Guanosine (BioDeep_00000000232)

 

Secondary id: BioDeep_00000399881

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs BioNovoGene_Lab2019


代谢物信息卡片


2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one

化学式: C10H13N5O5 (283.0917)
中文名称: 鸟苷, 鸟嘌呤核甙
谱图信息: 最多检出来源 Homo sapiens(plant) 11.12%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

Guanosine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/guanosine (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000232). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C([C@@H]1[C@H]([C@H]([C@H](n2cnc3c2nc(N)[nH]c3=O)O1)O)O)O
InChI: InChI=1S/C10H13N5O5/c11-10-13-7-4(8(19)14-10)12-2-15(7)9-6(18)5(17)3(1-16)20-9/h2-3,5-6,9,16-18H,1H2,(H3,11,13,14,19)

描述信息

Guanosine (G), also known as 2-amino-inosine, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl sugar moiety. Guanosine consists of a guanine base attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine is a white, crystalline powder with no odor and mild saline taste. It is very soluble in acetic acid, and slightly soluble in water, but insoluble in ethanol, diethyl ether, benzene, and chloroform. Guanosine exists in all living species, ranging from bacteria to plants to humans. High levels of guanosine can be found in clovers, coffee plants, and the pollen of pines. It has been detected, but not quantified in, several different foods, such as leeks, garlic, chicory roots, green bell peppers, and black-eyed peas. Guanosine plays an important role in various biochemical processes including the synthesis of nucleic acids such as RNA and intracellular signal transduction (cGMP). The antiviral drug acyclovir, often used in herpes treatment, and the anti-HIV drug abacavir, are both structurally similar to guanosine. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphate (cGMP), guanosine diphosphate (GDP), and guanosine triphosphate (GTP). In humans, guanosine is involved in intracellular signalling through the adenosine receptors A1R and A2AR (PMID: 31847113). Evidence from rodent and cell models has shown a number of important neurotrophic and neuroprotective effects of guanosine. In particular, it is effective in preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson’s and Alzheimer’s diseases (PMID: 27699087). Studies with rodent models of Parkinson’s disease have shown that guanosine decreases neuronal apoptotic cell death and increases dopaminergic neurons at substantia nigra pars compacta, accompanied by an improvement of motor symptoms in Parkinson’s disease (i.e. a reduction of bradykinesia). Guanosine promotes neurite arborization, outgrowth, proliferation and differentiation. Systemic administration of guanosine for eight weeks (8 mg/kg) has been shown to stimulate neuroprogenitors proliferation in the subventricular zone (SVZ) in a mouse model of Parkinsonism (PMID: 27699087). The effect of guanosine treatment is accompanied by an increased number of fibroblast growth factor (FGF-2)-positive cells which is an important regulator of neuroprogenitor/stem cell proliferation, survival and differentiation (PMID: 27699087). Guanosine prevents reactive oxygen species (ROS) generation and cell death in hippocampal slices subjected to the oxygen/glucose deprivation (PMID: 31847113).
Guanosine is a purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a fundamental metabolite. It is a purines D-ribonucleoside and a member of guanosines. It is functionally related to a guanine.
Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate) which are factors in signal transduction pathways.
Guanosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Guanosine is a natural product found in Ulva australis, Allium chinense, and other organisms with data available.
Guanosine is a purine nucleoside formed from a beta-N9-glycosidic bond between guanine and a ribose ring and is essential for metabolism.
Guanosine is a metabolite found in or produced by Saccharomyces cerevisiae.
A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed)
Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate). ; The nucleoside guanosine exert important neuroprotective and neuromodulator roles in the central nervous system, which may be related to inhibition of the glutamatergic neurotransmission activity. Guanosine is the specific extracellular guanine-based purines effector and indicate that its conversion occurs not only in the central nervous system but also peripherally. (PMID: 16325434); Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a ?-N9-glycosidic bond. Guanosine is found in many foods, some of which are elderberry, malus (crab apple), acerola, and arrowhead.
A purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
[Spectral] Guanosine (exact mass = 283.09167) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) and AMP (exact mass = 347.06308) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] Guanosine (exact mass = 283.09167) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
Acquisition and generation of the data is financially supported in part by CREST/JST.
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.125
CONFIDENCE standard compound; INTERNAL_ID 317
KEIO_ID G015; [MS2] KO008966
Annotation level-2
KEIO_ID G015
Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity.
Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity.
Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity.

同义名列表

92 个代谢物同义名

2-Amino-9-beta-D-ribofuranosyl-1,9-dihydro-6H-purin-6-one; Adenosine Imp. H (EP); Guanosine; Adenosine Impurity H; 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxy-methyl)tetrahydrofuran-2-yl)-1H-purin-6(9H)-one; 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one; 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-1H-purin-6(9H)-one; 2-AMINO-9-[(2R,3R,4S,5R)-3,4-DIHYDROXY-5-(HYDROXYMETHYL)OXOLAN-2-YL]-6,9-DIHYDRO-1H-PURIN-6-ONE; 2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-1H-purin-6-one; 9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-aminohydropurin -6-one; 2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-purin-6-one; (2R,3R,4S,5R)-2-(2-amino-6-hydroxypurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol; 2-amino-9-[3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-3H-purin-6-one; 2-Amino-9-beta-D-ribofuranosyl-1,9-dihydro-6H-purin-6-one (Guanosine); 6H-Purin-6-one, 2-amino-1,9-dihydro-9-.beta.-D-ribofuranosyl-; 2-Amino-1,9-dihydro-9-beta-delta-ribofuranosyl-6H-purin-6-one; 6H-Purin-6-one, 2-amino-1,9-dihydro-9-beta-D-ribofuranosyl-; 2-AMINO-9-.BETA.-D-RIBOFURANOSYL-1,9-DIHYDRO-6H-PURIN-6-ONE; 2-Amino-1,9-dihydro-9.beta.-d-ribofuranosyl-6H-purin-6-one; 6H-Purin-6-one, 2-amino-1,9-dihydro-9-beta-D-ribofuranosyl; 2-Amino-1,9-dihydro-9-beta-D-ribofuranosyl-6H-purin-6-one; 2-amino-9-beta-D-ribofuranosyl-1,9-dihydro-6H-purin-6-one; 2(3H)-Imino-9-.beta.-D-ribofuranosyl-9H-purin-6(1H)-one; 2-Amino-9-b-D-ribofuranosyl-1,9-dihydro-6H-purin-6-one; 2-Amino-1,9-dihydro-9-β-D-ribofuranosyl-6H-purin-6-one; 2-Amino-9-β-D-ribofuranosyl-1,9-dihydro-6H-purin-6-one; 2-Amino-1,9-dihydro-9-b-D-ribofuranosyl-6H-purin-6-one; 2-Amino-9-.beta.-D-ribofuranosyl-9-H-purine-6(1H)-one; 2(3H)-Imino-9-beta-D-ribofuranosyl-9H-purin-6(1H)-one; 2-AMINO-9-.BETA.-D-RIBOFURANOSYL-9H-PURINE-6(1H)-ONE; 2(3H)-Imino-9-β-D-ribofuranosyl-9H-purin-6(1H)-one; 2(3H)-Imino-9-b-D-ribofuranosyl-9H-purin-6(1H)-one; 2-Amino-9-beta-D-ribofuranosyl-9H-purine-6(1H)-one; Guanosine, suitable for cell culture, BioReagent; Guanosine, Vetec(TM) reagent grade, >=98\\%; Guanine, 9-beta-D-ribofuranosyl- (VAN); Ribofuranoside, guanine-9, .beta.-D-; beta-delta-Ribofuranoside guanine-9; Ribofuranoside, guanine-9, beta-D-; 9-beta-delta-ribofuranosyl-Guanine; .beta.-D-Ribofuranoside, guanine-9; ADENOSINE IMPURITY H (EP IMPURITY); ADENOSINE IMPURITY H [EP IMPURITY]; Guanine-9-.beta.-D-ribofuranoside; Guanine, 9.beta.-d-ribofuranosyl-; beta-D-Ribofuranoside, guanine-9; Guanine, 9-beta-D-ribofuranosyl-; Guanine-9-beta-D-ribofuranoside; 9-.beta.-D-ribofuranosylguanine; 9-(beta-D-Ribofuranosyl)guanine; GUANINE-9:BETA-D-RIBOFURANOSIDE; 9-(ss--D-Ribofuranosyl)guanine; Guanine-9-ss--D-ribofuranoside; 9-beta-D-ribofuranosyl guanine; 9-beta-D-ribofuranosyl-guanine; 9-beta-D-Ribofuranosylguanine; Guanine-9-b-D-ribofuranoside; Guanine-9-β-D-ribofuranoside; b-D-Ribofuranoside guanine-9; 9-b-D-ribofuranosyl-Guanine; 9-Β-D-ribofuranosyl-guanine; 9-B-D-RIBOFURANOSYLGUANINE; Guanosine, >=97.0\\% (HPLC); GUANOSINE [USP IMPURITY]; GUANOSINE (USP IMPURITY); Inosine, 2-amino- (VAN); GUANOSINE [WHO-DD]; GUANOSINE (MART.); Guanosine, >=98\\%; Inosine, 2-amino-; GUANOSINE [MART.]; GUANOSINE [INCI]; Inosine, 2-amino; guanine riboside; 2-amino-Inosine; Ribonucleoside; GUANOSINE [MI]; [3H]-guanosine; Vernine (VAN); 3h-guanosine; DL-Guanosine; USAF CB-11; Guanosine; AI3-52065; Guanozin; Guanosin; vernine; 2fqx; 1odj; Guo; GR; G; Guanosine; Guanosine; Guanosine



