Protodioscin (BioDeep_00000000201)

 

Secondary id: BioDeep_00000015688, BioDeep_00001867473, BioDeep_00001869931

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


2-[(4-hydroxy-6-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

化学式: C51H84O22 (1048.5454)
中文名称: 原薯蓣皂甙, 原薯蓣皂苷
谱图信息: 最多检出来源 () 0%

Reviewed

Last reviewed on 2024-07-09.

Cite this Page

Protodioscin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/protodioscin (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000201). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1[C@@H](CC2=CC[C@@H]3[C@@H]([C@]2(C1)C)CC[C@]1([C@H]3C[C@H]2[C@@H]1[C@@H]([C@](O2)(CC[C@@H](C)CO[C@H]1[C@H]([C@@H]([C@@H]([C@@H](O1)CO)O)O)O)O)C)C)O[C@@H]1[C@@H]([C@H]([C@@H]([C@H](O1)CO)O[C@H]1[C@@H]([C@H]([C@H]([C@@H](O1)C)O)O)O)O)O[C@H]1[C@@H]([C@H]([C@H]([C@H](O1)C)O)O)O
InChI: InChI=1S/C51H84O22/c1-20(19-65-45-39(60)38(59)35(56)30(17-52)69-45)9-14-51(64)21(2)32-29(73-51)16-28-26-8-7-24-15-25(10-12-49(24,5)27(26)11-13-50(28,32)6)68-48-44(72-47-41(62)37(58)34(55)23(4)67-47)42(63)43(31(18-53)70-48)71-46-40(61)36(57)33(54)22(3)66-46/h7,20-23,25-48,52-64H,8-19H2,1-6H3

描述信息

Protodioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. It has a role as a metabolite. It is a steroid saponin, a trisaccharide derivative, a beta-D-glucoside, a pentacyclic triterpenoid and a cyclic hemiketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan.
Protodioscin is a natural product found in Dracaena draco, Borassus flabellifer, and other organisms with data available.
See also: Fenugreek seed (part of).
Asparasaponin I is found in fenugreek. Asparasaponin I is a bitter principle from white asparagus shoots (Asparagus officinalis) and fenugreek (Trigonella foenum-graecum
From Asparagus officinalis (asparagus)
Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties.
Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties.

同义名列表

27 个代谢物同义名

2-[(4-hydroxy-6-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol; .BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,22.ALPHA.,25R)-26-(.BETA.-D-GLUCOPYRANOSYLOXY)-22-HYDROXYFUROST-5-EN-3-YL O-6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->2)-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->4))-; beta-D-Glucopyranoside, (3beta,22alpha)-26-(beta-D-glucopyranosyloxy)-22-hydroxyfurost-5-en-3-yl O-6-deoxy-alpha-L-mannopyranosyl-(1-2)-O-(6-deoxy-alpha-L-mannopyranosyl-(1-4))-, (R-(Z))-; beta-D-GLUCOPYRANOSIDE, (3beta,22alpha,25R)-26-(beta-D-GLUCOPYRANOSYLOXY)-22-HYDROXYFUROST-5-EN-3-YL O-6-DEOXY-alpha-L-MANNOPYRANOSYL-(1->2)-O-(6-DEOXY-alpha-L-MANNOPYRANOSYL-(1->4))-; beta-D-Glucopyranoside, (3beta,22beta,25R)-26-(beta-D-glucopyranosyloxy)-22-hydroxyfurost-5-en-3-yl O-6-deoxy-alpha-L-mannopyranosyl-(1->2)-O-(6-deoxy-alpha-L-mannopyranosyl-(1->4))-; 26-o-beta-d-glycopyranosyl-22-hydroxyfurost-5-ene-3beta,26-diol-3-o-beta-diglucorhamnoside; PROTODIOSON; SHENGMATING; PROTODIOSCIN SNAP-N-SHOOT 0.1mg/mL(P); PROTODIOSCIN(P); 26-O-.BETA.-D-GLUCOPYRANOSYL-(25R)-FUROST-5-ENE-3.BETA.,22.ALPHA.,26-TRIOL 3-O-.ALPHA.-L-RHAMNOPYRANOSYL-(1-2)-(.ALPHA.-L-RHAMNOPYRANOSYL-(1-4))-.BETA.-D-GLUCOPYRANOSIDE; (3beta,22R,25R)-26-(beta-D-glucopyranosyloxy)-22-hydroxyfurost-5-en-3-yl alpha-L-rhamnopyranosyl-(1->2)-(alpha-L-rhamnopyranosyl-(1->4))-beta-D-glucopyranoside; (3beta,22R,25R)-26-(beta-D-glucopyranosyloxy)-22-hydroxyfurost-5-en-3-yl alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->4)]-beta-D-glucopyranoside; 26-O-beta-D-GLUCOPYRANOSYL-(25R)-FUROST-5-ENE-3beta,22alpha,26-TRIOL 3-O-alpha-L-RHAMNOPYRANOSYL-(1-2)-(alpha-L-RHAMNOPYRANOSYL-(1-4))-beta-D-GLUCOPYRANOSIDE; 3.BETA.,22.ALPHA.,26-TRIHYDROXYFUROST-5-ENE 3-O-.BETA.-CHACOTRIOSIDE 26-O-.BETA.-D-GLUCOPYRANOSIDE; 3beta,22alpha,26-Trihydroxyfurost-5-ene-3-O-beta-chacotrioside-26-O-beta-D-glucopyranoside; Furost-5-ene-3,22,26-triol 3-chacotrioside-26-glucopyranoside; Furostane base-2H + O-Hex, O-Hex-dHex-dHex; PROTODIOSCIN [WHO-DD]; PROTODIOSCIN [INCI]; UNII-D0LC3PH24P; Protoneodioscin; PROTODIOSCINE; Protodioscin; Furostanol I; D0LC3PH24P; NSC 698796; Saponin c?; NSC698789; Saponin C; Protodioscin



