yu. A subchronic intravenous toxicity study of magnesium fructose-1,6-diphosphate in beagle dogs.
Basic & clinical pharmacology & toxicology.
2009 Feb; 104(2):93-100. doi:
10.1111/j.1742-7843.2008.00335.x
. [PMID: 19053993] - Qi Zhang, Hao-Ran Liu, Han-Jie Ying, De-Zai Dai, Xiao-Yun Tang, Yin Dai. Strontium fructose 1,6-diphosphate alleviates early diabetic testopathy by suppressing abnormal testicular matrix metalloproteinase system in streptozocin-treated rats.
The Journal of pharmacy and pharmacology.
2009 Feb; 61(2):229-36. doi:
10.1211/jpp/61.02.0013
. [PMID: 19178771] - Taishi Yoshida, Akira Okuno, Masanori Izumi, Kanako Takahashi, Yuka Hagisawa, Jun Ohsumi, Toshihiko Fujiwara. CS-917, a fructose 1,6-bisphosphatase inhibitor, improves postprandial hyperglycemia after meal loading in non-obese type 2 diabetic Goto-Kakizaki rats.
European journal of pharmacology.
2008 Dec; 601(1-3):192-7. doi:
10.1016/j.ejphar.2008.10.050
. [PMID: 19014931] - Xiang-hui Xu, Ye-tian Chang, Li Li, Jing Li, Dong-mei Zhang, Xiao-hua Zou. [Effect of fructose-1,6-diphosphete on myocardial preservation during pulmonary operations].
Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences.
2008 Oct; 33(10):966-9. doi:
. [PMID: 19001742]
- V F Sivuk, I M Rusina, A F Makarchikov. Purification and characteristics of functional properties of soluble nucleoside triphosphatase (apyrase) from bovine brain.
Biochemistry. Biokhimiia.
2008 Sep; 73(9):1047-52. doi:
10.1134/s0006297908090137
. [PMID: 18976223] - J Bogdanović, M Mojović, N Milosavić, A Mitrović, Z Vucinić, I Spasojević. Role of fructose in the adaptation of plants to cold-induced oxidative stress.
European biophysics journal : EBJ.
2008 Sep; 37(7):1241-6. doi:
10.1007/s00249-008-0260-9
. [PMID: 18214465] - Antonio Gámez, Norma Alva, Teresa Roig, Jordi Bermúdez, Teresa Carbonell. Beneficial effects of fructose 1,6-biphosphate on hypothermia-induced reactive oxygen species injury in rats.
European journal of pharmacology.
2008 Aug; 590(1-3):115-9. doi:
10.1016/j.ejphar.2008.05.039
. [PMID: 18602097] - Kaiping Xu, Janet L Stringer. Pharmacokinetics of fructose-1,6-diphosphate after intraperitoneal and oral administration to adult rats.
Pharmacological research.
2008 Mar; 57(3):234-8. doi:
10.1016/j.phrs.2008.01.008
. [PMID: 18325780] - Joachim B Ritter, Yvonne Genzel, Udo Reichl. Simultaneous extraction of several metabolites of energy metabolism and related substances in mammalian cells: optimization using experimental design.
Analytical biochemistry.
2008 Feb; 373(2):349-69. doi:
10.1016/j.ab.2007.10.037
. [PMID: 18036549] - Ryuichiro Uemura, Kazuhisa Uchiyama, Satoru Ozawa, Hiroki Yamaue. Effect of normothermic perfusion using fructose-1,6-bisphosphate for maintenance of liver function during in situ extended hepatectomy by the total hepatic vascular exclusion technique.
The Journal of surgical research.
2007 Jan; 137(1):89-95. doi:
10.1016/j.jss.2006.07.029
. [PMID: 17084408] - Francesca Mancini, Jessica Fiori, Vanni Cavrini, Vincenza Andrisano. Separation and quantitation of fructose-6-phosphate and fructose-1 ,6-diphosphate by LC-ESI-MS for the evaluation of fructose-1,6-biphosphatase activity.
Journal of separation science.
2006 Oct; 29(15):2395-400. doi:
10.1002/jssc.200600077
. [PMID: 17120825] - Eduardo Cuesta, Jordi Boada, Roser Calafell, Jose C Perales, Teresa Roig, Jordi Bermudez. Fructose 1,6-bisphosphate prevented endotoxemia, macrophage activation, and liver injury induced by D-galactosamine in rats.
