Maltose (BioDeep_00000014974)
Main id: BioDeep_00000014323
Secondary id: BioDeep_00000000861, BioDeep_00000002642, BioDeep_00000014320, BioDeep_00000174485, BioDeep_00000400115, BioDeep_00000603057, BioDeep_00001867559
natural product PANOMIX_OTCML-2023 BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C12H22O11 (342.11620619999997)
中文名称: 麦芽糖浆, D(+)-纤维二糖, 4-O-ALPHA-D-吡喃半乳糖基-D-葡萄糖, 4-O-(α-D-半乳糖吡喃糖基)-D-半乳糖, 可溶性淀粉, 麦芽糖, D-纤维二糖, D-(+)-麦芽糖一水合物, 纤维二糖, D-(+)-纤维二糖
谱图信息:
最多检出来源 Viridiplantae(plant) 0.04%
分子结构信息
SMILES: C(C1C(C(C(C(O1)OC2C(OC(C(C2O)O)O)CO)O)O)O)O
InChI: InChI=1S/C12H22O11/c13-1-3-5(15)6(16)9(19)12(22-3)23-10-4(2-14)21-11(20)8(18)7(10)17/h3-20H,1-2H2
描述信息
A glycosylglucose consisting of two D-glucopyranose units connected by an alpha-(1->4)-linkage.
D000074385 - Food Ingredients > D005503 - Food Additives
D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents
A maltose that has beta-configuration at the reducing end anomeric centre.
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.050
D-(+)-Cellobiose is an endogenous metabolite.
D-(+)-Cellobiose is an endogenous metabolite.
Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.
Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.
同义名列表
数据库引用编号
83 个数据库交叉引用编号
- ChEBI: CHEBI:17306
- ChEBI: CHEBI:140774
- ChEBI: CHEBI:18147
- KEGG: C00208
- KEGG: C01971
- KEGGdrug: D00044
- KEGGdrug: D70315
- PubChem: 439186
- PubChem: 6255
- PubChem: 24207195
- PubChem: 294
- DrugBank: DB03323
- ChEMBL: CHEMBL1908365
- MeSH: Maltose
- CAS: 16984-36-4
- CAS: 69-79-4
- CAS: 120022-04-0
- CAS: 133-99-3
- CAS: 80446-85-1
- CAS: 27452-49-9
- CAS: 56907-30-3
- CAS: 29276-55-9
- CAS: 13360-52-6
- CAS: 9004-34-6
- CAS: 9005-84-9
- CAS: 528-50-7
- MoNA: CCMSLIB00000479714
- MoNA: CCMSLIB00005463588
- MoNA: CCMSLIB00005463612
- MoNA: CCMSLIB00005720566
- MoNA: CCMSLIB00005720873
- MoNA: MoNA038753
- MoNA: MoNA038467
- MoNA: MoNA037785
- MoNA: MoNA035883
- MoNA: MoNA035879
- MoNA: MoNA035878
- MoNA: MoNA035834
- MoNA: MoNA035833
- MoNA: MoNA035832
- MoNA: MoNA034815
- MoNA: MoNA034814
- MoNA: MoNA034813
- MoNA: MoNA033794
- MoNA: MoNA033793
- MoNA: MoNA033792
- MoNA: MoNA031918
- MoNA: MoNA031919
- MoNA: MoNA031916
- MoNA: EMBL-MCF_spec157891
- MoNA: EMBL-MCF_spec157634
- MoNA: EMBL-MCF_spec157601
- MoNA: EMBL-MCF_spec90159
- MoNA: FiehnHILIC001313
- MoNA: FiehnHILIC001312
- MoNA: FiehnHILIC000502
- MoNA: HMDB0000163_ms_ms_259
- MoNA: HMDB0000163_ms_ms_258
- MoNA: HMDB0000163_ms_ms_257
- MoNA: BML80908
- MoNA: BML80906
- MoNA: BML80905
- MetaboLights: MTBLC17306
- MetaboLights: MTBLC18147
- PubChem: 3508
- KNApSAcK: C00001140
- PDB-CCD: MAL
- PDB-CCD: N9S
- 3DMET: B04649
- NIKKAJI: J4.871B
- PubChem: 5072
- RefMet: Maltose
- medchemexpress: HY-N2325
- medchemexpress: HY-N2024
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-549
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-734
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-553
- KEGG: C00760
- PubChem: 4022
- KNApSAcK: 167580
- KNApSAcK: 17306
- KNApSAcK: 18147
- LOTUS: LTS0038046
分类词条
相关代谢途径
Reactome(9)
BioCyc(8)
代谢反应
222 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(16)
- glycogen degradation I:
maltose + maltotriose ⟶ β-D-glucose + maltotetraose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- sucrose biosynthesis II:
D-glucopyranose 6-phosphate ⟶ F6P
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
maltose + maltotriose ⟶ β-D-glucose + maltotetraose
- glycogen degradation I:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- glycogen degradation I:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycogen degradation I:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- starch degradation V:
α-D-glucose ⟶ β-D-glucose
- maltose degradation:
maltose + phosphate ⟶ β-D-glucose + β-D-glucose 1-phosphate
- starch degradation I:
H2O + maltose ⟶ D-glucopyranose
- starch degradation I:
H2O + maltose ⟶ D-glucopyranose
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(206)
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ an exposed unphosphorylated, (α-1,6)-branched malto-oligosaccharide tail on amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + a linear malto-oligosaccharide ⟶ a linear malto-oligosaccharide + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
ATP + H2O + a 6-phosphogluco-amylopectin ⟶ AMP + a 6-phosphogluco-3-phosphogluco-amylopectin + phosphate
- starch degradation II:
H2O + a 6-phosphogluco-3-phosphogluco-amylopectin ⟶ an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin + phosphate
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- starch degradation I:
H2O + maltose ⟶ D-glucopyranose
- starch degradation I:
H2O + maltose ⟶ D-glucopyranose
- starch degradation I:
H2O + maltose ⟶ D-glucopyranose
- starch degradation I:
H2O + maltose ⟶ D-glucopyranose
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- superpathway of sucrose and starch metabolism I (non-photosynthetic tissue):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- superpathway of sucrose and starch metabolism I (non-photosynthetic tissue):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- superpathway of sucrose and starch metabolism I (non-photosynthetic tissue):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- superpathway of sucrose and starch metabolism I (non-photosynthetic tissue):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
a (1,6)-α-D-glucosyl-(1,4)-α-glucan ⟶ amylopectin
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
95 个相关的物种来源信息
- 117272 - Amaranthus cruentus: 10.1111/J.1365-2621.1981.TB03018.X
- 3701 - Arabidopsis: LTS0038046
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: 10.3390/IJMS17091565
- 3702 - Arabidopsis thaliana: LTS0038046
- 4454 - Araceae: LTS0038046
- 84005 - Arbutus unedo: 10.1006/JFCA.1999.0868
- 13345 - Ardisia crenata: 10.3389/FMOLB.2021.683671
- 6656 - Arthropoda: LTS0038046
- 4890 - Ascomycota: LTS0038046
- 46090 - Atriplex calotheca: 10.1111/1365-3040.EP11572682
- 91061 - Bacilli: LTS0038046
- 2 - Bacteria: LTS0038046
- 381652 - Bolbostemma paniculatum: 10.1016/S0040-4039(00)85321-6
- 6658 - Branchiopoda: LTS0038046
- 3700 - Brassicaceae: LTS0038046
- 5475 - Candida: LTS0038046
- 5476 - Candida albicans: 10.1007/S11306-016-1134-2
- 5476 - Candida albicans: LTS0038046
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 20340 - Ceratonia siliqua: 10.1021/JF00071A015
- 3051 - Chlamydomonadaceae: LTS0038046
- 3052 - Chlamydomonas: LTS0038046
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0038046
- 3166 - Chlorophyceae: LTS0038046
- 3041 - Chlorophyta: LTS0038046
- 6668 - Daphnia: LTS0038046
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0038046
- 77658 - Daphniidae: LTS0038046
- 766764 - Debaryomycetaceae: LTS0038046
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 543 - Enterobacteriaceae: LTS0038046
- 33682 - Euglenozoa: LTS0038046
- 2759 - Eukaryota: LTS0038046
- 154990 - Euphorbia helioscopia: 10.1007/978-1-4614-0535-1_23
- 3803 - Fabaceae: LTS0038046
- 4751 - Fungi: LTS0038046
- 1236 - Gammaproteobacteria: LTS0038046
- 49827 - Glycyrrhiza glabra: 10.1093/JAOAC/67.4.764
- 4232 - Helianthus annuus: 10.1021/JF60197A017
- 3486 - Humulus lupulus: 10.1002/ELPS.200500714
- 5653 - Kinetoplastea: LTS0038046
- 126435 - Lantana camara: 10.1055/S-0028-1099554
- 649173 - Lantana strigocamara: 10.1055/S-0028-1099554
- 4469 - Lemna: LTS0038046
- 89585 - Lemna aequinoctialis: 10.1371/JOURNAL.PONE.0187622
- 89585 - Lemna aequinoctialis: LTS0038046
- 161103 - Lemna perpusilla: 10.1371/JOURNAL.PONE.0187622
- 4447 - Liliopsida: LTS0038046
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 264956 - Lotus filicaulis: 10.1111/J.1365-3040.2010.02266.X
- 34305 - Lotus japonicus:
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 3398 - Magnoliopsida: LTS0038046
- 3877 - Medicago: LTS0038046
- 3879 - Medicago sativa: 10.3389/FPLS.2017.01208
- 3879 - Medicago sativa: LTS0038046
- 50362 - Melanthiaceae: LTS0038046
- 33208 - Metazoa: LTS0038046
- 2511164 - Microchloropsis: 10.3389/FPLS.2020.00981
- 3498 - Morus alba L.: -
- 4054 - Panax ginseng: 10.1021/JF00093A051
- 44588 - Panax quinquefolius:
- 49669 - Paris: LTS0038046
- 83858 - Paris fargesii: 10.1016/J.JPROT.2019.02.003
- 83858 - Paris fargesii: LTS0038046
- 49666 - Paris polyphylla: 10.1016/J.JPROT.2019.02.003
- 49666 - Paris polyphylla: LTS0038046
- 3888 - Pisum sativum: 10.1080/10826079608006294
- 33090 - Plants: -
- 28511 - Pogostemon cablin: 10.1021/JF304466T
- 180039 - Psychotria punctata: 10.3389/FMOLB.2021.683671
- 4891 - Saccharomycetes: LTS0038046
- 590 - Salmonella: LTS0038046
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 28901 - Salmonella enterica: LTS0038046
- 90964 - Staphylococcaceae: LTS0038046
- 1279 - Staphylococcus: LTS0038046
- 1280 - Staphylococcus aureus: LTS0038046
- 35493 - Streptophyta: LTS0038046
- 1142 - Synechocystis: 10.1104/PP.108.129403
- 49541 - Tillandsia usneoides: 10.1021/NP50122A023
- 58023 - Tracheophyta: LTS0038046
- 5690 - Trypanosoma: LTS0038046
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0038046
- 5654 - Trypanosomatidae: LTS0038046
- 33090 - Viridiplantae: LTS0038046
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yazhe Liang, Wangli Ji, Xianhua Sun, Zhenzhen Hao, Xiaolu Wang, Yuan Wang, Wei Zhang, Yingguo Bai, Xing Qin, Huiying Luo, Bin Yao, Xiaoyun Su, Huoqing Huang. Production of cello-oligosaccharides from corncob residue by degradation-synthesis reactions.