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

174 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ALB, BCL2, CASP3, CDH1, MAPK14, MAPK8, MTOR, RB1, VIM
Peripheral membrane protein 1 MTOR
Endoplasmic reticulum membrane 3 BCL2, HMOX1, MTOR
Nucleus 13 ALB, BCL2, CASP3, CDH1, CDX2, GABPA, HMOX1, MAPK14, MAPK8, MTOR, NANOG, PARP1, RB1
autophagosome 1 MAP1LC3A
cytosol 13 ALB, BCL2, CASP3, CDH1, HMOX1, LIPE, MAP1LC3A, MAPK14, MAPK8, MTOR, PARP1, RB1, VIM
dendrite 1 MTOR
nuclear body 1 PARP1
phagocytic vesicle 2 MTOR, VIM
trans-Golgi network 1 CDH1
centrosome 1 ALB
nucleoplasm 11 CASP3, CDH1, CDX2, GABPA, HMOX1, MAPK14, MAPK8, MTOR, NANOG, PARP1, RB1
Cell membrane 4 CDH1, LIPE, TNF, VIM
Lipid-anchor 1 MAP1LC3A
Cytoplasmic side 2 HMOX1, MTOR
lamellipodium 1 CDH1
Golgi apparatus membrane 1 MTOR
Synapse 1 MAPK8
cell junction 1 CDH1
cell surface 1 TNF
glutamatergic synapse 4 CASP3, CDH1, MAP1LC3A, MAPK14
Golgi apparatus 2 ALB, CDH1
Golgi membrane 2 INS, MTOR
lysosomal membrane 1 MTOR
neuronal cell body 2 CASP3, TNF
postsynapse 1 CDH1
Cytoplasm, cytosol 2 LIPE, PARP1
Lysosome 1 MTOR
endosome 1 CDH1
plasma membrane 3 CDH1, TNF, VIM
Membrane 6 BCL2, CDH1, HMOX1, LIPE, MTOR, PARP1
axon 2 MAPK8, VIM
caveola 1 LIPE
extracellular exosome 3 ALB, CDH1, VIM
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 ALB, BCL2, HMOX1
extracellular space 6 ALB, HMOX1, IL6, INS, PNLIP, TNF
perinuclear region of cytoplasm 2 CDH1, HMOX1
adherens junction 1 CDH1
mitochondrion 3 BCL2, MAPK14, PARP1
protein-containing complex 3 ALB, BCL2, PARP1
intracellular membrane-bounded organelle 2 MAP1LC3A, NANOG
Microsome membrane 1 MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 CDH1
Secreted 4 ALB, IL6, INS, PNLIP
extracellular region 7 ALB, CDH1, IL6, INS, MAPK14, PNLIP, TNF
cytoplasmic side of plasma membrane 1 CDH1
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
anchoring junction 1 ALB
transcription regulator complex 1 PARP1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CDH1
external side of plasma membrane 1 TNF
actin cytoskeleton 1 CDH1
nucleolus 2 NANOG, PARP1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 2 MAP1LC3A, VIM
focal adhesion 1 VIM
microtubule 1 MAP1LC3A
spindle 1 RB1
Cell junction, adherens junction 1 CDH1
flotillin complex 1 CDH1
Peroxisome 1 VIM
Nucleus, PML body 1 MTOR
PML body 2 MTOR, RB1
intermediate filament 1 VIM
lateral plasma membrane 1 CDH1
nuclear speck 1 MAPK14
Late endosome 1 MAP1LC3A
neuron projection 1 VIM
ciliary basal body 1 ALB
chromatin 5 CDX2, GABPA, NANOG, PARP1, RB1
cell leading edge 1 VIM
Cytoplasmic vesicle, autophagosome membrane 1 MAP1LC3A
autophagosome membrane 1 MAP1LC3A
phagocytic cup 1 TNF
Chromosome 1 PARP1
cytoskeleton 1 VIM
centriole 1 ALB
Golgi apparatus, trans-Golgi network 1 CDH1
Nucleus, nucleolus 1 PARP1
spindle pole 2 ALB, MAPK14
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
blood microparticle 1 ALB
organelle membrane 1 MAP1LC3A
site of double-strand break 1 PARP1
nuclear envelope 2 MTOR, PARP1
Endomembrane system 2 MAP1LC3A, MTOR
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
microtubule organizing center 1 VIM
myelin sheath 1 BCL2