Critical care medicine.
2006 Mar; 34(3):807-14. doi:
10.1097/01.ccm.0000202016.60856.03
. [PMID: 16521276] - N Antunes, C A Martinusso, C M Takiya, A J R da Silva, J F R de Ornellas, P R Elias, M Leite, L R Cardoso. Fructose-1,6 diphosphate as a protective agent for experimental ischemic acute renal failure.
Kidney international.
2006 Jan; 69(1):68-72. doi:
10.1038/sj.ki.5000013
. [PMID: 16374425] - Takashi Fushimi, Yuzo Sato. Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats.
The British journal of nutrition.
2005 Nov; 94(5):714-9. doi:
10.1079/bjn20051545
. [PMID: 16277773] - Hirosato Konishi, Masayoshi Maeshima, Setsuko Komatsu. Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin.
Journal of proteome research.
2005 Sep; 4(5):1775-80. doi:
10.1021/pr050079c
. [PMID: 16212432] - Wei Cai, Jun-zhu Chen, Li-ming Ruan, Yi-na Wang. Effects of fructose-1,6-diphosphate on concentration of calcium and activities of sarcoplosnic Ca2+-ATPase in cardiomyocytes of Adriamycin-treated rats.
Journal of Zhejiang University. Science. B.
2005 Jul; 6(7):622-5. doi:
10.1631/jzus.2005.b0622
. [PMID: 15973762] - Vipul Sud, Sheila G Lindley, Olga McDaniel, Alan E Freeland, Feng Zhang, Wanda Dorsett-Martin, Steven A Bigler, William Lineaweaver. Evaluation of fructose 1,6 diphosphate for salvage of ischemic gracilis flaps in rats.
Journal of reconstructive microsurgery.
2005 Apr; 21(3):191-6. doi:
10.1055/s-2005-869826
. [PMID: 15880299] - Rui Zhou, Lailiang Cheng. Biochemical characterization of cytosolic fructose-1,6-bisphosphatase from apple (Malus domestica) leaves.
Plant & cell physiology.
2004 Jul; 45(7):879-86. doi:
10.1093/pcp/pch096
. [PMID: 15295071] - Thomas J Wheeler, John M McCurdy, Aaron denDekker, Sufan Chien. Permeability of fructose-1,6-bisphosphate in liposomes and cardiac myocytes.
Molecular and cellular biochemistry.
2004 Apr; 259(1-2):105-14. doi:
10.1023/b:mcbi.0000021356.89867.0d
. [PMID: 15124914] - Bernhard J Riedel, Janos Gal, Gillian Ellis, Paul J Marangos, Anthony W Fox, David Royston. Myocardial protection using fructose-1,6-diphosphate during coronary artery bypass graft surgery: a randomized, placebo-controlled clinical trial.
Anesthesia and analgesia.
2004 Jan; 98(1):20-29. doi:
10.1213/01.ane.0000094336.97693.90
. [PMID: 14693576] - Yong-quan Chen, Xiao-ju Jin, Rong-hua Tang, Wen-bin Huang, Qing-song Tao, Bang-an Wang. [Effect of fructose-1,6-diphosphate and dexamethasone on ischemia/reperfusion injury after hemorrhagic shock in rabbits].
Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue.
2004 Jan; 16(1):29-32. doi:
NULL
. [PMID: 14706200] - Anelise Costa dos Santos, Wagner Seixas da-Silva, Leopoldo de Meis, Antonio Galina. Proton transport in maize tonoplasts supported by fructose-1,6-bisphosphate cleavage. Pyrophosphate-dependent phosphofructokinase as a pyrophosphate-regenerating system.
Plant physiology.
2003 Oct; 133(2):885-92. doi:
10.1104/pp.103.026633
. [PMID: 12972651] - Fernanda Bordignon Nunes, Patrick Barcelos Gaspareto, Roberto Christ Vianna Santos, Márcio de Assis, Cássio Meyer Graziottin, Vanderlei Biolchi, José Carlos Farias Alves Filho, Adroaldo Lunardelli, Luís D Avila, Melissa Guerra Simões Pires, Paulo Harald Wächter, Jarbas Rodrigues De Oliveira. Intravenous toxicity of fructose-1,6-bisphosphate in rats.