Applied microbiology and biotechnology.
2024 Dec; 108(1):13. doi:
10.1007/s00253-023-12832-6
. [PMID: 38170309] - Bianca Oliva, Josman Velasco, Gabriela Leila Berto, Igor Polikarpov, Leandro Cristante de Oliveira, Fernando Segato. Recombinant cellobiose dehydrogenase from Thermothelomyces thermophilus: Its functional characterization and applicability in cellobionic acid production.
Bioresource technology.
2024 Jun; 402(?):130763. doi:
10.1016/j.biortech.2024.130763
. [PMID: 38692377] - Daguan Nong, Zachary K Haviland, Nerya Zexer, Sarah A Pfaff, Daniel J Cosgrove, Ming Tien, Charles T Anderson, William O Hancock. Single-molecule tracking reveals dual front door/back door inhibition of Cel7A cellulase by its product cellobiose.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Apr; 121(18):e2322567121. doi:
10.1073/pnas.2322567121
. [PMID: 38648472] - Frédéric Kerff, Samuel Jourdan, Isolde M Francis, Benoit Deflandre, Silvia Ribeiro Monteiro, Nudzejma Stulanovic, Rosemary Loria, Sébastien Rigali. Common scab disease: structural basis of elicitor recognition in pathogenic Streptomyces species.
Microbiology spectrum.
2023 Dec; 11(6):e0197523. doi:
10.1128/spectrum.01975-23
. [PMID: 37791952] - Ake-Kavitch Siriatcharanon, Sawannee Sutheeworapong, Sirilak Baramee, Rattiya Waeonukul, Patthra Pason, Akihiko Kosugi, Ayaka Uke, Khanok Ratanakhanokchai, Chakrit Tachaapaikoon. Discovery of a Novel Cellobiose Dehydrogenase from Cellulomonas palmilytica EW123 and Its Sugar Acids Production.
Journal of microbiology and biotechnology.
2023 Oct; 34(2):1-10. doi:
10.4014/jmb.2307.07004
. [PMID: 38044713] - Pamela B Besada-Lombana, Wilfred Chen, Nancy A Da Silva. An extracellular glucose sensor for substrate-dependent secretion and display of cellulose-degrading enzymes.
Biotechnology and bioengineering.
2023 Sep; ?(?):. doi:
10.1002/bit.28549
. [PMID: 37749915] - Xinyue Zhai, Xinwei Tao, Yuqian Wu, Kesun Jin, Huaping Tan, Tianle Zhou, Yong Chen. Injectable and Self-Adaptive Gel Scaffold Based on Heparin Microspheres for Adipogenesis of Human Adipose-Derived Stem Cells.
Biomacromolecules.
2023 Sep; ?(?):. doi:
10.1021/acs.biomac.3c00348
. [PMID: 37722066] - Yuang Wu, Yue Sun, Evelyne Richet, Zhifu Han, Jijie Chai. Structural basis for negative regulation of the Escherichia coli maltose system.
Nature communications.
2023 08; 14(1):4925. doi:
10.1038/s41467-023-40447-y
. [PMID: 37582800] - Patricia Benito, Javier Bellón, Rosa Porcel, Lynne Yenush, José M Mulet. The Biostimulant, Potassium Humate Ameliorates Abiotic Stress in Arabidopsis thaliana by Increasing Starch Availability.
International journal of molecular sciences.
2023 Jul; 24(15):. doi:
10.3390/ijms241512140
. [PMID: 37569516] - Xiao Guo, Yajing An, Fuping Lu, Fufeng Liu, Bo Wang. Efficient Secretory Production of Lytic Polysaccharide Monooxygenase BaLPMO10 and Its Application in Plant Biomass Conversion.
International journal of molecular sciences.
2023 Jun; 24(11):. doi:
10.3390/ijms24119710
. [PMID: 37298661] - Alizée Le Moigne, Florian Randegger, Anubhav Gupta, Owen L Petchey, Jakob Pernthaler. Stochasticity causes high β-diversity and functional divergence of bacterial assemblages in closed systems.
Ecology.
2023 04; 104(4):e4005. doi:
10.1002/ecy.4005
. [PMID: 36807130] - Ayako Wada-Katsumata, Eduardo Hatano, Coby Schal. Gustatory polymorphism mediates a new adaptive courtship strategy.
Proceedings. Biological sciences.
2023 03; 290(1995):20222337. doi:
10.1098/rspb.2022.2337
. [PMID: 36987637] - Samantha McPherson, Ayako Wada-Katsumata, Jules Silverman, Coby Schal. Glucose- and disaccharide-containing baits impede secondary mortality in glucose-averse German cockroaches.
Journal of economic entomology.
