Nodakenin (BioDeep_00000398494)

Main id: BioDeep_00000000086

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(R)-2-(2-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one

化学式: C20H24O9 (408.142)
中文名称: 紫花前胡苷
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C)(C1CC2=C(O1)C=C3C(=C2)C=CC(=O)O3)OC4C(C(C(C(O4)CO)O)O)O
InChI: InChI=1S/C20H24O9/c1-20(2,29-19-18(25)17(24)16(23)13(8-21)28-19)14-6-10-5-9-3-4-15(22)27-11(9)7-12(10)26-14/h3-5,7,13-14,16-19,21,23-25H,6,8H2,1-2H3

描述信息

Nodakenin is a furanocoumarin.
Nodakenin is a natural product found in Hansenia forbesii, Rhodiola rosea, and other organisms with data available.
Marmesin galactoside is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Marmesin galactoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Marmesin galactoside can be found in herbs and spices, which makes marmesin galactoside a potential biomarker for the consumption of this food product.
Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].
Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].

同义名列表

29 个代谢物同义名

(R)-2-(2-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one; (2R)-2-[1-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-ethyl]-2,3-dihydrofuro[3,2-g]chromen-7-one; (R)-2-(2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)-2H-furo[3,2-g]chromen-7(3H)-one; (2R)-2-[2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl]-2,3-dihydrofuro[3,2-g]chromen-7-one; 7H-Furo[3,2-g][1]benzopyran-7-one, 2-[1-(.beta.-D-glucopyranosyloxy)-1- methylethyl]-2,3-dihydro-, (2R); 7H-FURO(3,2-G)(1)BENZOPYRAN-7-ONE, 2-(1-(.BETA.-D-GLUCOPYRANOSYLOXY)-1-METHYLETHYL)-2,3-DIHYDRO-, (2R)-; 7H-Furo(3,2-g)(1)benzopyran-7-one, 2-(1-(beta-D-glucopyranosyloxy)-1-methylethyl)-2,3-dihydro-, (2R)-; 2-(1-(.BETA.-D-GLUCOPYRANOSYLOXY)-1-METHYLETHYL)-2,3-DIHYDRO-7H-FURO(3,2-G)(1)BENZOPYRAN-7-ONE; Nodakenetin, .beta.-D-glucopyranoside; Nodakenetin, beta-D-glucopyranoside; UNII-S2KTH28M3N; NODAKENIN, (+)-; NODAKENIN [MI]; (+)-Marmesinin; MEGxp0_001251; S2KTH28M3N; Nodakenin; AC1L2JF8; Nodakenin glucoside; (2R)-2-[1-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]ethyl]-2,3-dihydrofuro[3,2-g]chromen-7-one; (2R)-2-[1-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-methylol-tetrahydropyran-2-yl]oxy-ethyl]-2,3-dihydrofuro[3,2-g]chromen-7-one; Nodakenetin, b-D-glucopyranoside; MLS000563463; SMR000232306; AIDS-071124; AIDS071124; 495-31-8; C09279; Nodakenin