Toxicology letters.
2003 Jun; 143(1):73-81. doi:
10.1016/s0378-4274(03)00075-4
. [PMID: 12697383] - Florencio E Podestá, William C Plaxton. Fluorescence study of ligand binding to potato tuber pyrophosphate-dependent phosphofructokinase: evidence for competitive binding between fructose-1,6-bisphosphate and fructose-2,6-bisphosphate.
Archives of biochemistry and biophysics.
2003 Jun; 414(1):101-7. doi:
10.1016/s0003-9861(03)00157-7
. [PMID: 12745260] - Jennifer L Minigh, Monica A Valentovic. Characterization of myoglobin toxicity in renal cortical slices from Fischer 344 rats.
Toxicology.
2003 Mar; 184(2-3):113-23. doi:
10.1016/s0300-483x(02)00554-1
. [PMID: 12499114] - Anastasios A Mihas, Vijaya K Kanji, Thanos A Mihas, Roy M Joseph, Angel K Markov, Douglas M Heuman. Fructose diphosphate attenuates the acetaminophen-induced liver injury in the rat evidence for involvement of nitric oxide.
Research communications in molecular pathology and pharmacology.
2003; 113-114(?):253-66. doi:
. [PMID: 15686124]
- William D Ehringer, Susan Su, Benjamin Chiangb, William Stillwell, Sufan Chien. Destabilizing effects of fructose-1,6-bisphosphate on membrane bilayers.
Lipids.
2002 Sep; 37(9):885-92. doi:
10.1007/s11745-002-0975-2
. [PMID: 12458624] - P John Andralojc, Alfred J Keys, Jens Kossmann, Martin A J Parry. Elucidating the biosynthesis of 2-carboxyarabinitol 1-phosphate through reduced expression of chloroplastic fructose 1,6-bisphosphate phosphatase and radiotracer studies with 14CO2.
Proceedings of the National Academy of Sciences of the United States of America.
2002 Apr; 99(7):4742-7. doi:
10.1073/pnas.072137099
. [PMID: 11917127] - Li-mei Chen, Takuma Omiya, Shingo Hata, Katsura Izui. Molecular characterization of a phosphoenolpyruvate carboxylase from a thermophilic cyanobacterium, Synechococcus vulcanus with unusual allosteric properties.
Plant & cell physiology.
2002 Feb; 43(2):159-69. doi:
10.1093/pcp/pcf019
. [PMID: 11867695] - Diego F Gómez-Casati, Alberto A Iglesias. ADP-glucose pyrophosphorylase from wheat endosperm. Purification and characterization of an enzyme with novel regulatory properties.
Planta.
2002 Jan; 214(3):428-34. doi:
10.1007/s004250100634
. [PMID: 11855648] - P H Donohoe, C S Fahlman, P E Bickler, Z S Vexler, G A Gregory. Neuroprotection and intracellular Ca2+ modulation with fructose-1,6-bisphosphate during in vitro hypoxia-ischemia involves phospholipase C-dependent signaling.
Brain research.
2001 Nov; 917(2):158-66. doi:
10.1016/s0006-8993(01)02849-9
. [PMID: 11640901] - Z Shu, J Li. Fructose-1,6-diphosphate-added total parenteral nutrition in septic animals and stressed patients.
Chinese medical journal.
2001 Nov; 114(11):1171-5. doi:
. [PMID: 11729513]
- J O Wooll, R H Friesen, M A White, S J Watowich, R O Fox, J C Lee, E W Czerwinski. Structural and functional linkages between subunit interfaces in mammalian pyruvate kinase.
Journal of molecular biology.
2001 Sep; 312(3):525-40. doi:
10.1006/jmbi.2001.4978
. [PMID: 11563914] - E Fujii, Y Kodama, N Takahashi, C Roman, D Ferriero, G Gregory, J T Parer. Fructose- 1,6-bisphosphate did not affect hippocampal neuronal damage caused by 10 min of complete umbilical cord occlusion in fetal sheep.
Neuroscience letters.