2023 Mar; ?(?):. doi:
10.1093/jee/toad030
. [PMID: 36888567] - Jiuxing He, Meng Kong, Yuanchao Qian, Min Gong, Guohua Lv, Jiqing Song. Cellobiose elicits immunity in lettuce conferring resistance to Botrytis cinerea.
Journal of experimental botany.
2023 Feb; 74(3):1022-1038. doi:
10.1093/jxb/erac448
. [PMID: 36385320] - Liangke Chen, Xiangbai Dong, Huifang Yang, Yaru Chai, Yan Xia, Lihong Tian, Le Qing Qu. Cytosolic disproportionating enzyme2 is essential for pollen germination and pollen tube elongation in rice.
Plant physiology.
2023 01; 191(1):96-109. doi:
10.1093/plphys/kiac496
. [PMID: 36282529] - Tengfei Liu, Md Abu Kawochar, Shengxuan Liu, Yunxia Cheng, Shahnewaz Begum, Enshuang Wang, Tingting Zhou, Tiantian Liu, Xingkui Cai, Botao Song. Suppression of the tonoplast sugar transporter, StTST3.1, affects transitory starch turnover and plant growth in potato.
The Plant journal : for cell and molecular biology.
2023 01; 113(2):342-356. doi:
10.1111/tpj.16050
. [PMID: 36444716] - Mikel Redin Hurtado, Ida Fischer, Matthias Laska. Is sugar as sweet to the palate as seeds are appetizing to the belly? Taste responsiveness to five food-associated carbohydrates in zoo-housed white-faced sakis, Pithecia pithecia.
PloS one.
2023; 18(10):e0292175. doi:
10.1371/journal.pone.0292175
. [PMID: 37906563] - Sree Kavya Penneru, Moumita Saharay, Marimuthu Krishnan. CelS-Catalyzed Processive Cellulose Degradation and Cellobiose Extraction for the Production of Bioethanol.
Journal of chemical information and modeling.
2022 12; 62(24):6628-6638. doi:
10.1021/acs.jcim.2c00239
. [PMID: 35649216] - A Ruiz-Gayosso, I Rodríguez-Cruz, E Martínez-Barajas, P Coello. Phosphorylation of DPE2 at S786 partially regulates starch degradation.
Plant physiology and biochemistry : PPB.
2022 Dec; 193(?):70-77. doi:
10.1016/j.plaphy.2022.10.024
. [PMID: 36335878] - Avinash Kumar, Vinay Kumar Singh, Arvind M Kayastha. Molecular modeling, docking and dynamics studies of fenugreek (Trigonella foenum-graecum) α-amylase.
Journal of biomolecular structure & dynamics.
2022 Nov; ?(?):1-16. doi:
10.1080/07391102.2022.2144458
. [PMID: 36369783] - Lianyu Zhou, Lu Jiao, Jiasheng Ju, Xuelan Ma. Effect of Sodium Selenite on the Metabolite Profile of Epichloë sp. Mycelia from Festuca sinensis in Solid Culture.
Biological trace element research.
2022 Nov; 200(11):4865-4879. doi:
10.1007/s12011-021-03054-w
. [PMID: 34973128] - Michail Michailidis, Vaia Styliani Titeli, Evangelos Karagiannis, Kyriaki Feidaki, Ioannis Ganopoulos, Georgia Tanou, Anagnostis Argiriou, Athanassios Molassiotis. Tissue-specific transcriptional analysis outlines calcium-induced core metabolic changes in sweet cherry fruit.
Plant physiology and biochemistry : PPB.
2022 Oct; 189(?):139-152. doi:
10.1016/j.plaphy.2022.08.022
. [PMID: 36087439] - Yijun Liu, Yuhan Zeng, Yixin Liu, Xiaoya Wang, Yuhuan Chen, Dion Lepp, Rong Tsao, Tsuyoshi Sadakiyo, Hua Zhang, Yoshinori Mine. Regulatory Effect of Isomaltodextrin on a High-Fat Diet Mouse Model with LPS-Induced Low-Grade Chronic Inflammation.
Journal of agricultural and food chemistry.
2022 Sep; 70(36):11258-11273. doi:
10.1021/acs.jafc.2c03391
. [PMID: 36041062] - Yangyang Geng, Shixin Zhang, Ningxian Yang, Likang Qin. Whole-Genome Sequencing and Comparative Genomics Analysis of the Wild Edible Mushroom (Gomphus purpuraceus) Provide Insights into Its Potential Food Application and Artificial Domestication.
Genes.
2022 09; 13(9):. doi:
10.3390/genes13091628
. [PMID: 36140797] - Anshu Deewan, Jing-Jing Liu, Sujit Sadashiv Jagtap, Eun Ju Yun, Hanna Walukiewicz, Yong-Su Jin, Christopher V Rao. System analysis of Lipomyces starkeyi during growth on various plant-based sugars.
Applied microbiology and biotechnology.
2022 Sep; 106(17):5629-5642. doi:
10.1007/s00253-022-12084-w
. [PMID: 35906440] - Andrea Hoehnel, Jairo Salas García, Christine Coffey, Emanuele Zannini, Elke K Arendt. Comparative study of sugar extraction procedures for HPLC analysis and proposal of an ethanolic extraction method for plant-based high-protein ingredients.
Journal of the science of food and agriculture.
2022 Sep; 102(12):5055-5064. doi:
10.1002/jsfa.11204
. [PMID: 33709392] - Qiubin Huang, Huiping Liu, Juanmei Zhang, Shaowei Wang, Fengying Liu, Chengdie Li, Gang Wang. Production of extracellular amylase contributes to the colonization of Bacillus cereus 0-9 in wheat roots.