数据库引用编号

70 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(14)

PlantCyc(5)

代谢反应

961 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(148)

WikiPathways(3)

Plant Reactome(0)

INOH(2)

PlantCyc(758)

COVID-19 Disease Map(2)

PathBank(48)

PharmGKB(0)

43 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ADA, AKT1, BDNF, CASP3, MAPK14, MTOR, PNP, PRKX, RELA, TLR7, TLR9
Peripheral membrane protein 2 ADA, MTOR
Endosome membrane 2 TLR7, TLR9
Endoplasmic reticulum membrane 4 CD4, MTOR, TLR7, TLR9
Nucleus 8 ADK, AKT1, CASP3, MAPK14, MTOR, PRKX, RELA, TRIM33
cytosol 10 ADA, ADK, AKT1, CASP3, GDA, MAPK14, MTOR, NT5E, PNP, RELA
dendrite 2 BDNF, MTOR
phagocytic vesicle 2 MTOR, TLR9
nucleoplasm 9 ADK, AKT1, CASP3, MAPK14, MTOR, NT5E, PRKX, RELA, TRIM33
Cell membrane 5 ADA, AKT1, CD4, NT5E, TNF
Cytoplasmic side 1 MTOR
lamellipodium 1 AKT1
Early endosome membrane 1 TLR9
Multi-pass membrane protein 1 GDA
Golgi apparatus membrane 2 MTOR, TLR9
cell cortex 1 AKT1
cell junction 1 ADA
cell surface 3 ADA, NT5E, TNF
glutamatergic synapse 4 AKT1, CASP3, MAPK14, RELA
Golgi membrane 4 INS, MTOR, TLR7, TLR9
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 GDA
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
synaptic vesicle 1 BDNF
Lysosome 4 ADA, MTOR, TLR7, TLR9
endosome 2 TLR7, TLR9
plasma membrane 9 ADA, ADK, AKT1, CD4, IFNLR1, NT5E, TLR7, TLR9, TNF
Membrane 8 ADA, AKT1, BDNF, IFNLR1, MTOR, NT5E, TLR7, TLR9
apical plasma membrane 1 TLR9
axon 1 BDNF
basolateral plasma membrane 1 TLR9
extracellular exosome 2 NT5E, PNP
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 TLR7, TLR9
extracellular space 5 BDNF, IL6, INS, PNP, TNF
perinuclear region of cytoplasm 1 BDNF
mitochondrion 2 GDA, MAPK14
protein-containing complex 1 AKT1
Microsome membrane 1 MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 4 CD4, IFNLR1, TLR7, TLR9
Secreted 4 BDNF, IL6, INS, PNP
extracellular region 7 BDNF, IL6, INS, MAPK14, PNP, TLR9, TNF
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
Extracellular side 1 ADA
Cytoplasmic vesicle lumen 1 ADA
anchoring junction 1 ADA
transcription regulator complex 1 RELA
external side of plasma membrane 4 ADA, CD4, NT5E, TNF
microtubule cytoskeleton 1 AKT1
Early endosome 1 CD4
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Mitochondrion inner membrane 1 GDA
Membrane raft 2 CD4, TNF
spindle 1 AKT1
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
nuclear speck 1 MAPK14
receptor complex 1 TLR7
ciliary basal body 1 AKT1
chromatin 2 RELA, TRIM33
phagocytic cup 1 TNF
spindle pole 1 MAPK14
Lipid-anchor, GPI-anchor 1 NT5E
nuclear envelope 1 MTOR
Endomembrane system 2 MTOR, TLR7
endosome lumen 1 INS
side of membrane 1 NT5E
ficolin-1-rich granule lumen 2 MAPK14, PNP
secretory granule lumen 3 INS, MAPK14, PNP
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 BDNF, CD4, IL6, INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
[Isoform 2]: Cytoplasm 1 ADK
clathrin-coated endocytic vesicle membrane 1 CD4
[Isoform 1]: Nucleus 1 ADK
endolysosome membrane 2 TLR7, TLR9
death-inducing signaling complex 1 CASP3
early phagosome 2 TLR7, TLR9
Cytoplasmic vesicle, phagosome 3 MTOR, TLR7, TLR9
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 CD4
interleukin-6 receptor complex 1 IL6
endolysosome 1 TLR9
NF-kappaB p50/p65 complex 1 RELA
NF-kappaB complex 1 RELA
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Yiping Li, Xiaolong Wang. The role of DNA and RNA guanosine oxidation in cardiovascular diseases. Pharmacological research. 2024 Jun; 204(?):107187. doi: 10.1016/j.phrs.2024.107187. [PMID: 38657843]
  • Yaning Wu, Hongwei Zhang, Jianguang Zhu, Zhenling Zhang, Songbo Ma, Yongqi Zhao, Yiming Wang, Jun Yuan, Xing Guo, Yajing Li, Shuai Zhang. The Effect of Fermentation on the Chemical Constituents of Gastrodia Tuber Hallimasch Powder (GTHP) Estimated by UHPLC-Q-Orbitrap HRMS and HPLC. Molecules (Basel, Switzerland). 2024 Apr; 29(7):. doi: 10.3390/molecules29071663. [PMID: 38611942]
  • Zihan Li, Chengshan Zhu, Cong Yin, Heyu Li, Yimei Liu, Juan Li. Multi-omics reveals the testosterone promotion effect mechanism of Cordyceps Sobolifera on leydig cells. Journal of ethnopharmacology. 2024 Feb; ?(?):117817. doi: 10.1016/j.jep.2024.117817. [PMID: 38316217]
  • Anna Lewicka, Christina Roman, Stacey Jones, Michael Disare, Phoebe A Rice, Joseph A Piccirilli. Crystal structure of a cap-independent translation enhancer RNA. Nucleic acids research. 2023 Aug; ?(?):. doi: 10.1093/nar/gkad649. [PMID: 37548413]
  • Rozielly Aparecida Lemes Dos Santos, Silvia Regina de Lima Reis, Patrícia Cristiane Gibbert, Cristina Maria de Arruda, Diego Luiz Doneda, Yohan Alves Victor de Matos, Giordano Gubert Viola, Fabrício Rios Santos, Eliângela de Lima, Ziliani da Silva Buss, Samuel Vandresen-Filho. Guanosine treatment prevents lipopolysaccharide-induced depressive-like behavior in mice. Journal of psychiatric research. 2023 Jun; 164(?):296-303. doi: 10.1016/j.jpsychires.2023.06.022. [PMID: 37392719]
  • Maria Godoy-Gallardo, Maria Merino-Gómez, Miguel A Mateos-Timoneda, Ulrich Eckhard, F Javier Gil, Roman A Perez. Advanced Binary Guanosine and Guanosine 5'-Monophosphate Cell-Laden Hydrogels for Soft Tissue Reconstruction by 3D Bioprinting. ACS applied materials & interfaces. 2023 Jun; ?(?):. doi: 10.1021/acsami.2c23277. [PMID: 37319328]