2001 Aug; 309(1):49-52. doi:
10.1016/s0304-3940(01)02026-2
. [PMID: 11489544] - A H Figueroa, R H Stone, H H Cohly, P H Lehan, A K Markov. Effect of fructose-1, 6-diphosphate versus diphenhydramine on mortality in compound 48/80-induced shock.
Toxicology letters.
2001 Jun; 122(2):141-8. doi:
10.1016/s0378-4274(01)00357-5
. [PMID: 11439220] - P D Duek, R A Wolosiuk. Rapeseed chloroplast thioredoxin-m. Modulation of the affinity for target proteins.
Biochimica et biophysica acta.
2001 Apr; 1546(2):299-311. doi:
10.1016/s0167-4838(01)00150-9
. [PMID: 11295436] - P G Lloyd, C D Hardin. Caveolae and the organization of carbohydrate metabolism in vascular smooth muscle.
Journal of cellular biochemistry.
2001; 82(3):399-408. doi:
10.1002/jcb.1170
. [PMID: 11500916] - I Miwa, N Ichimura, M Sugiura, Y Hamada, S Taniguchi. Inhibition of glucose-induced insulin secretion by 4-hydroxy-2-nonenal and other lipid peroxidation products.
Endocrinology.
2000 Aug; 141(8):2767-72. doi:
10.1210/endo.141.8.7614
. [PMID: 10919261] - W D Ehringer, W Niu, B Chiang, O L Wang, L Gordon, S Chien. Membrane permeability of fructose-1,6-diphosphate in lipid vesicles and endothelial cells.
Molecular and cellular biochemistry.
2000 Jul; 210(1-2):35-45. doi:
10.1023/a:1007059214754
. [PMID: 10976756] - A K Markov, W A Neely, R H Didlake, J Terry, A Causey, P H Lehan. Metabolic responses to fructose-1,6-diphosphate in healthy subjects.
Metabolism: clinical and experimental.
2000 Jun; 49(6):698-703. doi:
10.1053/meta.2000.6249
. [PMID: 10877192] - P G Lloyd, C D Hardin. Sorting of metabolic pathway flux by the plasma membrane in cerebrovascular smooth muscle cells.
American journal of physiology. Cell physiology.
2000 Apr; 278(4):C803-11. doi:
10.1152/ajpcell.2000.278.4.c803
. [PMID: 10751328] - F Hatzack, S K Rasmussen. High-performance thin-layer chromatography method for inositol phosphate analysis.
Journal of chromatography. B, Biomedical sciences and applications.
1999 Dec; 736(1-2):221-9. doi:
10.1016/s0378-4347(99)00465-x
. [PMID: 10677002] - Y H Wang, J N Shi. Evidence that fructose 1,6-bisphosphate specifically protects the alpha-subunit of pyrophosphate-dependent 6-phosphofructo-1-phosphotransferase against proteolytic degradation.
FEBS letters.
1999 Oct; 459(3):448-52. doi:
10.1016/s0014-5793(99)01304-6
. [PMID: 10526182] - H H Cohly, J W Stephens, M F Angel, J C Johnson, A K Markov. The role of fructose-1,6-diphosphate in cell migration and proliferation in an in vitro xenograft blood vessel model of vascular wound healing.
In vitro cellular & developmental biology. Animal.
1999 Oct; 35(9):510-4. doi:
10.1007/s11626-999-0061-1
. [PMID: 10548432] - W Niu, F Zhang, W Ehringer, M Tseng, L Gray, S Chien. Enhancement of hypothermic heart preservation with fructose 1, 6-diphosphate.
The Journal of surgical research.
1999 Jul; 85(1):120-9. doi:
10.1006/jsre.1999.5658
. [PMID: 10383848] - A K Markov, M F Payment, A S Hume, M R Rao, M A Markov, T N Skelton, P H Lehan. Fructose-1,6-diphosphate in the treatment of oleander toxicity in dogs.
Veterinary and human toxicology.
1999 Feb; 41(1):9-15. doi:
. [PMID: 9949476]
- R J Hodgson, Z Jia, W C Plaxton. A fluorescence study of ligand-induced conformational changes in cytosolic fructose-1,6-bisphosphatase from germinating castor oil seeds.
Biochimica et biophysica acta.