intermediate filament cytoskeleton 1 VIM
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 2 INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 ALB, IL6, INS
nuclear matrix 1 VIM
transcription repressor complex 1 CDX2
platelet alpha granule lumen 1 ALB
transport vesicle 1 INS
anaphase-promoting complex 1 CDH1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
SWI/SNF complex 1 RB1
Single-pass type IV membrane protein 1 HMOX1
Nucleus matrix 1 VIM
condensed nuclear chromosome 1 CDX2
[Isoform 2]: Nucleus 1 CDH1
protein-DNA complex 1 PARP1
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
apical junction complex 1 CDH1
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CDH1
site of DNA damage 1 PARP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 MAP1LC3A
interleukin-6 receptor complex 1 IL6
chromatin lock complex 1 RB1
Rb-E2F complex 1 RB1
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Juliana Caroline Santos Santana, Gelson Dos Santos Difante, Jéssica Gomes Rodrigues, Marislayne de Gusmão Pereira, Henrique Jorge Fernandes, Camila Celeste Brandão Ferreira Ítavo, Vanessa Zirondi Longhini, Alexandre Menezes Dias, Luís Carlos Vinhas Ítavo. Mathematical models for predicting protodioscin in tropical forage grasses. Toxicon : official journal of the International Society on Toxinology. 2024 Jan; 240(?):107628. doi: 10.1016/j.toxicon.2024.107628. [PMID: 38278421]
  • Paulo Vinicius Moreira da Costa Menezes, Adriano Antonio Silva, Márcio Shigueaki Mito, Gislaine Cristiane Mantovanelli, Gabriel Felipe Stulp, Ana Luiza Wagner, Rodrigo Polimeni Constantin, Débora Cristina Baldoqui, Raísa Gonçales Silva, Amanda Aparecida Oliveira do Carmo, Luíz Antonio de Souza, Rubem Silvério de Oliveira Junior, Fabrizio Araniti, Maria Rosa Abenavoli, Emy Luiza Ishii-Iwamoto. Morphogenic responses and biochemical alterations induced by the cover crop Urochloa ruziziensis and its component protodioscin in weed species. Plant physiology and biochemistry : PPB. 2021 Sep; 166(?):857-873. doi: 10.1016/j.plaphy.2021.06.040. [PMID: 34237604]
  • Ali Ghanbari, Nasim Akhshi, Seyed Ershad Nedaei, Adriano Mollica, Ina Yosifova Aneva, Yaping Qi, Pan Liao, Sara Darakhshan, Mohammad Hosein Farzaei, Jianbo Xiao, Javier Echeverría. Tribulus terrestris and female reproductive system health: A comprehensive review. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Apr; 84(?):153462. doi: 10.1016/j.phymed.2021.153462. [PMID: 33602600]
  • Zhi Dai, Hui Liu, Bei Wang, Dong Yang, Yan-Yan Zhu, Huan Yan, Pei-Feng Zhu, Ya-Ping Liu, Hui-Cheng Chen, Yun-Li Zhao, Li-Xing Zhao, Xu-Dong Zhao, Hai-Yang Liu, Xiao-Dong Luo. Structures/cytotoxicity/selectivity relationship of natural steroidal saponins against GSCs and primary mechanism of tribulosaponin A. European journal of medicinal chemistry. 2021 Jan; 210(?):113068. doi: 10.1016/j.ejmech.2020.113068. [PMID: 33310292]
  • Gabriella M L Diamantino, Felipe Pierezan, Maria Izabel C Ferreira, Wadson Sebastião D Rocha, Vânia Maria O Veiga, Carlos Eugênio Martins, Maíra O Veiga, Benito Soto-Blanco. Photosensitization by Brachiaria ruziziensis in a sheep herd. Toxicon : official journal of the International Society on Toxinology. 2020 Oct; 185(?):1-4. doi: 10.1016/j.toxicon.2020.06.022. [PMID: 32598988]