  • Ezhar Ersöz, Mehmet Salıh Aydın, Yasemin Hacanlı, Nazım Kankılıç, İsmail Koyuncu, Muhammet Emin Güldür, Ebru Temiz, Yusuf Çakmak, Kadir Eği, Reşat Dikme, Mahmut Padak. Cardioprotective Effect of Pistacia vera L. (Green Pistachio) Hull Extract in Wistar Albino Rats with Doxorubicin-Induced Cardiac Damage. Anatolian journal of cardiology. 2023 03; 27(3):135-145. doi: 10.14744/anatoljcardiol.2022.2452. [PMID: 36856595]
  • Yi-Fang Chen, Yan Wang, Yue Wang, Ying-Li Luo, Zi-Dong Lu, Xiao-Jiao Du, Cong-Fei Xu, Jun Wang. Optimized Cationic Lipid-assisted Nanoparticle for Delivering CpG Oligodeoxynucleotides to Treat Hepatitis B Virus Infection. Pharmaceutical research. 2023 Jan; 40(1):145-156. doi: 10.1007/s11095-022-03307-w. [PMID: 36002611]
  • Wei Liu, Chunxia G Cronin, Ziming Cao, Chengliang Wang, Jianbin Ruan, Sunitha Pulikkot, Alexxus Hall, Hao Sun, Alex Groisman, Yunfeng Chen, Anthony T Vella, Liang Hu, Bruce T Liang, Zhichao Fan. Nexinhib20 Inhibits Neutrophil Adhesion and β2 Integrin Activation by Antagonizing Rac-1-Guanosine 5'-Triphosphate Interaction. Journal of immunology (Baltimore, Md. : 1950). 2022 10; 209(8):1574-1585. doi: 10.4049/jimmunol.2101112. [PMID: 36165184]
  • Mizuho Ichinose, Masuyo Kawabata, Yumi Akaiwa, Yasuka Shimajiri, Izumi Nakamura, Takayuki Tamai, Takahiro Nakamura, Yusuke Yagi, Bernard Gutmann. U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Communications biology. 2022 09; 5(1):968. doi: 10.1038/s42003-022-03927-3. [PMID: 36109586]
  • Chenchen Ma, Peng Liu, Siyuan Cui, Chang Gao, Xing Tan, Zhaopeng Liu, Ruirong Xu. The Identification of APOBEC3G as a Potential Prognostic Biomarker in Acute Myeloid Leukemia and a Possible Drug Target for Crotonoside. Molecules (Basel, Switzerland). 2022 Sep; 27(18):. doi: 10.3390/molecules27185804. [PMID: 36144542]
  • Negar Shahsavari, Boyuan Wang, Yu Imai, Miho Mori, Sangkeun Son, Libang Liang, Nils Böhringer, Sylvie Manuse, Michael F Gates, Madeleine Morrissette, Rachel Corsetti, Josh L Espinoza, Chris L Dupont, Michael T Laub, Kim Lewis. A Silent Operon of Photorhabdus luminescens Encodes a Prodrug Mimic of GTP. mBio. 2022 06; 13(3):e0070022. doi: 10.1128/mbio.00700-22. [PMID: 35575547]
  • Zsuzsanna Ament, Amit Patki, Ninad Chaudhary, Varun M Bhave, Ana-Lucia Garcia Guarniz, Yan Gao, Robert E Gerszten, Adolfo Correa, Suzanne E Judd, Mary Cushman, D Leann Long, M Ryan Irvin, W Taylor Kimberly. Nucleosides Associated With Incident Ischemic Stroke in the REGARDS and JHS Cohorts. Neurology. 2022 05; 98(21):e2097-e2107. doi: 10.1212/wnl.0000000000200262. [PMID: 35264422]
  • Weili Yu, Lijuan Shen, Jinming Qi, Tao Hu. Conjugation with loxoribine and mannan improves the immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 fusion protein. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2022 Mar; 172(?):193-202. doi: 10.1016/j.ejpb.2022.02.011. [PMID: 35183715]
  • Valentina Roviello, Melinda Gilhen-Baker, Caterina Vicidomini, Giovanni N Roviello. The Healing Power of Clean Rivers: In Silico Evaluation of the Antipsoriatic Potential of Apiin and Hyperoside Plant Metabolites Contained in River Waters. International journal of environmental research and public health. 2022 02; 19(5):. doi: 10.3390/ijerph19052502. [PMID: 35270196]
  • Sven Dierickx, Karolien Maes, Sophie L K W Roelants, Beata Pomian, Lieven Van Meulebroek, Sofie L De Maeseneire, Lynn Vanhaecke, Wim K Soetaert. A multi-omics study to boost continuous bolaform sophorolipid production. New biotechnology. 2022 Jan; 66(?):107-115. doi: 10.1016/j.nbt.2021.11.002. [PMID: 34774786]
  • Beata P Plitta-Michalak, Alice A Ramos, Piotr Pupel, Marcin Michalak. Oxidative damage and DNA repair in desiccated recalcitrant embryonic axes of Acer pseudoplatanus L. BMC plant biology. 2022 Jan; 22(1):40. doi: 10.1186/s12870-021-03419-2. [PMID: 35045819]
  • Manisha B Walunj, Seergazhi G Srivatsan. Heterocycle-modified 2'-Deoxyguanosine Nucleolipid Analogs Stabilize Guanosine Gels and Self-assemble to Form Green Fluorescent Gels. Chemistry, an Asian journal. 2022 Jan; 17(2):e202101163. doi: 10.1002/asia.202101163. [PMID: 34817121]
  • Federica De Castro, Erik De Luca, Chiara Roberta Girelli, Amilcare Barca, Alessandro Romano, Danilo Migoni, Tiziano Verri, Michele Benedetti, Francesco Paolo Fanizzi. First evidence for N7-Platinated Guanosine derivatives cell uptake mediated by plasma membrane transport processes. Journal of inorganic biochemistry. 2022 01; 226(?):111660. doi: 10.1016/j.jinorgbio.2021.111660. [PMID: 34801970]
  • Kai Lin, Steven S Good, Justin G Julander, Abbie E Weight, Adel Moussa, Jean-Pierre Sommadossi. AT-752, a double prodrug of a guanosine nucleotide analog, inhibits yellow fever virus in a hamster model. PLoS neglected tropical diseases. 2022 Jan; 16(1):e0009937. doi: 10.1371/journal.pntd.0009937. [PMID: 35073319]
  • Alexander P Walker, Haitian Fan, Jeremy R Keown, Michael L Knight, Jonathan M Grimes, Ervin Fodor. The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme. Nucleic acids research. 2021 12; 49(22):13019-13030. doi: 10.1093/nar/gkab1160. [PMID: 34850141]
  • Eugene Koh, Dekel Cohen, Alexander Brandis, Robert Fluhr. Attenuation of cytosolic translation by RNA oxidation is involved in singlet oxygen-mediated transcriptomic responses. Plant, cell & environment. 2021 11; 44(11):3597-3615. doi: 10.1111/pce.14162. [PMID: 34370334]
  • Anders Jorgensen, Maria Bremholm Thygesen, Uffe Kristiansen, Henrik Enghusen Poulsen. An in silico kinetic model of 8-oxo-7,8-dihydro-2-deoxyguanosine and 8-oxo-7,8-dihydroguanosine metabolism from intracellular formation to urinary excretion. Scandinavian journal of clinical and laboratory investigation. 2021 Nov; 81(7):540-545. doi: 10.1080/00365513.2021.1969682. [PMID: 34511003]