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

67 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 CASP3, CDH2, MAPK14, MITF, MTOR, NLRP3, NOX4, PIK3CA, PTGS2, SRC, TNFSF11, TRAF6, TYR, TYRP1
Peripheral membrane protein 4 ACHE, GORASP1, MTOR, PTGS2
Endosome membrane 2 TRAF6, TYRP1
Endoplasmic reticulum membrane 4 HMOX1, MTOR, NOX4, PTGS2
Nucleus 10 ACHE, CASP3, HMOX1, MAPK14, MITF, MTOR, NLRP3, NOX4, SRC, TRAF6
cytosol 9 CASP3, HMOX1, MAPK14, MITF, MTOR, NLRP3, PIK3CA, SRC, TRAF6
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
nucleoplasm 6 CASP3, HMOX1, MAPK14, MITF, MTOR, SRC
Cell membrane 6 ACHE, CDH2, NOX4, SRC, TNF, TNFSF11
Lipid-anchor 1 SRC
Cytoplasmic side 3 GORASP1, HMOX1, MTOR
lamellipodium 2 CDH2, PIK3CA
ruffle membrane 1 SRC
Multi-pass membrane protein 1 NOX4
Golgi apparatus membrane 3 GORASP1, MTOR, NLRP3
Synapse 1 ACHE
cell cortex 1 TRAF6
cell junction 2 CDH2, SRC
cell surface 3 ACHE, CDH2, TNF
glutamatergic synapse 4 CASP3, MAPK14, SRC, TRAF6
Golgi apparatus 2 ACHE, GORASP1
Golgi membrane 3 GORASP1, MTOR, NLRP3
lysosomal membrane 2 MITF, MTOR
mitochondrial inner membrane 1 SRC
neuromuscular junction 1 ACHE
neuronal cell body 3 CASP3, SRC, TNF
sarcolemma 1 CDH2
Cytoplasm, cytosol 1 NLRP3
Lysosome 3 MTOR, SRC, TYR
plasma membrane 9 ACHE, CDH2, IGHE, NOX4, PIK3CA, SRC, TNF, TNFSF11, TRAF6
Membrane 7 ACHE, CDH2, HMOX1, MTOR, NLRP3, NOX4, TNFSF11
apical plasma membrane 1 CDH2
basolateral plasma membrane 1 CDH2
caveola 2 PTGS2, SRC
extracellular exosome 2 BMP3, SRC
Lysosome membrane 2 MITF, MTOR
endoplasmic reticulum 4 HMOX1, NLRP3, NOX4, PTGS2
extracellular space 6 ACHE, BMP3, HMOX1, IGHE, TNF, TNFSF11
perinuclear region of cytoplasm 7 ACHE, HMOX1, NOX4, PIK3CA, SRC, TRAF6, TYR
adherens junction 1 CDH2
apicolateral plasma membrane 1 CDH2
intercalated disc 2 CDH2, PIK3CA
mitochondrion 4 MAPK14, NLRP3, NOX4, SRC
protein-containing complex 3 MITF, PTGS2, TRAF6
intracellular membrane-bounded organelle 1 TYR
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 2 CASP3, CDH2
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 4 CDH2, IGHE, TYR, TYRP1
Secreted 4 ACHE, BMP3, NLRP3, TNFSF11
extracellular region 7 ACHE, BMP3, IGHE, MAPK14, NLRP3, TNF, TNFSF11
cytoplasmic side of plasma membrane 1 TRAF6
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 2 HMOX1, MTOR
Extracellular side 1 ACHE
CD40 receptor complex 1 TRAF6
external side of plasma membrane 1 TNF
nucleolus 1 NOX4
Melanosome membrane 2 TYR, TYRP1
apical part of cell 1 CDH2
cell-cell junction 1 CDH2
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 2 TNF, TNFSF11
presynaptic active zone membrane 1 CDH2
Cell membrane, sarcolemma 1 CDH2
Cytoplasm, perinuclear region 2 NOX4, SRC
Mitochondrion inner membrane 1 SRC
Membrane raft 2 SRC, TNF
Cell junction, focal adhesion 2 NOX4, SRC
Cytoplasm, cytoskeleton 1 SRC
focal adhesion 3 CDH2, NOX4, SRC
cis-Golgi network 1 GORASP1
Cell junction, adherens junction 1 CDH2
basement membrane 1 ACHE
intracellular vesicle 1 TYRP1
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 CDH2
fascia adherens 1 CDH2
nuclear speck 1 MAPK14