  • Ana Luiza Cabrera Martimbianco, Rafael Leite Pacheco, Fábia Lima Vilarino, Carolina de Oliveira Cruz Latorraca, Maria Regina Torloni, Rachel Riera. Tribulus Terrestris for Female Sexual Dysfunction: A Systematic Review. Revista brasileira de ginecologia e obstetricia : revista da Federacao Brasileira das Sociedades de Ginecologia e Obstetricia. 2020 Jul; 42(7):427-435. doi: 10.1055/s-0040-1712123. [PMID: 32736394]
  • Li An, Yongliang Yuan, Jingwei Ma, Hong Wang, Xiuying Piao, Junfeng Ma, Junfeng Zhang, Ling Zhou, Xujin Wu. NMR-based metabolomics approach to investigate the distribution characteristics of metabolites in Dioscorea opposita Thunb. cv. Tiegun. Food chemistry. 2019 Nov; 298(?):125063. doi: 10.1016/j.foodchem.2019.125063. [PMID: 31260979]
  • Yanan Gai, Yingshuo Li, Zenglai Xu, Jian Chen. Pseudoprotodioscin inhibits SREBPs and microRNA 33a/b levels and reduces the gene expression regarding the synthesis of cholesterol and triglycerides. Fitoterapia. 2019 Nov; 139(?):104393. doi: 10.1016/j.fitote.2019.104393. [PMID: 31669721]
  • M S Mito, A A Silva, F L Kagami, J D Almeida, G C Mantovanelli, M C Barbosa, K A Kern-Cardoso, E L Ishii-Iwamoto. Responses of the weed Bidens pilosa L. to exogenous application of the steroidal saponin protodioscin and plant growth regulators 24-epibrassinolide, indol-3-acetic acid and abscisic acid. Plant biology (Stuttgart, Germany). 2019 Mar; 21(2):326-335. doi: 10.1111/plb.12927. [PMID: 30341820]
  • Tae Gyu Yi, Young Rog Yeoung, Ik-Young Choi, Nam-Il Park. Transcriptome analysis of Asparagus officinalis reveals genes involved in the biosynthesis of rutin and protodioscin. PloS one. 2019; 14(7):e0219973. doi: 10.1371/journal.pone.0219973. [PMID: 31329616]
  • Changrun Guo, Yaping Dong, Hengqing Zhu, Yuxi Liu, Guoyong Xie. Ameliorative effects of protodioscin on experimental diabetic nephropathy. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 Dec; 51(?):77-83. doi: 10.1016/j.phymed.2018.06.033. [PMID: 30466631]
  • Vittoria Graziani, Monica Scognamiglio, Valentina Belli, Assunta Esposito, Brigida D'Abrosca, Angela Chambery, Rosita Russo, Marta Panella, Aniello Russo, Fortunato Ciardiello, Teresa Troiani, Nicoletta Potenza, Antonio Fiorentino. Metabolomic approach for a rapid identification of natural products with cytotoxic activity against human colorectal cancer cells. Scientific reports. 2018 03; 8(1):5309. doi: 10.1038/s41598-018-23704-9. [PMID: 29593231]
  • Natasha Frasson Pavin, Aryele Pinto Izaguirry, Melina Bucco Soares, Cristiano Chiapinotto Spiazzi, Andreas Sebastian Loureiro Mendez, Fábio Gallas Leivas, Daniela Dos Santos Brum, Francielli Weber Santos Cibin. Tribulus terrestris Protects against Male Reproductive Damage Induced by Cyclophosphamide in Mice. Oxidative medicine and cellular longevity. 2018; 2018(?):5758191. doi: 10.1155/2018/5758191. [PMID: 30228856]