  • Yanfeng Sun, Yanjian Wan, Ying Jiang, Huaiji Wang. Urinary concentrations of acetaminophen in young children in central and south China: Repeated measurements and associations with 8-hydroxy-guanosine and 8-hydroxy-2'-deoxyguanosine. The Science of the total environment. 2021 Sep; 787(?):147614. doi: 10.1016/j.scitotenv.2021.147614. [PMID: 33992949]
  • Di Zhu, Qingfang Zhen, Jianjiao Xin, Huiyuan Ma, Haijun Pang, Lichao Tan, Xinming Wang. In situ hierarchical encapsulation of bimetallic selenides into honeycomb-like nitrogen doped porous carbon nanosheets for highly sensitive and selective guanosine detection. Journal of colloid and interface science. 2021 Sep; 598(?):181-192. doi: 10.1016/j.jcis.2021.04.048. [PMID: 33901845]
  • Trine Henriksen, Allan Weimann, Emil List Larsen, Henrik Enghusen Poulsen. Quantification of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine concentrations in urine and plasma for estimating 24-h urinary output. Free radical biology & medicine. 2021 08; 172(?):350-357. doi: 10.1016/j.freeradbiomed.2021.06.014. [PMID: 34166769]
  • Ahmed M Ramadan, Afnan A Alnufaei, Thana K Khan, Hani M Ali, Hala F Eissa, Sabah M Hassan. The first report of RNA U to C or G editing in the mitochondrial NADH dehydrogenase subunit 5 (Nad5) transcript of wild barley. Molecular biology reports. 2021 Aug; 48(8):6057-6064. doi: 10.1007/s11033-021-06609-1. [PMID: 34374896]
  • Chichi Dai, Pengmian Feng, Lizhen Cui, Ran Su, Wei Chen, Leyi Wei. Iterative feature representation algorithm to improve the predictive performance of N7-methylguanosine sites. Briefings in bioinformatics. 2021 07; 22(4):. doi: 10.1093/bib/bbaa278. [PMID: 33169141]
  • Camilla B Larsen, Kamilla R Riis, Kristian H Winther, Emil L Larsen, Christina Ellervik, Laszlo Hegedüs, Thomas H Brix, Henrik E Poulsen, Steen J Bonnema. Treatment of Hyperthyroidism Reduces Systemic Oxidative Stress, as Measured by Markers of RNA and DNA Damage. The Journal of clinical endocrinology and metabolism. 2021 06; 106(7):e2512-e2520. doi: 10.1210/clinem/dgab273. [PMID: 33901280]
  • Liang-Mian Chen, Xiao-Qian Liu, Yong-Xin Zhang, Hui-Min Gao, Wei-Hong Feng, Chen-Xiao-Ning Meng, Zhi-Min Wang. [Qualitative and quantitative analysis of nucleosides and nucleobases in Phylloporia ribis by UPLC-Q-TOF-MS and HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2021 Jun; 46(12):2912-2922. doi: 10.19540/j.cnki.cjcmm.20201214.303. [PMID: 34467681]
  • Suvanjaa Sivalingam, Emil List Larsen, Daniel H van Raalte, Marcel H A Muskiet, Mark M Smits, Lennart Tonneijck, Jaap A Joles, Bernt Johan von Scholten, Emilie Hein Zobel, Frederik Persson, Trine Henriksen, Lars Jorge Diaz, Tine W Hansen, Henrik Enghusen Poulsen, Peter Rossing. The effect of liraglutide and sitagliptin on oxidative stress in persons with type 2 diabetes. Scientific reports. 2021 05; 11(1):10624. doi: 10.1038/s41598-021-90191-w. [PMID: 34012064]
  • Steven S Good, Jonna Westover, Kie Hoon Jung, Xiao-Jian Zhou, Adel Moussa, Paolo La Colla, Gabriella Collu, Bruno Canard, Jean-Pierre Sommadossi. AT-527, a Double Prodrug of a Guanosine Nucleotide Analog, Is a Potent Inhibitor of SARS-CoV-2 In Vitro and a Promising Oral Antiviral for Treatment of COVID-19. Antimicrobial agents and chemotherapy. 2021 03; 65(4):. doi: 10.1128/aac.02479-20. [PMID: 33558299]
  • Li-Qun Zhang, Xin-Min Xu, Xiang-Yu Li, Jie Guo, Hui-Zhu Wang, Ji-Yun Sun, Jian-Ping Cai. Urinary 8-oxo-7,8-dihydroguanosine levels are elevated in HCV-infected patients. Nucleosides, nucleotides & nucleic acids. 2021; 40(9):884-895. doi: 10.1080/15257770.2021.1961272. [PMID: 34379042]
  • Rudson J Holanda, Candida Deves, Leandro S Moreira-Dill, Cesar L Guimarães, Leonardo K B Marttinelli, Carla F C Fernandes, Patrícia S M Medeiros, Soraya S Pereira, Eduardo R Honda, Rodrigo G Stábeli, Diógenes S Santos, Andreimar M Soares, Luiz H Pereira da Silva. Plasmodium falciparum purine nucleoside phosphorylase as a model in the search for new inhibitors by high throughput screening. International journal of biological macromolecules. 2020 Dec; 165(Pt B):1832-1841. doi: 10.1016/j.ijbiomac.2020.10.062. [PMID: 33075341]
  • Ruiping Zhang, Songlin Yu, Danchen Wang, Yicong Yin, Jialei Yu, Yongtong Cao, Ling Qiu. Short-term biological variation and Reference change values of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine. Journal of clinical laboratory analysis. 2020 Dec; 34(12):e23522. doi: 10.1002/jcla.23522. [PMID: 32827234]
  • Lin Cheng, Yu Zhang, Yi Zhang, Tao Chen, Yong-Zhen Xu, Yikang S Rong. Loss of the RNA trimethylguanosine cap is compatible with nuclear accumulation of spliceosomal snRNAs but not pre-mRNA splicing or snRNA processing during animal development. PLoS genetics. 2020 10; 16(10):e1009098. doi: 10.1371/journal.pgen.1009098. [PMID: 33085660]
  • Mads Juul Skytte, Amirsalar Samkani, Arne Astrup, Thomas Meinert Larsen, Jan Frystyk, Henrik Enghusen Poulsen, Trine Henriksen, Jens Juul Holst, Ove Andersen, Sten Madsbad, Steen Bendix Haugaard, Thure Krarup, Emil List Larsen. Effects of a highly controlled carbohydrate-reduced high-protein diet on markers of oxidatively generated nucleic acid modifications and inflammation in weight stable participants with type 2 diabetes; a randomized controlled trial. Scandinavian journal of clinical and laboratory investigation. 2020 Sep; 80(5):401-407. doi: 10.1080/00365513.2020.1759137. [PMID: 32374188]