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 SRC
neuron projection 2 CDH2, PTGS2
chromatin 1 MITF
IgE immunoglobulin complex 1 IGHE
phagocytic cup 1 TNF
podosome 1 SRC
[Isoform 5]: Cytoplasm 1 NOX4
Nucleus, nucleolus 1 NOX4
spindle pole 1 MAPK14
Cytoplasm, cell cortex 1 TRAF6
actin filament 1 SRC
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 2]: Cell membrane 1 IGHE
nuclear envelope 1 MTOR
Endomembrane system 2 MTOR, NLRP3
Lipid droplet 1 TRAF6
microtubule organizing center 1 NLRP3
Melanosome 2 TYR, TYRP1
side of membrane 1 ACHE
dendritic growth cone 1 SRC
[Isoform 3]: Cytoplasm 1 NOX4
synaptic membrane 1 SRC
plasma membrane raft 1 CDH2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 2 CDH2, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
perinuclear endoplasmic reticulum 1 NOX4
[Isoform 2]: Cytoplasm 1 TNFSF11
[Tumor necrosis factor ligand superfamily member 11, soluble form]: Secreted 1 TNFSF11
clathrin-coated endocytic vesicle membrane 1 TYRP1
extrinsic component of cytoplasmic side of plasma membrane 1 TRAF6
synaptic cleft 1 ACHE
death-inducing signaling complex 1 CASP3
postsynaptic specialization membrane 1 CDH2
postsynaptic specialization, intracellular component 1 SRC
Cell junction, desmosome 1 CDH2
desmosome 1 CDH2
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CDH2
[Isoform 4]: Nucleus 1 NOX4
[Isoform 3]: Cell membrane 1 IGHE
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
NADPH oxidase complex 1 NOX4
[Isoform 6]: Cytoplasm 1 NOX4
dendritic filopodium 1 SRC
[Isoform H]: Cell membrane 1 ACHE
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Chunxiao Liu, Jingyue Chen, Zijiao Wang, Yueyao Li, Yuanyuan Zhang, Guangyu Li. Nodakenin Ameliorates Ovariectomy-Induced Bone Loss by Regulating Gut Microbiota. Molecules (Basel, Switzerland). 2024 Mar; 29(6):. doi: 10.3390/molecules29061240. [PMID: 38542877]
  • Jian Song, Bo-Feng Qin, Jin-Jin Zhang, Qi-Yuan Feng, Guan-Cheng Liu, Gui-Yun Zhao, Hai-Ming Sun. Regulation of the Nur77-P2X7r Signaling Pathway by Nodakenin: A Potential Protective Function against Alcoholic Liver Disease. Molecules (Basel, Switzerland). 2024 Feb; 29(5):. doi: 10.3390/molecules29051078. [PMID: 38474588]
  • Chunxiao Liu, Mengdi Zhao, Jingyue Chen, Liwen Xu, Kaiying Wang, Guangyu Li. Nodakenin alleviates ovariectomy-induced osteoporosis by modulating osteoblastogenesis and osteoclastogenesis. European journal of pharmacology. 2023 Oct; 960(?):176121. doi: 10.1016/j.ejphar.2023.176121. [PMID: 37866743]
  • Nanxing Yi, Yilin Mi, Xiaotong Xu, Naping Li, Baiyi Chen, Ke Yan, Kaiyun Tan, Bo Zhang, Linhua Wang, Gaoyan Kuang, Min Lu. Nodakenin attenuates cartilage degradation and inflammatory responses in a mice model of knee osteoarthritis by regulating mitochondrial Drp1/ROS/NLRP3 axis. International immunopharmacology. 2022 Dec; 113(Pt A):109349. doi: 10.1016/j.intimp.2022.109349. [PMID: 36302323]
  • Na-Ra Han, Kyeoung-Cheol Kim, Ju-Sung Kim, Seong-Gyu Ko, Hi-Joon Park, Phil-Dong Moon. The immune-enhancing effects of a mixture of Astragalus membranaceus (Fisch.) Bunge, Angelica gigas Nakai, and Trichosanthes Kirilowii (Maxim.) or its active constituent nodakenin. Journal of ethnopharmacology. 2022 Mar; 285(?):114893. doi: 10.1016/j.jep.2021.114893. [PMID: 34875347]