  • Jia-Yu Liu, Ya-Ling Hou, Rong Cao, Hong Xia Qiu, Guo-Hua Cheng, Ran Tu, Li Wang, Jun-Li Zhang, Dan Liu. Protodioscin ameliorates oxidative stress, inflammation and histology outcome in Complete Freund's adjuvant induced arthritis rats. Apoptosis : an international journal on programmed cell death. 2017 Nov; 22(11):1454-1460. doi: 10.1007/s10495-017-1420-0. [PMID: 28916869]
  • Kyo Bin Kang, Jayoung Ryu, Youngwoong Cho, Sang-Zin Choi, Miwon Son, Sang Hyun Sung. Combined Application of UHPLC-QTOF/MS, HPLC-ELSD and 1 H-NMR Spectroscopy for Quality Assessment of DA-9801, A Standardised Dioscorea Extract. Phytochemical analysis : PCA. 2017 May; 28(3):185-194. doi: 10.1002/pca.2659. [PMID: 27910174]
  • Minji Kim, Won-Baek Kim, Kyoung Yoon Koo, Bo Ram Kim, Doohyun Kim, Seoyoun Lee, Hong Joo Son, Dae Youn Hwang, Dong Seob Kim, Chung Yeoul Lee, Heeseob Lee. Optimal Fermentation Conditions of Hyaluronidase Inhibition Activity on Asparagus cochinchinensis Merrill by Weissella cibaria. Journal of microbiology and biotechnology. 2017 Apr; 27(4):701-708. doi: 10.4014/jmb.1611.11051. [PMID: 28189140]
  • Sara Jaramillo-Carmona, Rocío Rodriguez-Arcos, Ana Jiménez-Araujo, Sergio López, Juan Gil, Roberto Moreno, Rafael Guillén-Bejarano. Saponin Profile of Wild Asparagus Species. Journal of food science. 2017 Mar; 82(3):638-646. doi: 10.1111/1750-3841.13628. [PMID: 28152205]
  • Jinyang Shen, Xiaolin Yang, Zhaoqing Meng, Changrun Guo. Protodioscin ameliorates fructose-induced renal injury via inhibition of the mitogen activated protein kinase pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2016 Nov; 23(12):1504-1510. doi: 10.1016/j.phymed.2016.08.009. [PMID: 27765371]
  • M T Khandy, M V Titova, S V Konstantinova, D V Kochkin, I M Ivanov, A M Nosov. [Formation of protodioscin and deltoside isomers in suspension cultures of Nepal yam (Dioscorea deltoidea Wall.) cells]. Prikladnaia biokhimiia i mikrobiologiia. 2016 Nov; 52(6):614-20. doi: . [PMID: 29513486]
  • Andy J Pérez, Syeda M Hussain, Łukasz Pecio, Mariusz Kowalczyk, Valdo R Herling, Anna Stochmal. Ultrahigh-Performance Liquid Chromatography-High-Resolution Quadrupole Time-of-Flight Mass Spectrometry Based Metabolomics Reveals Key Differences between Brachiaria decumbens and B. brizantha, Two Similar Pastures with Different Toxicities. Journal of agricultural and food chemistry. 2016 Jun; 64(22):4686-94. doi: 10.1021/acs.jafc.6b01296. [PMID: 27192362]
  • Xinxin Zhang, Zengjun Guo, Jing Li, Yoichiro Ito, Wenji Sun. A new quantitation method of protodioscin by HPLC-ESI-MS/MS in rat plasma and its application to the pharmacokinetic study. Steroids. 2016 Feb; 106(?):62-9. doi: 10.1016/j.steroids.2015.12.009. [PMID: 26703445]
  • Yi-Na Tang, Yu-Xin Pang, Xi-Cheng He, Ya-Zhou Zhang, Jian-Ye Zhang, Zhong-Zhen Zhao, Tao Yi, Hu-Biao Chen. UPLC-QTOF-MS identification of metabolites in rat biosamples after oral administration of Dioscorea saponins: a comparative study. Journal of ethnopharmacology. 2015 May; 165(?):127-40. doi: 10.1016/j.jep.2015.02.017. [PMID: 25698242]
  • Keiko Taketani, Shohei Hoshino, Taku Uemura, Tsuyoshi Goto, Nobuyuki Takahashi, Nobuaki Tsuge, Teruo Kawada. An Efficient Purification Method for Quantitative Determinations of Protodioscin, Dioscin and Diosgenin in Plasma of Fenugreek-Fed Mice. Journal of nutritional science and vitaminology. 2015; 61(6):465-70. doi: 10.3177/jnsv.61.465. [PMID: 26875488]