BMC microbiology.
2022 08; 22(1):205. doi:
10.1186/s12866-022-02618-7
. [PMID: 35996113] - Hassan Mohamed, Mohamed F Awad, Aabid Manzoor Shah, Beenish Sadaqat, Yusuf Nazir, Tahira Naz, Wu Yang, Yuanda Song. Coculturing of Mucor plumbeus and Bacillus subtilis bacterium as an efficient fermentation strategy to enhance fungal lipid and gamma-linolenic acid (GLA) production.
Scientific reports.
2022 07; 12(1):13111. doi:
10.1038/s41598-022-17442-2
. [PMID: 35908106] - Javad Hassanzadeh, Haider A J Al Lawati, Nafiseh Bagheri. On paper synthesis of multifunctional CeO2 nanoparticles@Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose.
Biosensors & bioelectronics.
2022 Jul; 207(?):114184. doi:
10.1016/j.bios.2022.114184
. [PMID: 35339073] - Victoria Pastor, Raquel Cervero, Jordi Gamir. The simultaneous perception of self- and non-self-danger signals potentiates plant innate immunity responses.
Planta.
2022 Jun; 256(1):10. doi:
10.1007/s00425-022-03918-y
. [PMID: 35697869] - Yaping Ma, Yaru Han, Xuerui Feng, Handong Gao, Bing Cao, Lihua Song. Genome-wide identification of BAM (β-amylase) gene family in jujube (Ziziphus jujuba Mill.) and expression in response to abiotic stress.
BMC genomics.
2022 Jun; 23(1):438. doi:
10.1186/s12864-022-08630-5
. [PMID: 35698031] - Xiangxiang Kong, Chunxia Li, Xiaodong Sun, Bing Niu, Dehua Guo, Yuan Jiang, Jielin Yang, Qin Chen. The maltose transporter subunit IICB of the phosphotransferase system: An important factor for biofilm formation of Cronobacter.
International journal of food microbiology.
2022 Jun; 370(?):109517. doi:
10.1016/j.ijfoodmicro.2021.109517
. [PMID: 35216827] - Felix Funk, Klaus Weber, Naja Nyffenegger, Jens-Alexander Fuchs, Amy Barton. Tissue biodistribution of intravenous iron-carbohydrate nanomedicines differs between preparations with varying physicochemical characteristics in an anemic rat model.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2022 May; 174(?):56-76. doi:
10.1016/j.ejpb.2022.03.006
. [PMID: 35337966] - Jiwei Zhang, Lye Meng Markillie, Hugh D Mitchell, Matthew J Gaffrey, Galya Orr, Jonathan S Schilling. Distinctive carbon repression effects in the carbohydrate-selective wood decay fungus Rhodonia placenta.
Fungal genetics and biology : FG & B.
2022 04; 159(?):103673. doi:
10.1016/j.fgb.2022.103673
. [PMID: 35150839] - Sarah Tassinari, Silvia Moreno, Hartmut Komber, Riccardo Carloni, Michela Cangiotti, Maria Francesca Ottaviani, Dietmar Appelhans. Synthesis and biological and physico-chemical characterization of glycodendrimers and oligopeptides for the treatment of systemic lupus erythematosus.
Nanoscale.
2022 Mar; 14(12):4654-4670. doi:
10.1039/d1nr06583a
. [PMID: 35262128] - Marta Acin-Albiac, Pasquale Filannino, Rossana Coda, Carlo Giuseppe Rizzello, Marco Gobbetti, Raffaella Di Cagno. How water-soluble saccharides drive the metabolism of lactic acid bacteria during fermentation of brewers' spent grain.
Microbial biotechnology.
2022 03; 15(3):915-930. doi:
10.1111/1751-7915.13846
. [PMID: 34132488] - Beibei Wei, Wei Xia, Lei Wang, Xuewei Jin, Weikang Yang, Deming Rao, Sheng Chen, Jing Wu. Diverse prebiotic effects of isomaltodextrins with different glycosidic linkages and molecular weights on human gut bacteria in vitro.
Carbohydrate polymers.
2022 Mar; 279(?):118986. doi:
10.1016/j.carbpol.2021.118986
. [PMID: 34980347] - Raquel López-Vilella, Silvia Lozano-Edo, Patricia Arenas Martín, Pablo Jover-Pastor, Meryem Ezzitouny, José Sorolla Romero, María Calvo Asensio, Julia Martínez-Solé, Borja Guerrero Cervera, José Carlos Sánchez Martínez, Víctor Donoso Trenado, Ignacio Sánchez-Lázaro, Luis Martinez Dolz, Luis Almenar Bonet. Impact of intravenous ferric carboxymaltose on heart failure with preserved and reduced ejection fraction.
ESC heart failure.
2022 02; 9(1):133-145. doi:
10.1002/ehf2.13753
. [PMID: 34964300] - Tomoya Goto, Tomoki Umeda, Shingo Hino, Tatsuya Morita, Naomichi Nishimura. Oral Intake of Slowly Digestible α-Glucan Such as Resistant Maltodextrin Leads to Increased Secretion of Glucagon-Like Peptide-2 in Rats and Helps Thicken Their Ileal Mucosae.
Journal of nutritional science and vitaminology.