  • Giovanna Tranfo, Enrico Marchetti, Daniela Pigini, Alfredo Miccheli, Mariangela Spagnoli, Fabio Sciubba, Giorgia Conta, Alberta Tomassini, Luigi Fattorini. Targeted and untargeted metabolomics applied to occupational exposure to hyperbaric atmosphere. Toxicology letters. 2020 Aug; 328(?):28-34. doi: 10.1016/j.toxlet.2020.03.022. [PMID: 32305374]
  • Leonardo Lorente, María M Martín, Agustín F González-Rivero, Antonia Pérez-Cejas, Pedro Abreu-González, Rafael Sabatel, Luis Ramos, Mónica Argueso, Juan J Cáceres, Jordi Solé-Violán, Alejandro Jiménez, Victor García-Marín. High Serum DNA and RNA Oxidative Damage in Non-surviving Patients with Spontaneous Intracerebral Hemorrhage. Neurocritical care. 2020 08; 33(1):90-96. doi: 10.1007/s12028-019-00864-8. [PMID: 31598840]
  • Yuanxun Xiao, Congxin Zhang, Xianli Zeng, Zhichao Yuan. Microecological treatment of hyperuricemia using Lactobacillus from pickles. BMC microbiology. 2020 07; 20(1):195. doi: 10.1186/s12866-020-01874-9. [PMID: 32631233]
  • Yawei Zhao, Jinzhong Tian, Guosong Zheng, Jun Chen, Chuanwen Sun, Zhongyi Yang, Andrei A Zimin, Weihong Jiang, Zixin Deng, Zhijun Wang, Yinhua Lu. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. Science China. Life sciences. 2020 Jul; 63(7):1053-1062. doi: 10.1007/s11427-019-1559-y. [PMID: 31872379]
  • Leonardo Lorente, María M Martín, Agustín F González-Rivero, Antonia Pérez-Cejas, Pedro Abreu-González, Luis Ramos, Mónica Argueso, Juan J Cáceres, Jordi Solé-Violán, Andrea Alvarez-Castillo, Alejandro Jiménez, Victor García-Marín. Association Between DNA and RNA Oxidative Damage and Mortality of Patients with Traumatic Brain Injury. Neurocritical care. 2020 06; 32(3):790-795. doi: 10.1007/s12028-019-00800-w. [PMID: 31385181]
  • Yao-Dan Liang, Qian Liu, Ming-Hui Du, Zhen Liu, Si-Min Yao, Pei-Pei Zheng, Yu-Hao Wan, Ning Sun, Ying-Ying Li, Jun-Peng Liu, Yao Luo, Jian-Ping Cai, Jie-Fu Yang, Hua Wang. Urinary 8-oxo-7,8-dihydroguanosine as a potential biomarker of frailty for elderly patients with cardiovascular disease. Free radical biology & medicine. 2020 05; 152(?):248-254. doi: 10.1016/j.freeradbiomed.2020.03.011. [PMID: 32217193]
  • Jay Shockey. Gene editing in plants: assessing the variables through a simplified case study. Plant molecular biology. 2020 May; 103(1-2):75-89. doi: 10.1007/s11103-020-00976-2. [PMID: 32040758]
  • Shan Jiang, Lin Kang, Minglei Zhu, Xu Zhang, Chenchen Wang, Jianping Cai, Xiaohong Liu. A potential urinary biomarker to determine frailty status among older adults. Archives of gerontology and geriatrics. 2020 May; 88(?):104038. doi: 10.1016/j.archger.2020.104038. [PMID: 32229368]
  • Alp S Kahveci, Tania T Barnatan, Ali Kahveci, Alexis E Adrian, Jennifer Arroyo, Alfonso Eirin, Peter C Harris, Amir Lerman, Lilach O Lerman, Vicente E Torres, Maria V Irazabal. Oxidative Stress and Mitochondrial Abnormalities Contribute to Decreased Endothelial Nitric Oxide Synthase Expression and Renal Disease Progression in Early Experimental Polycystic Kidney Disease. International journal of molecular sciences. 2020 Mar; 21(6):. doi: 10.3390/ijms21061994. [PMID: 32183375]
  • Fusae Komura, Kana Okuzumi, Yuki Takahashi, Yoshinobu Takakura, Makiya Nishikawa. Development of RNA/DNA Hydrogel Targeting Toll-Like Receptor 7/8 for Sustained RNA Release and Potent Immune Activation. Molecules (Basel, Switzerland). 2020 Feb; 25(3):. doi: 10.3390/molecules25030728. [PMID: 32046113]
  • Yuxin Li, Ashley E Ross. Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry. The Analyst. 2020 Feb; 145(3):805-815. doi: 10.1039/c9an01636h. [PMID: 31820742]
  • Jing Li, Meixiu Xin, Yehong Huo, Anran Cai, Miaomiao Yan, Chunhua Wang, Guangcheng Wei. Synthesis of β-cyclodextrin-PEG-G molecules to delay tumor growth and application of β-cyclodextrin-PEG-G aggregates as drug carrier. Carbohydrate polymers. 2020 Feb; 229(?):115478. doi: 10.1016/j.carbpol.2019.115478. [PMID: 31826440]
  • Cheng Guo, Qin Chen, Jiani Chen, Jiekai Yu, Yiqiu Hu, Suzhan Zhang, Shu Zheng. 8-Hydroxyguanosine as a possible RNA oxidative modification marker in urine from colorectal cancer patients: Evaluation by ultra performance liquid chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2020 Jan; 1136(?):121931. doi: 10.1016/j.jchromb.2019.121931. [PMID: 31855840]
  • Mohamed M Omran, Ramzy E Rashed, Hossam Darwish, Arafa A Belal, Faten Z Mohamed. Development of a gas chromatography-mass spectrometry method for breast cancer diagnosis based on nucleoside metabolomes 1-methyl adenosine, 1-methylguanosine and 8-hydroxy-2'-deoxyguanosine. Biomedical chromatography : BMC. 2020 Jan; 34(1):e4713. doi: 10.1002/bmc.4713. [PMID: 31633807]
  • Débora Lanznaster, Caio M Massari, Vendula Marková, Tereza Šimková, Romain Duroux, Kenneth A Jacobson, Víctor Fernández-Dueñas, Carla I Tasca, Francisco Ciruela. Adenosine A1-A2A Receptor-Receptor Interaction: Contribution to Guanosine-Mediated Effects. Cells. 2019 12; 8(12):. doi: 10.3390/cells8121630. [PMID: 31847113]
  • Leonardo Lorente, María M Martín, Agustín F González-Rivero, Antonia Pérez-Cejas, Pedro Abreu-González, Raquel Ortiz-López, José Ferreres, Jordi Solé-Violán, Lorenzo Labarta, César Díaz, Salomé Palmero, Alejandro Jiménez. Association between DNA and RNA oxidative damage and mortality in septic patients. Journal of critical care. 2019 12; 54(?):94-98. doi: 10.1016/j.jcrc.2019.08.008. [PMID: 31401543]