1998 Nov; 1388(2):285-94. doi:
10.1016/s0167-4838(98)00176-9
. [PMID: 9858750] - R H Friesen, J C Lee. The negative dominant effects of T340M mutation on mammalian pyruvate kinase.
The Journal of biological chemistry.
1998 Jun; 273(24):14772-9. doi:
10.1074/jbc.273.24.14772
. [PMID: 9614077] - A Dabrowska, J Pietkiewicz, K Dabrowska, E Czapińska, R Danielewicz. Interaction of M1 and M2 isozymes pyruvate kinase from human tissues with phospholipids.
Biochimica et biophysica acta.
1998 Mar; 1383(1):123-9. doi:
10.1016/s0167-4838(97)00192-1
. [PMID: 9546053] - J Sheng, J Preiss. Arginine294 is essential for the inhibition of Anabaena PCC 7120 ADP-glucose pyrophosphorylase by phosphate.
Biochemistry.
1997 Oct; 36(42):13077-84. doi:
10.1021/bi9713355
. [PMID: 9335570] - E Boles, F Schulte, T Miosga, K Freidel, E Schlüter, F K Zimmermann, C P Hollenberg, J J Heinisch. Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate.
Journal of bacteriology.
1997 May; 179(9):2987-93. doi:
10.1128/jb.179.9.2987-2993.1997
. [PMID: 9139918] - M R Rao, K D Olinde, A K Markov. Protection from amphotericin B-induced lipid peroxidation in rats by fructose-1,6-diphosphate.
Research communications in molecular pathology and pharmacology.
1997 Feb; 95(2):217-20. doi:
. [PMID: 9090757]
- A Sola, M Berrios, R A Sheldon, D M Ferriero, G A Gregory. Fructose-1,6-bisphosphate after hypoxic ischemic injury is protective to the neonatal rat brain.
Brain research.
1996 Nov; 741(1-2):294-9. doi:
10.1016/s0006-8993(96)00984-5
. [PMID: 9001735] - R M Ferreira, E Franco, A R Teixeira. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation.
The Biochemical journal.
1996 Aug; 318 ( Pt 1)(?):227-34. doi:
10.1042/bj3180227
. [PMID: 8761476] - H Wakabayashi, M Tsuchiya, K Yoshino, K Kaku, H Shigei. Hereditary deficiency of lactate dehydrogenase H-subunit.
Internal medicine (Tokyo, Japan).
1996 Jul; 35(7):550-4. doi:
10.2169/internalmedicine.35.550
. [PMID: 8842761] - T Nakai, H Tanimura, H Yamoto, F Hirokawa. Improved liver function following infusion of fructose-1, 6-bisphosphate in posthepatectomy patients.
Nihon geka hokan. Archiv fur japanische Chirurgie.
1996 Jan; 65(1):3-12. doi:
NULL
. [PMID: 8958696] - L R Cardoso, O F Santos, M A Boim, E G Barros, H Ajzen, N Schor. Fructose-1,6-diphosphate: potential protection in cyclosporine-induced renal impairment.
Nephron.
1996; 72(1):67-71. doi:
10.1159/000188808
. [PMID: 8903863] - T Akimitsu, J A White, D L Carden, D C Gute, R J Korthuis. Fructose-1,6-diphosphate or adenosine attenuate leukocyte adherence in postischemic skeletal muscle.
The American journal of physiology.
1995 Nov; 269(5 Pt 2):H1743-51. doi:
10.1152/ajpheart.1995.269.5.h1743
. [PMID: 7503273] - W Sano, F Watanabe, H Tamai, E Furuya, M Mino. Beneficial effect of fructose-1,6-bisphosphate on mitochondrial function during ischemia-reperfusion of rat liver.
Gastroenterology.
1995 Jun; 108(6):1785-92. doi:
10.1016/0016-5085(95)90141-8
. [PMID: 7768384] - Y Y Charng, J Sheng, J Preiss. Mutagenesis of an amino acid residue in the activator-binding site of cyanobacterial ADP-glucose pyrophosphorylase causes alteration in activator specificity.
Archives of biochemistry and biophysics.
1995 Apr; 318(2):476-80. doi:
10.1006/abbi.1995.1256
. [PMID: 7733679]