2022; 68(2):104-111. doi:
10.3177/jnsv.68.104
. [PMID: 35491199] - Susanne Zibek, Gloria Soberón-Chávez. Overview on Glycosylated Lipids Produced by Bacteria and Fungi: Rhamno-, Sophoro-, Mannosylerythritol and Cellobiose Lipids.
Advances in biochemical engineering/biotechnology.
2022; 181(?):73-122. doi:
10.1007/10_2021_200
. [PMID: 35526186] - Benoit Deflandre, Nudzejma Stulanovic, Sören Planckaert, Sinaeda Anderssen, Beatrice Bonometti, Latifa Karim, Wouter Coppieters, Bart Devreese, Sébastien Rigali. The virulome of Streptomyces scabiei in response to cello-oligosaccharide elicitors.
Microbial genomics.
2022 01; 8(1):. doi:
10.1099/mgen.0.000760
. [PMID: 35040428] - Yanguo Xu, Min Yang, Rong Yin, Luotao Wang, Lifen Luo, Bianxian Zi, Haijiao Liu, Huichuan Huang, Yixiang Liu, Xiahong He, Shusheng Zhu. Autotoxin Rg1 Induces Degradation of Root Cell Walls and Aggravates Root Rot by Modifying the Rhizospheric Microbiome.
Microbiology spectrum.
2021 12; 9(3):e0167921. doi:
10.1128/spectrum.01679-21
. [PMID: 34908454] - Clara Kampik, Nian Liu, Mohamed Mroueh, Nathalie Franche, Romain Borne, Yann Denis, Séverine Gagnot, Chantal Tardif, Sandrine Pagès, Stéphanie Perret, Nicolas Vita, Pascale de Philip, Henri-Pierre Fierobe. Handling Several Sugars at a Time: a Case Study of Xyloglucan Utilization by Ruminiclostridium cellulolyticum.
mBio.
2021 12; 12(6):e0220621. doi:
10.1128/mbio.02206-21
. [PMID: 34749527] - Lourdes M DelRosso, Raffaele Ferri, Maida L Chen, Vidhi Kapoor, Richard P Allen, Maria Paola Mogavero, Daniel L Picchietti. Clinical efficacy and safety of intravenous ferric carboxymaltose treatment of pediatric restless legs syndrome and periodic limb movement disorder.
Sleep medicine.
2021 11; 87(?):114-118. doi:
10.1016/j.sleep.2021.08.030
. [PMID: 34562823] - Orhan Efe, Juan David Cala García, David Bruce Mount, Alice Marie Sheridan. Refractory hypophosphatemia following ferric carboxymaltose administration.
CEN case reports.
2021 11; 10(4):473-475. doi:
10.1007/s13730-021-00590-1
. [PMID: 33715107] - Sören Planckaert, Benoit Deflandre, Anne-Mare de Vries, Maarten Ameye, José C Martins, Kris Audenaert, Sébastien Rigali, Bart Devreese. Identification of Novel Rotihibin Analogues in Streptomyces scabies, Including Discovery of Its Biosynthetic Gene Cluster.
Microbiology spectrum.
2021 09; 9(1):e0057121. doi:
10.1128/spectrum.00571-21
. [PMID: 34346752] - Moupriya Nag, Dibyajit Lahiri, Sayantani Garai, Dipro Mukherjee, Rina Rani Ray. Regulation of β-amylase synthesis: a brief overview.
Molecular biology reports.
2021 Sep; 48(9):6503-6511. doi:
10.1007/s11033-021-06613-5
. [PMID: 34379288] - Amália Ferreira, Thiago Cahú, Jinchuan Xu, Andreas Blennow, Ranilson Bezerra. A highly stable raw starch digesting α-amylase from Nile tilapia (Oreochromis niloticus) viscera.
Food chemistry.
2021 Aug; 354(?):129513. doi:
10.1016/j.foodchem.2021.129513
. [PMID: 33765464] - Xia Wang, Yudie Fu, Meiyan Wang, Guoqing Niu. Synthetic Cellobiose-Inducible Regulatory Systems Allow Tight and Dynamic Controls of Gene Expression in Streptomyces.
ACS synthetic biology.
2021 08; 10(8):1956-1965. doi:
10.1021/acssynbio.1c00152
. [PMID: 34347449] - Sant-Rayn Pasricha, Michael Gilbertson, Tishya Indran, Ashwini Bennett, Matthew van Dam, Elizabeth Coughlin, Anouk Dev, Sanjeev Chunilal, Stephen Opat. Safety of rapid injection of undiluted ferric carboxymaltose to patients with iron-deficiency anaemia: a Phase II single-arm study.
Internal medicine journal.
2021 Aug; 51(8):1304-1311. doi:
10.1111/imj.15195
. [PMID: 33462917] - Parthasarathy Santhanam, Caroline Labbé, Luciano Gomes Fietto, Richard R Bélanger. A reassessment of flocculosin-mediated biocontrol activity of Pseudozyma flocculosa through CRISPR/Cas9 gene editing.
Fungal genetics and biology : FG & B.
2021 08; 153(?):103573. doi:
10.1016/j.fgb.2021.103573
. [PMID: 34029708] - Tao Tian, Guo-Ying Chen, Hao Zhang, Feng-Qing Yang. Personal Glucose Meter for α-Glucosidase Inhibitor Screening Based on the Hydrolysis of Maltose.
Molecules (Basel, Switzerland).