  • Ulla Knorr, Anja Hviid Simonsen, Peter Roos, Allan Weimann, Trine Henriksen, Ellen-Margrethe Christensen, Maj Vinberg, Rie Lambæk Mikkelsen, Thomas Kirkegaard, Rasmus Nejst Jensen, Morten Akhøj, Julie Forman, Henrik Enghusen Poulsen, Steen Gregers Hasselbalch, Lars Vedel Kessing. Cerebrospinal fluid oxidative stress metabolites in patients with bipolar disorder and healthy controls: a longitudinal case-control study. Translational psychiatry. 2019 11; 9(1):325. doi: 10.1038/s41398-019-0664-6. [PMID: 31780642]
  • Markus N Preising, Boris Görg, Christoph Friedburg, Natalia Qvartskhava, Birgit S Budde, Michele Bonus, Mohammad R Toliat, Christopher Pfleger, Janine Altmüller, Diran Herebian, Mila Beyer, Helge J Zöllner, Hans-Jörg Wittsack, Jörg Schaper, Dirk Klee, Ulrich Zechner, Peter Nürnberg, Jörg Schipper, Alfons Schnitzler, Holger Gohlke, Birgit Lorenz, Dieter Häussinger, Hanno J Bolz. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2019 10; 33(10):11507-11527. doi: 10.1096/fj.201900914rr. [PMID: 31345061]
  • Taolan Zhao, Qing Huan, Jing Sun, Chunyan Liu, Xiuli Hou, Xiang Yu, Ian M Silverman, Yi Zhang, Brian D Gregory, Chun-Ming Liu, Wenfeng Qian, Xiaofeng Cao. Impact of poly(A)-tail G-content on Arabidopsis PAB binding and their role in enhancing translational efficiency. Genome biology. 2019 09; 20(1):189. doi: 10.1186/s13059-019-1799-8. [PMID: 31481099]
  • Giovanna Tranfo, Enrico Paci, Mariella Carrieri, Enrico Marchetti, Renata Sisto, Monica Gherardi, Francesca Costabile, Lisa Bauleo, Carla Ancona, Daniela Pigini. Levels of Urinary Biomarkers of Oxidatively Generated Damage to DNA and RNA in Different Groups of Workers Compared to General Population. International journal of environmental research and public health. 2019 08; 16(16):. doi: 10.3390/ijerph16162995. [PMID: 31434269]
  • Tong Liu, Jian-Ping Cai, Li-Qun Zhang, Ning Sun, Ju Cui, Hua Wang, Jie-Fu Yang. The mechanism of RNA oxidation involved in the development of heart failure. Free radical research. 2019 Aug; 53(8):910-921. doi: 10.1080/10715762.2019.1646424. [PMID: 31401895]
  • Hubert Sytykiewicz, Iwona Łukasik, Sylwia Goławska, Grzegorz Chrzanowski. Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize (Zea mays L.) Seedlings. International journal of molecular sciences. 2019 Jul; 20(15):. doi: 10.3390/ijms20153742. [PMID: 31370193]
  • Allan Weimann, George McLeod, Trine Henriksen, Vanja Cejvanovic, Henrik E Poulsen. Identification and quantification of isoguanosine in humans and mice. Scandinavian journal of clinical and laboratory investigation. 2019 Jul; 79(4):225-232. doi: 10.1080/00365513.2019.1585566. [PMID: 30888208]
  • Camila Aguilar Delgado, Gilian Batista Balbueno Guerreiro, Carlos Eduardo Diaz Jacques, Daniella de Moura Coelho, Angela Sitta, Vanusa Manfredini, Moacir Wajner, Carmen Regla Vargas. Prevention by L-carnitine of DNA damage induced by 3-hydroxy-3-methylglutaric and 3-methylglutaric acids and experimental evidence of lipid and DNA damage in patients with 3-hydroxy-3-methylglutaric aciduria. Archives of biochemistry and biophysics. 2019 06; 668(?):16-22. doi: 10.1016/j.abb.2019.04.008. [PMID: 31047871]
  • Yuan Wang, Shaofang Li, Yonghui Zhao, Chenjiang You, Brandon Le, Zhizhong Gong, Beixin Mo, Yiji Xia, Xuemei Chen. NAD+-capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proceedings of the National Academy of Sciences of the United States of America. 2019 06; 116(24):12094-12102. doi: 10.1073/pnas.1903682116. [PMID: 31142655]
  • Ziqi Li, Yuan Yao, Yanfei Zhang, Yining Zhang, Yijun Shao, Chuanxi Tang, Weidong Qu, Ying Zhou. Classification and Temporal Variability in Urinary 8-oxodG and 8-oxoGuo: Analysis by UHPLC-MS/MS. Scientific reports. 2019 06; 9(1):8187. doi: 10.1038/s41598-019-44240-0. [PMID: 31160621]
  • Nur Ozten, Katherine Vega, Joachim Liehr, Xi Huang, Lori Horton, Ercole L Cavalieri, Eleanor G Rogan, Maarten C Bosland. Role of Estrogen in Androgen-Induced Prostate Carcinogenesis in NBL Rats. Hormones & cancer. 2019 06; 10(2-3):77-88. doi: 10.1007/s12672-019-00360-7. [PMID: 30877616]
  • Edwin K Jackson, Zaichuan Mi, Keri Janesko-Feldman, Travis C Jackson, Patrick M Kochanek. 2',3'-cGMP exists in vivo and comprises a 2',3'-cGMP-guanosine pathway. American journal of physiology. Regulatory, integrative and comparative physiology. 2019 06; 316(6):R783-R790. doi: 10.1152/ajpregu.00401.2018. [PMID: 30789788]
  • Barbara Bobrowska-Korczak, Paulina Gątarek, Angelina Rosiak, Joanna Giebułtowicz, Joanna Kałużna-Czaplińska. Reduced levels of modified nucleosides in the urine of autistic children. Preliminary studies. Analytical biochemistry. 2019 04; 571(?):62-67. doi: 10.1016/j.ab.2019.02.009. [PMID: 30771338]
  • Laura Kofoed Kjaer, Mia Klinten Grand, Volkert Siersma, Kasper Broedbaek, Anders Jorgensen, Niels de Fine Olivarius, Henrik Enghusen Poulsen. The effect of structured personal care on RNA oxidation: A 19-year follow-up of the randomized trial Diabetes Care in General Practice (DCGP). Journal of diabetes and its complications. 2019 03; 33(3):202-207. doi: 10.1016/j.jdiacomp.2018.12.004. [PMID: 30638771]
  • Xiaohuan Jin, Zhengyi Lv, Junbao Gao, Rui Zhang, Ting Zheng, Ping Yin, Dongqin Li, Liangcai Peng, Xintao Cao, Yan Qin, Staffan Persson, Bo Zheng, Peng Chen. AtTrm5a catalyses 1-methylguanosine and 1-methylinosine formation on tRNAs and is important for vegetative and reproductive growth in Arabidopsis thaliana. Nucleic acids research. 2019 01; 47(2):883-898. doi: 10.1093/nar/gky1205. [PMID: 30508117]