  • Yogini Jaiswal, Zhitao Liang, Alan Ho, Hubiao Chen, Zhongzhen Zhao. A comparative tissue-specific metabolite analysis and determination of protodioscin content in Asparagus species used in traditional Chinese medicine and Ayurveda by use of laser microdissection, UHPLC-QTOF/MS and LC-MS/MS. Phytochemical analysis : PCA. 2014 Nov; 25(6):514-28. doi: 10.1002/pca.2522. [PMID: 24737553]
  • Cristiane Vinhaes Gracindo, Helder Louvandini, Franklin Riet-Correa, Marcos Barbosa-Ferreira, Márcio Botelho de Castro. Performance of sheep grazing in pastures of Brachiaria decumbens, Brachiaria brizantha, Panicum maximum, and Andropogon gayanus with different protodioscin concentrations. Tropical animal health and production. 2014 Jun; 46(5):733-7. doi: 10.1007/s11250-014-0556-y. [PMID: 24557590]
  • Tatiane C Faccin, Franklin Riet-Correa, Fernando S Rodrigues, Ariany C Santos, Gleice K A Melo, Jonilson A Silva, Rubiane Ferreira, Camila C B F Itavo, Ricardo A A Lemos. Poisoning by Brachiaria brizantha in flocks of naïve and experienced sheep. Toxicon : official journal of the International Society on Toxinology. 2014 May; 82(?):1-8. doi: 10.1016/j.toxicon.2014.02.008. [PMID: 24561120]
  • Mahenina Jaovita Manase, Anne-Claire Mitaine-Offer, David Pertuit, Tomofumi Miyamoto, Chiaki Tanaka, Stéphanie Delemasure, Patrick Dutartre, Jean-François Mirjolet, Olivier Duchamp, Marie-Aleth Lacaille-Dubois. Solanum incanum and S. heteracanthum as sources of biologically active steroid glycosides: confirmation of their synonymy. Fitoterapia. 2012 Sep; 83(6):1115-9. doi: 10.1016/j.fitote.2012.04.024. [PMID: 22579841]
  • Etsuko Muraki, Hiroshige Chiba, Keiko Taketani, Shohei Hoshino, Nobuaki Tsuge, Nobuyo Tsunoda, Keizo Kasono. Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats. Lipids in health and disease. 2012 May; 11(?):58. doi: 10.1186/1476-511x-11-58. [PMID: 22642742]
  • Lidia Irzykowska, Jan Bocianowski, Agnieszka Waśkiewicz, Zbigniew Weber, Zbigniew Karolewski, Piotr Goliński, Marian Kostecki, Witold Irzykowski. Genetic variation of Fusarium oxysporum isolates forming fumonisin B(1) and moniliformin. Journal of applied genetics. 2012 May; 53(2):237-47. doi: 10.1007/s13353-012-0087-z. [PMID: 22367665]
  • Cao JianFeng, Zhang PengYing, Xu ChengWei, Huang TaoTao, Bai YunGui, Chen KaoShan. Effect of aqueous extract of Arctium lappa L. (burdock) roots on the sexual behavior of male rats. BMC complementary and alternative medicine. 2012 Feb; 12(?):8. doi: 10.1186/1472-6882-12-8. [PMID: 22296876]
  • Satoru Motoki, Hiroaki Kitazawa, Tomoo Maeda, Takashi Suzuki, Hideyuki Chiji, Eiji Nishihara, Yutaka Shinohara. Effects of various asparagus production methods on rutin and protodioscin contents in spears and cladophylls. Bioscience, biotechnology, and biochemistry. 2012; 76(5):1047-50. doi: 10.1271/bbb.120143. [PMID: 22738987]
  • J R Prasifka, J D Bradshaw, S T Lee, M E Gray. Relative feeding and development of armyworm on switchgrass and corn, and its potential effects on switchgrass grown for biomass. Journal of economic entomology. 2011 Oct; 104(5):1561-7. doi: 10.1603/ec10304. [PMID: 22066185]