  • Yuan Liao, Xiao Lin, Jianchun Li, Ruizhi Tan, Xia Zhong, Li Wang. Nodakenin alleviates renal ischaemia-reperfusion injury via inhibiting reactive oxygen species-induced NLRP3 inflammasome activation. Nephrology (Carlton, Vic.). 2021 Jan; 26(1):78-87. doi: 10.1111/nep.13781. [PMID: 32902019]
  • Ji-Ye Lim, Ji-Hyun Lee, Dae-Ho Yun, Young-Mi Lee, Dae-Ki Kim. Inhibitory effects of nodakenin on inflammation and cell death in lipopolysaccharide-induced liver injury mice. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Jan; 81(?):153411. doi: 10.1016/j.phymed.2020.153411. [PMID: 33310307]
  • Jianchun Li, Lu Wang, Ruizhi Tan, Sha Zhao, Xia Zhong, Li Wang. Nodakenin alleviated obstructive nephropathy through blunting Snail1 induced fibrosis. Journal of cellular and molecular medicine. 2020 09; 24(17):9752-9763. doi: 10.1111/jcmm.15539. [PMID: 32696548]
  • Su-Jin Ahn, Hyung Joo Kim, Ayoung Lee, Seung-Sik Min, Sangwhan In, Eunmi Kim. Determination of 12 herbal compounds for estimating the presence of Angelica Gigas Root, Cornus Fruit, Licorice Root, Pueraria Root, and Schisandra Fruit in foods by LC-MS/MS. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2020 Sep; 37(9):1437-1448. doi: 10.1080/19440049.2020.1778187. [PMID: 32530783]
  • Sook-Jin Kim, Se-Mi Ko, Eun-Jeong Choi, Seong-Ho Ham, Young-Dal Kwon, Yong-Bok Lee, Hea-Young Cho. Simultaneous Determination of Decursin, Decursinol Angelate, Nodakenin, and Decursinol of Angelica gigas Nakai in Human Plasma by UHPLC-MS/MS: Application to Pharmacokinetic Study. Molecules (Basel, Switzerland). 2018 04; 23(5):. doi: 10.3390/molecules23051019. [PMID: 29701699]
  • Yingshi Song, Huiyu Yan, Jingbo Xu, Hongxi Ma. Determination of the neuropharmacological drug nodakenin in rat plasma and brain tissues by liquid chromatography tandem mass spectrometry: Application to pharmacokinetic studies. Biomedical chromatography : BMC. 2017 Sep; 31(9):. doi: 10.1002/bmc.3948. [PMID: 28178362]
  • Ludi Jiang, Xianbao Zhang, Xi Chen, Yusu He, Liansheng Qiao, Yanling Zhang, Gongyu Li, Yuhong Xiang. Virtual Screening and Molecular Dynamics Study of Potential Negative Allosteric Modulators of mGluR1 from Chinese Herbs. Molecules (Basel, Switzerland). 2015 Jul; 20(7):12769-86. doi: 10.3390/molecules200712769. [PMID: 26184151]
  • Joon Hyeong Cho, Jung Eun Kwon, Youngmi Cho, Inhye Kim, Se Chan Kang. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression. Nutrients. 2015 Jun; 7(6):4862-74. doi: 10.3390/nu7064862. [PMID: 26083119]
  • Youyi Xiong, Junsong Wang, Hao Yu, Xiaolin Zhang, Chenggui Miao, Shitang Ma. The effects of nodakenin on airway inflammation, hyper-responsiveness and remodeling in a murine model of allergic asthma. Immunopharmacology and immunotoxicology. 2014 Oct; 36(5):341-8. doi: 10.3109/08923973.2014.947035. [PMID: 25090633]