  • Ying-Ming Shih, Marcus S Cooke, Chih-Hong Pan, Mu-Rong Chao, Chiung-Wen Hu. Clinical relevance of guanine-derived urinary biomarkers of oxidative stress, determined by LC-MS/MS. Redox biology. 2019 01; 20(?):556-565. doi: 10.1016/j.redox.2018.11.016. [PMID: 30508700]
  • Stanzin Angmo, Shilpa Rana, Kamalendra Yadav, Rajat Sandhir, Nitin Kumar Singhal. Novel Liposome Eencapsulated Guanosine Di Phosphate based Therapeutic Target against Anemia of Inflammation. Scientific reports. 2018 12; 8(1):17684. doi: 10.1038/s41598-018-35992-2. [PMID: 30523271]
  • Delia Cavallo, Giovanna Tranfo, Cinzia Lucia Ursini, Anna Maria Fresegna, Aureliano Ciervo, Raffaele Maiello, Enrico Paci, Daniela Pigini, Monica Gherardi, Maria Pia Gatto, Giuliana Buresti, Sergio Iavicoli. Biomarkers of early genotoxicity and oxidative stress for occupational risk assessment of exposure to styrene in the fibreglass reinforced plastic industry. Toxicology letters. 2018 Dec; 298(?):53-59. doi: 10.1016/j.toxlet.2018.06.006. [PMID: 29898417]
  • Vanja Cejvanovic, Laura Kofoed Kjær, Helle Kirstine Mørup Bergholdt, Trine Henriksen, Allan Weimann, Christina Ellervik, Henrik Enghusen Poulsen. RNA oxidation and iron levels in patients with diabetes. Free radical biology & medicine. 2018 12; 129(?):532-536. doi: 10.1016/j.freeradbiomed.2018.10.420. [PMID: 30339885]
  • Laura Kofoed Kjaer, Jens Oellgaard, Trine Henriksen, Peter Gaede, Oluf Pedersen, Henrik Enghusen Poulsen. Indicator of RNA oxidation in urine for the prediction of mortality in patients with type 2 diabetes and microalbuminuria: A post-hoc analysis of the Steno-2 trial. Free radical biology & medicine. 2018 12; 129(?):247-255. doi: 10.1016/j.freeradbiomed.2018.09.030. [PMID: 30244028]
  • Chao-Jung Chen, Wen-Ling Liao, Chiz-Tzung Chang, Yu-Ning Lin, Fuu-Jen Tsai. Identification of Urinary Metabolite Biomarkers of Type 2 Diabetes Nephropathy Using an Untargeted Metabolomic Approach. Journal of proteome research. 2018 11; 17(11):3997-4007. doi: 10.1021/acs.jproteome.8b00644. [PMID: 30265543]
  • Philipp Opitz, Olf Herbarth, Annerose Seidel, Andreas Boehm, Milos Fischer, Christian Mozet, Andreas Dietz, Gunnar Wichmann. Modified Nucleosides - Molecular Markers Suitable for Small-volume Cancer?. Anticancer research. 2018 Nov; 38(11):6113-6119. doi: 10.21873/anticanres.12962. [PMID: 30396926]
  • Martin Roest Christensen, Henrik Enghusen Poulsen, Trine Henriksen, Allan Weimann, Christina Ellervik, Niels Lynnerup, Jørgen Rungby, Jytte Banner. Elevated levels of 8-oxoGuo and 8-oxodG in individuals with severe mental illness - An autopsy-based study. Free radical biology & medicine. 2018 10; 126(?):372-378. doi: 10.1016/j.freeradbiomed.2018.08.029. [PMID: 30145229]
  • Miki Ichinomiya, Akinori Shimada, Naoki Ohta, Erina Inouchi, Kikumi Ogihara, Yuko Naya, Masaki Nagane, Takehito Morita, Masahiko Satoh. Demonstration of Mitochondrial Damage and Mitophagy in Cisplatin-Mediated Nephrotoxicity. The Tohoku journal of experimental medicine. 2018 09; 246(1):1-8. doi: 10.1620/tjem.246.1. [PMID: 30175722]
  • Bruno Alies, Mohamed A Ouelhazi, Amit Patwa, Julien Verget, Laurence Navailles, Valérie Desvergnes, Philippe Barthélémy. Cytidine- and guanosine-based nucleotide-lipids. Organic & biomolecular chemistry. 2018 07; 16(26):4888-4894. doi: 10.1039/c8ob01023d. [PMID: 29932190]
  • Sharon Graminske, Kathleen Puca, Anna Schmidt, Scott Brooks, Amanda Boerner, Sybil Heldke, Monika de Arruda Indig, Mark Brucks, David Kossor. In vitro evaluation of di(2-ethylhexyl)terephthalate-plasticized polyvinyl chloride blood bags for red blood cell storage in AS-1 and PAGGSM additive solutions. Transfusion. 2018 05; 58(5):1100-1107. doi: 10.1111/trf.14583. [PMID: 29574766]
  • Xin-Min Xu, Xiao-Yang Zhou, Xiang-Yu Li, Jie Guo, Hui-Zhu Wang, Yue Li, Cheng-Cheng Yang, Teng-Hui Liu, Jian-Ping Cai. Increased oxidative damage of RNA in liver injury caused by hepatitis B virus (HBV) infection. Free radical research. 2018 Apr; 52(4):426-433. doi: 10.1080/10715762.2018.1439165. [PMID: 29424259]
  • Rabindra Nath Das, Y Pavan Kumar, S Arun Kumar, Ole Mathis Schütte, Claudia Steinem, Jyotirmayee Dash. Self-Assembly of a Guanosine Derivative To Form Nanostructures and Transmembrane Channels. Chemistry (Weinheim an der Bergstrasse, Germany). 2018 Mar; 24(16):4002-4005. doi: 10.1002/chem.201800205. [PMID: 29441622]
  • Yan-Tao Sun, Jing Sun, Lu-Hong Wang, Lei Zhao. [Study on quality control of Holotrichia diomphalia larvae by TLC and HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2018 Mar; 43(6):1189-1191. doi: 10.19540/j.cnki.cjcmm.2018.0044. [PMID: 29676127]
  • Tsung-Ting Shih, Hui-Ling Lee, Show-Chuen Chen, Chih-Yuan Kang, Ren-Shang Shen, Yi-An Su. Rapid analysis of traditional Chinese medicine Pinellia ternata by microchip electrophoresis with electrochemical detection. Journal of separation science. 2018 Feb; 41(3):740-746. doi: 10.1002/jssc.201700901. [PMID: 29152857]
  • Vanja Cejvanovic, Laura Kofoed Kjær, Helle Kirstine Mørup Bergholdt, Arendse Torp-Pedersen, Trine Henriksen, Allan Weimann, Christina Ellervik, Henrik Enghusen Poulsen. Iron induced RNA-oxidation in the general population and in mouse tissue. Free radical biology & medicine. 2018 02; 115(?):127-135. doi: 10.1016/j.freeradbiomed.2017.11.013. [PMID: 29157668]