  • P Kamboj, M Aggarwal, S Puri, S K Singla. Effect of aqueous extract of Tribulus terrestris on oxalate-induced oxidative stress in rats. Indian journal of nephrology. 2011 Jul; 21(3):154-9. doi: 10.4103/0971-4065.83727. [PMID: 21886973]
  • Patrick F Dowd, Mark A Berhow, Eric T Johnson. Differential activity of multiple saponins against omnivorous insects with varying feeding preferences. Journal of chemical ecology. 2011 May; 37(5):443-9. doi: 10.1007/s10886-011-9950-3. [PMID: 21503618]
  • Timea Varjas, Ghodratollah Nowrasteh, Ferenc Budán, Gábor Horváth, József Cseh, Zoltán Gyöngyi, Sándor Makai, István Ember. The effect of fenugreek on the gene expression of arachidonic acid metabolizing enzymes. Phytotherapy research : PTR. 2011 Feb; 25(2):221-7. doi: 10.1002/ptr.3231. [PMID: 20641053]
  • M T Yakubu, M A Akanji. Effect of Aqueous Extract of Massularia acuminata Stem on Sexual Behaviour of Male Wistar Rats. Evidence-based complementary and alternative medicine : eCAM. 2011; 2011(?):738103. doi: 10.1155/2011/738103. [PMID: 21253466]
  • Eun Jin Lee, Kil Sun Yoo, Bhimanagouda S Patil. Development of a rapid HPLC-UV method for simultaneous quantification of protodioscin and rutin in white and green asparagus spears. Journal of food science. 2010 Nov; 75(9):C703-9. doi: 10.1111/j.1750-3841.2010.01824.x. [PMID: 21535581]
  • Shuli Man, Wenyuan Gao, Yanjun Zhang, Jieyin Wang, Wanshun Zhao, Luqi Huang, Changxiao Liu. Qualitative and quantitative determination of major saponins in Paris and Trillium by HPLC-ELSD and HPLC-MS/MS. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2010 Nov; 878(29):2943-8. doi: 10.1016/j.jchromb.2010.08.033. [PMID: 20870470]
  • Lin-Sen Qinga, Ying Xue, Yi Zheng, Jing Xiong, Xun Liao, Li-Sheng Ding, Bo-Gang Li, Yi-Ming Liu. Ligand fishing from Dioscorea nipponica extract using human serum albumin functionalized magnetic nanoparticles. Journal of chromatography. A. 2010 Jul; 1217(28):4663-8. doi: 10.1016/j.chroma.2010.05.009. [PMID: 20627255]
  • X Cao, Z Yao, M Shao, H Chen, W Ye, X Yao. Pharmacokinetics of methyl protodioscin in rats. Die Pharmazie. 2010 May; 65(5):359-62. doi: . [PMID: 20503929]
  • Kalamegam Gauthaman, Adaikan P Ganesan. The hormonal effects of Tribulus terrestris and its role in the management of male erectile dysfunction--an evaluation using primates, rabbit and rat. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2008 Jan; 15(1-2):44-54. doi: 10.1016/j.phymed.2007.11.011. [PMID: 18068966]
  • Dragomir Dinchev, Bogdan Janda, Liuba Evstatieva, Wieslaw Oleszek, Mohammad R Aslani, Ivanka Kostova. Distribution of steroidal saponins in Tribulus terrestris from different geographical regions. Phytochemistry. 2008 Jan; 69(1):176-86. doi: 10.1016/j.phytochem.2007.07.003. [PMID: 17719068]
  • Tiejie Wang, Zhongbo Liu, Jun Li, Min Zhong, Junpeng Li, Xiaohui Chen, Kaishun Bi. Determination of protodioscin in rat plasma by liquid chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2007 Apr; 848(2):363-8. doi: 10.1016/j.jchromb.2006.10.050. [PMID: 17251071]