  • Bohyoung Lee, Jin Bae Weon, Bo-Ra Yun, Jiwoo Lee, Min Rye Eom, Choong Je Ma. Simultaneous determination of 11 major components in Palmul-tang by HPLC-DAD and LC-MS-MS. Journal of chromatographic science. 2014 Jul; 52(6):482-92. doi: 10.1093/chromsci/bmt064. [PMID: 23741048]
  • Chang-Seob Seo, Jung Hoon Kim, Hyeun-Kyoo Shin. Simultaneous determination of liquiritin, nodakenin and glycyrrhizinin Guibi-tang, a traditional herbal prescription by HPLC-PDA. Pakistan journal of pharmaceutical sciences. 2014 Jul; 27(4):819-24. doi: . [PMID: 25015446]
  • Chang-Seob Seo, Mee-Young Lee, Hye-Sun Lim, Su-Jeong Kim, Hyekyung Ha, Jin-Ah Lee, Hyeun-Kyoo Shin. Determination of 5-hydroxymethyl-2-furfural, albiflorin, paeoniflorin, liquiritin, ferulic acid, nodakenin, and glycyrrhizin by HPLC-PDA, and evaluation of the cytotoxicity of Palmul-tang, a traditional Korean herbal medicine. Archives of pharmacal research. 2012 Jan; 35(1):101-8. doi: 10.1007/s12272-012-0111-1. [PMID: 22297748]
  • Yung-An Tsou, Kuan-Chung Chen, Hung-Che Lin, Su-Sen Chang, Calvin Yu-Chian Chen. Uroporphyrinogen decarboxylase as a potential target for specific components of traditional Chinese medicine: a virtual screening and molecular dynamics study. PloS one. 2012; 7(11):e50087. doi: 10.1371/journal.pone.0050087. [PMID: 23209648]
  • Chang-Seob Seo, Jung Hoon Kim, Hyeun-Kyoo Shin. Simultaneous determination of seven constituents in herbal prescription jaeumganghwa-tang using HPLC-PDA. African journal of traditional, complementary, and alternative medicines : AJTCAM. 2012; 10(1):113-23. doi: . [PMID: 24082332]
  • Zhigang Liu, Famei Li. Development and validation of a reliable high-performance liquid chromatographic method for determination of nodakenin in rat plasma and its application to pharmacokinetic study. Biomedical chromatography : BMC. 2011 Oct; 25(10):1076-80. doi: 10.1002/bmc.1571. [PMID: 21204115]
  • Peng Zhang, Xiu-Wei Yang. Biotransformation of nodakenin and simultaneous quantification of nodakenin and its aglycone in incubated system of human intestinal bacteria by HPLC method. Journal of Asian natural products research. 2009; 11(4):371-9. doi: 10.1080/10286020902767716. [PMID: 19431019]
  • Peng Zhang, Fei Li, Xiu-Wei Yang. Determination and pharmacokinetic study of nodakenin in rat plasma by RP-HPLC method. Biomedical chromatography : BMC. 2008 Jul; 22(7):758-62. doi: 10.1002/bmc.994. [PMID: 18318015]
  • Yong Yook Lee, Sanghyun Lee, Jing Ling Jin, Hye Sook Yun-Choi. Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas. Archives of pharmacal research. 2003 Sep; 26(9):723-6. doi: 10.1007/bf02976681. [PMID: 14560920]
  • Y R Sun, X D Li, Y F Sun. [Determination of content of nodakenin in Notopterygium incisum ting from different source by HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2001 Nov; 26(11):737-8, 780. doi: ". [PMID: 12776343]
  • S Y Kang, K Y Lee, S H Sung, M J Park, Y C Kim. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. Journal of natural products. 2001 May; 64(5):683-5. doi: 10.1021/np000441w. [PMID: 11374978]
  • Q Xu, B M Liu. [Determination of nodakenin in Peucedanum]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2000 Dec; 25(12):731-2. doi: ". [PMID: 12525060]