2021 Jul; 26(15):. doi:
10.3390/molecules26154638
. [PMID: 34361791] - Ewelina Rogozińska, Jahnavi Daru, Marios Nicolaides, Carmen Amezcua-Prieto, Susan Robinson, Rui Wang, Peter J Godolphin, Carlos Martín Saborido, Javier Zamora, Khalid S Khan, Shakila Thangaratinam. Iron preparations for women of reproductive age with iron deficiency anaemia in pregnancy (FRIDA): a systematic review and network meta-analysis.
The Lancet. Haematology.
2021 Jul; 8(7):e503-e512. doi:
10.1016/s2352-3026(21)00137-x
. [PMID: 34171281] - Lucia Cococcioni, Licia Pensabene, Sara El-Khouly, Sibongile Chadokufa, Sara McCartney, Efstratios Saliakellis, Fevronia Kiparissi, Osvaldo Borrelli. Ferric carboxymaltose treatment for iron deficiency anemia in children with inflammatory bowel disease: Efficacy and risk of hypophosphatemia.
Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.
2021 07; 53(7):830-834. doi:
10.1016/j.dld.2021.02.017
. [PMID: 33775573] - Sun-Ki Kim, Jordan Russell, Minseok Cha, Michael E Himmel, Yannick J Bomble, Janet Westpheling. Coexpression of a β-d-Xylosidase from Thermotoga maritima and a Family 10 Xylanase from Acidothermus cellulolyticus Significantly Improves the Xylan Degradation Activity of the Caldicellulosiruptor bescii Exoproteome.
Applied and environmental microbiology.
2021 06; 87(14):e0052421. doi:
10.1128/aem.00524-21
. [PMID: 33990300] - Daiki Tanaka, Ken-Ichiro Ohnishi, Seiya Watanabe, Satoru Suzuki. Isolation of cellulase-producing Microbulbifer sp. from marine teleost blackfish (Girella melanichthys) intestine and the enzyme characterization.
The Journal of general and applied microbiology.
2021 Jun; 67(2):47-53. doi:
10.2323/jgam.2020.05.001
. [PMID: 33250506] - Tina B Schreier, Brendan Fahy, Laure C David, Hamad Siddiqui, Roger Castells-Graells, Alison M Smith. Introduction of glucan synthase into the cytosol in wheat endosperm causes massive maltose accumulation and represses starch synthesis.
The Plant journal : for cell and molecular biology.
2021 06; 106(5):1431-1442. doi:
10.1111/tpj.15246
. [PMID: 33764607] - Hye Won Shin, Doo Yeon Go, Suk Woo Lee, Yoon Ji Choi, Eun Ji Ko, Hae Sun You, Yoo Kyung Jang. Comparative efficacy and safety of intravenous ferric carboxymaltose and iron sucrose for iron deficiency anemia in obstetric and gynecologic patients: A systematic review and meta-analysis.
Medicine.
2021 May; 100(20):e24571. doi:
10.1097/md.0000000000024571
. [PMID: 34011020] - Ai-Ping Pang, Haiyan Wang, Yongsheng Luo, Zihuayuan Yang, Zhiyu Liu, Zhao Wang, Bingzhi Li, Song Yang, Zhihua Zhou, Xiaolin Lu, Fu-Gen Wu, Zuhong Lu, Fengming Lin. Dissecting Cellular Function and Distribution of β-Glucosidases in Trichoderma reesei.
mBio.
2021 05; 12(3):. doi:
10.1128/mbio.03671-20
. [PMID: 33975944] - Kamyar Kalantar-Zadeh, Tomas Ganz, Henry Trumbo, Melvin H Seid, Lawrence T Goodnough, Michael A Levine. Parenteral iron therapy and phosphorus homeostasis: A review.
American journal of hematology.
2021 05; 96(5):606-616. doi:
10.1002/ajh.26100
. [PMID: 33471363] - Nadine Paßlack, Barbara Kohn, Wilfried Vahjen, Jürgen Zentek. Effects of dietary cellobiose on the intestinal microbiota and excretion of nitrogen metabolites in healthy adult dogs.
Journal of animal physiology and animal nutrition.
2021 May; 105(3):569-578. doi:
10.1111/jpn.13485
. [PMID: 33480132] - Benedikt Schaefer, Moritz Tobiasch, André Viveiros, Herbert Tilg, Nicholas A Kennedy, Myles Wolf, Heinz Zoller. Hypophosphataemia after treatment of iron deficiency with intravenous ferric carboxymaltose or iron isomaltoside-a systematic review and meta-analysis.
British journal of clinical pharmacology.
2021 05; 87(5):2256-2273. doi:
10.1111/bcp.14643
. [PMID: 33188534] - Luigi Cirillo, Chiara Somma, Marco Allinovi, Alfredo Bagalà, Giuseppe Ferro, Elio Di Marcantonio, Stefania Bellelli, Lorenzo Antonio Dallari, Piercarlo Ballo, Pietro Claudio Dattolo. Ferric carboxymaltose vs. ferrous sulfate for the treatment of anemia in advanced chronic kidney disease: an observational retrospective study and cost analysis.
Scientific reports.
2021 04; 11(1):7463. doi:
10.1038/s41598-021-86769-z
. [PMID: 33811227] - Alexander Dashwood, Cassandra Vale, Shaaheen Laher, Fiona Chui, Karen Hay, Yee Weng Wong. Hypophosphatemia Is Common After Intravenous Ferric Carboxymaltose Infusion Among Patients With Symptomatic Heart Failure With Reduced Ejection Fraction.
Journal of clinical pharmacology.