  • Anders Jorgensen, Volkert Siersma, Annette S Davidsen, Allan Weimann, Trine Henriksen, Henrik E Poulsen, Niels de Fine Olivarius. Markers of DNA/RNA damage from oxidation as predictors of a registry-based diagnosis of psychiatric illness in type 2 diabetic patients. Psychiatry research. 2018 01; 259(?):370-376. doi: 10.1016/j.psychres.2017.11.017. [PMID: 29120845]
  • Yong-Hui Mao, Leng-Nan Xu, Qing-Hua Weng, Xiang-Yu Li, Ban Zhao, Jing-Jing Nie, Ji-Hong Hu, Li-Qun Zhang, Zhe Chen, Ming-Zhang Zuo, Sadayoshi Ito, Jian-Ping Cai. The Ratio of Plasma and Urinary 8-oxo-Gsn Could Be a Novel Evaluation Index for Patients with Chronic Kidney Disease. Oxidative medicine and cellular longevity. 2018; 2018(?):4237812. doi: 10.1155/2018/4237812. [PMID: 29576848]
  • K Gmitterová, J Gawinecka, U Heinemann, P Valkovič, I Zerr. DNA versus RNA oxidation in Parkinson's disease: Which is more important?. Neuroscience letters. 2018 Jan; 662(?):22-28. doi: 10.1016/j.neulet.2017.09.048. [PMID: 28963060]
  • Dijana Saftić, Biserka Žinić, Ljubica Glavaš-Obrovac, Mirosława Studzińska, Edyta Paradowska, Zbigniew J Leśnikowski. Synthesis and in vitro evaluation of antiviral and cytostatic properties of novel 8-triazolyl acyclovir derivatives. Nucleosides, nucleotides & nucleic acids. 2018; 37(7):397-414. doi: 10.1080/15257770.2018.1485932. [PMID: 30449256]
  • Edwin K Jackson, Zaichuan Mi. 8-Aminoguanosine Exerts Diuretic, Natriuretic, and Glucosuric Activity via Conversion to 8-Aminoguanine, Yet Has Direct Antikaliuretic Effects. The Journal of pharmacology and experimental therapeutics. 2017 12; 363(3):358-366. doi: 10.1124/jpet.117.243758. [PMID: 28928119]
  • Giuseppe Vitiello, Domenica Musumeci, Alexandros Koutsioubas, Luigi Paduano, Daniela Montesarchio, Gerardino D'Errico. Ionophores at work: Exploring the interaction of guanosine-based amphiphiles with phospholipid membranes. Biochimica et biophysica acta. Biomembranes. 2017 Dec; 1859(12):2392-2401. doi: 10.1016/j.bbamem.2017.09.007. [PMID: 28890186]
  • Laura K Kjær, Vanja Cejvanovic, Trine Henriksen, Kasper M Petersen, Torben Hansen, Oluf Pedersen, Cramer K Christensen, Christian Torp-Pedersen, Thomas A Gerds, Ivan Brandslund, Thomas Mandrup-Poulsen, Henrik E Poulsen. Cardiovascular and All-Cause Mortality Risk Associated With Urinary Excretion of 8-oxoGuo, a Biomarker for RNA Oxidation, in Patients With Type 2 Diabetes: A Prospective Cohort Study. Diabetes care. 2017 12; 40(12):1771-1778. doi: 10.2337/dc17-1150. [PMID: 29061564]
  • Morgan E Grams, Adrienne Tin, Casey M Rebholz, Tariq Shafi, Anna Köttgen, Ronald D Perrone, Mark J Sarnak, Lesley A Inker, Andrew S Levey, Josef Coresh. Metabolomic Alterations Associated with Cause of CKD. Clinical journal of the American Society of Nephrology : CJASN. 2017 Nov; 12(11):1787-1794. doi: 10.2215/cjn.02560317. [PMID: 28971980]
  • Ke Zan, Li-Li Huang, Li-Nong Guo, Jie Liu, Jian Zheng, Shuang-Cheng Ma, Zheng-Ming Qian, Wen-Jia Li. [Comparative study on specific chromatograms and main nucleosides of cultivated and wild Cordyceps sinensis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2017 Oct; 42(20):3957-3962. doi: 10.19540/j.cnki.cjcmm.20170807.009. [PMID: 29243433]
  • Kasper Broedbaek, Rasmus Køster-Rasmussen, Volkert Siersma, Frederik Persson, Henrik E Poulsen, Niels de Fine Olivarius. Urinary albumin and 8-oxo-7,8-dihydroguanosine as markers of mortality and cardiovascular disease during 19 years after diagnosis of type 2 diabetes - A comparative study of two markers to identify high risk patients. Redox biology. 2017 10; 13(?):363-369. doi: 10.1016/j.redox.2017.06.005. [PMID: 28666207]
  • Juan Zou, Ling Wu, Zheng-Mi He, Ping Zhang, Zuo-Hong Chen. Determination of the Main Nucleosides and Nucleobases in Natural and Cultured Ophiocordyceps xuefengensis. Molecules (Basel, Switzerland). 2017 Sep; 22(9):. doi: 10.3390/molecules22091530. [PMID: 28891979]
  • Mara Medeiros, Luis Velásquez-Jones, Ana M Hernández, Guillermo Ramón-García, Saúl Valverde, Yolanda Fuentes, Arindal Vargas, Mauricio Patiño, Rosalba Pérez-Villalva, Juan Antonio Ortega-Trejo, Jonatan Barrera-Chimal, Norma A Bobadilla. Randomized Controlled Trial of Mineralocorticoid Receptor Blockade in Children with Chronic Kidney Allograft Nephropathy. Clinical journal of the American Society of Nephrology : CJASN. 2017 Aug; 12(8):1291-1300. doi: 10.2215/cjn.05300516. [PMID: 28536123]
  • Emil List Larsen, Vanja Cejvanovic, Laura Kofoed Kjaer, Morten Thorup Pedersen, Sara Daugaard Popik, Lina Kallehave Hansen, Jon Traerup Andersen, Espen Jimenez-Solem, Kasper Broedbaek, Morten Petersen, Allan Weimann, Trine Henriksen, Jens Lykkesfeldt, Christian Torp-Pedersen, Henrik Enghusen Poulsen. Clarithromycin, trimethoprim, and penicillin and oxidative nucleic acid modifications in humans: randomised, controlled trials. British journal of clinical pharmacology. 2017 08; 83(8):1643-1653. doi: 10.1111/bcp.13261. [PMID: 28185274]
  • G F Cittolin-Santos, A M de Assis, P A Guazzelli, L G Paniz, J S da Silva, M E Calcagnotto, G Hansel, K C Zenki, E Kalinine, M M Duarte, D O Souza. Guanosine Exerts Neuroprotective Effect in an Experimental Model of Acute Ammonia Intoxication. Molecular neurobiology. 2017 07; 54(5):3137-3148. doi: 10.1007/s12035-016-9892-4. [PMID: 27052954]
  • Jin Yang, Hongjie Zhang, Huitao Zhang, Wubin Wang, Yanli Liu, Yanfeng Fan. Smoking modify the effects of polycyclic aromatic hydrocarbons exposure on oxidative damage to DNA in coke oven workers. International archives of occupational and environmental health. 2017 Jul; 90(5):423-431. doi: 10.1007/s00420-017-1206-2. [PMID: 28181029]