  • Da-Wei Tan, Li-Ping Kang, Ning Lü, Jie Zhang, Bai-Ping Ma. [Study on steroidal saponins of Dioscorea septemloba thunb]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2006 Nov; 29(11):1176-9. doi: ". [PMID: 17228658]
  • Guanghui Wang, Haifeng Chen, Minghui Huang, Naili Wang, Jinchao Zhang, Yaou Zhang, Ganrong Bai, Wang-Fun Fong, Mengsu Yang, Xinsheng Yao. Methyl protodioscin induces G2/M cell cycle arrest and apoptosis in HepG2 liver cancer cells. Cancer letters. 2006 Sep; 241(1):102-9. doi: 10.1016/j.canlet.2005.10.050. [PMID: 16458429]
  • Xiangjiu He, Aimin Qiao, Xinluan Wang, Bo Liu, Miaomiao Jiang, Lina Su, Xinsheng Yao. Structural identification of methyl protodioscin metabolites in rats' urine and their antiproliferative activities against human tumor cell lines. Steroids. 2006 Sep; 71(9):828-33. doi: 10.1016/j.steroids.2006.05.013. [PMID: 16797625]
  • Xiangjiu He, Bo Liu, Guanghui Wang, Xinluan Wang, Lina Su, Gexia Qu, Xinsheng Yao. Microbial metabolism of methyl protodioscin by Aspergillus niger culture--a new androstenedione producing way from steroid. The Journal of steroid biochemistry and molecular biology. 2006 Jul; 100(1-3):87-94. doi: 10.1016/j.jsbmb.2006.03.007. [PMID: 16713252]
  • Mingfu Wang, Yaakov Tadmor, Qing-Li Wu, Chee-Kok Chin, Stephen A Garrison, James E Simon. Quantification of protodioscin and rutin in asparagus shoots by LC/MS and HPLC methods. Journal of agricultural and food chemistry. 2003 Oct; 51(21):6132-6. doi: 10.1021/jf0344587. [PMID: 14518934]
  • E De Combarieu, N Fuzzati, M Lovati, E Mercalli. Furostanol saponins from Tribulus terrestris. Fitoterapia. 2003 Sep; 74(6):583-91. doi: 10.1016/s0367-326x(03)00152-7. [PMID: 12946722]
  • Kalamegam Gauthaman, Adaikan P Ganesan, R N V Prasad. Sexual effects of puncturevine (Tribulus terrestris) extract (protodioscin): an evaluation using a rat model. Journal of alternative and complementary medicine (New York, N.Y.). 2003 Apr; 9(2):257-65. doi: 10.1089/10755530360623374. [PMID: 12804079]
  • Ke Hu, Xinsheng Yao. The cytotoxicity of protoneodioscin (NSC-698789), a furostanol saponin from the rhizomes of Dioscorea collettii var. hypoglauca, against human cancer cells in vitro. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2002 Sep; 9(6):560-5. doi: 10.1078/09447110260573218. [PMID: 12403167]
  • K Gauthaman, P G Adaikan, R N V Prasad. Aphrodisiac properties of Tribulus Terrestris extract (Protodioscin) in normal and castrated rats. Life sciences. 2002 Aug; 71(12):1385-96. doi: 10.1016/s0024-3205(02)01858-1. [PMID: 12127159]
  • Ke Hu, Xinsheng Yao. Protodioscin (NSC-698 796): its spectrum of cytotoxicity against sixty human cancer cell lines in an anticancer drug screen panel. Planta medica. 2002 Apr; 68(4):297-301. doi: 10.1055/s-2002-26743. [PMID: 11988850]
  • M Ganzera, E Bedir, I A Khan. Determination of steroidal saponins in Tribulus terrestris by reversed-phase high-performance liquid chromatography and evaporative light scattering detection. Journal of pharmaceutical sciences. 2001 Nov; 90(11):1752-8. doi: 10.1002/jps.1124. [PMID: 11745732]