2021 04; 61(4):515-521. doi:
10.1002/jcph.1754
. [PMID: 33051909] - Apostolos Karavidas, Efstratios Troganis, George Lazaros, Despina Balta, Ioannis-Nektarios Karavidas, Eftihia Polyzogopoulou, John Parissis, Dimitrios Farmakis. Oral sucrosomial iron improves exercise capacity and quality of life in heart failure with reduced ejection fraction and iron deficiency: a non-randomized, open-label, proof-of-concept study.
European journal of heart failure.
2021 04; 23(4):593-597. doi:
10.1002/ejhf.2092
. [PMID: 33421230] - Xin Zhang, Zihan Wang, Ziyuan Liu, Bin Liu, Rufen Wu, Zhengbo Chen, Xia Zuo. New application of a traditional method: colorimetric sensor array for reducing sugars based on the in-situ formation of core-shell gold nanorod-coated silver nanoparticles by the traditional Tollens reaction.
Mikrochimica acta.
2021 03; 188(4):142. doi:
10.1007/s00604-021-04796-z
. [PMID: 33774720] - Moheddine Wehbie, Kenechi Kanayo Onyia, Florian Mahler, Aline Le Roy, Anais Deletraz, Ilham Bouchemal, Carolyn Vargas, Jonathan Oyebamiji Babalola, Cécile Breyton, Christine Ebel, Sandro Keller, Grégory Durand. Maltose-Based Fluorinated Surfactants for Membrane-Protein Extraction and Stabilization.
Langmuir : the ACS journal of surfaces and colloids.
2021 02; 37(6):2111-2122. doi:
10.1021/acs.langmuir.0c03214
. [PMID: 33539092] - Lourdes M DelRosso, Daniel L Picchietti, Raffaele Ferri. Comparison between oral ferrous sulfate and intravenous ferric carboxymaltose in children with restless sleep disorder.
Sleep.
2021 02; 44(2):. doi:
10.1093/sleep/zsaa155
. [PMID: 32840615] - Lorenzo Bertani, Domenico Tricò, Federico Zanzi, Giovanni Baiano Svizzero, Francesca Coppini, Nicola de Bortoli, Massimo Bellini, Luca Antonioli, Corrado Blandizzi, Santino Marchi. Oral Sucrosomial Iron Is as Effective as Intravenous Ferric Carboxy-Maltose in Treating Anemia in Patients with Ulcerative Colitis.
Nutrients.
2021 Feb; 13(2):. doi:
10.3390/nu13020608
. [PMID: 33673371] - Yaling Lu, Xiangping Wu, Lei Yuan, Yingdi Li, Penghui Wang, Jianna Yu, Pingfang Tian, Wenjie Liu. A rapid liquid chromatography-electrospray ionization-ion mobility spectrometry method for monitoring nine representative metabolites in the seedlings of cucumber and wheat.
Journal of separation science.
2021 Feb; 44(3):709-716. doi:
10.1002/jssc.202000811
. [PMID: 33245598] - Adonice Khoury, Kaley A Pagan, Michelle Z Farland. Ferric Maltol: A New Oral Iron Formulation for the Treatment of Iron Deficiency in Adults.
The Annals of pharmacotherapy.
2021 02; 55(2):222-229. doi:
10.1177/1060028020941014
. [PMID: 32633548] - Seiko Ito, Eiko Arai. Improvement of gluten-free steamed bread quality by partial substitution of rice flour with powder of Apios americana tuber.
Food chemistry.
2021 Feb; 337(?):127977. doi:
10.1016/j.foodchem.2020.127977
. [PMID: 32919271] - Shangshang Sun, Xinlei Wei, Xigui Zhou, Chun You. Construction of an Artificial In Vitro Synthetic Enzymatic Platform for Upgrading Low-Cost Starch to Value-Added Disaccharides.
Journal of agricultural and food chemistry.
2021 Jan; 69(1):302-314. doi:
10.1021/acs.jafc.0c06936
. [PMID: 33371670] - Piotr Ponikowski, Bridget-Anne Kirwan, Stefan D Anker, Theresa McDonagh, Maria Dorobantu, Jarosław Drozdz, Vincent Fabien, Gerasimos Filippatos, Udo Michael Göhring, Andre Keren, Irakli Khintibidze, Hans Kragten, Felipe A Martinez, Marco Metra, Davor Milicic, José C Nicolau, Marcus Ohlsson, Alexander Parkhomenko, Domingo A Pascual-Figal, Frank Ruschitzka, David Sim, Hadi Skouri, Peter van der Meer, Basil S Lewis, Josep Comin-Colet, Stephan von Haehling, Alain Cohen-Solal, Nicolas Danchin, Wolfram Doehner, Henry J Dargie, Michael Motro, Javed Butler, Tim Friede, Klaus H Jensen, Stuart Pocock, Ewa A Jankowska. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial.
Lancet (London, England).
2020 12; 396(10266):1895-1904. doi:
10.1016/s0140-6736(20)32339-4
. [PMID: 33197395] - Chih-Hao Huang, Tzu-Ling Huang, Yu-Chang Liu, Ting-Chieh Chen, Shih-Ming Lin, Shyh-Yu Shaw, Ching-Chun Chang. Overexpression of a multifunctional β-glucosidase gene from thermophilic archaeon Sulfolobus solfataricus in transgenic tobacco could facilitate glucose release and its use as a reporter.
Transgenic research.
2020 12; 29(5-6):511-527. doi:
10.1007/s11248-020-00212-z
. [PMID: 32776308] - Wendy Schijns, Abel Boerboom, Margot de Bruyn Kops, Christel de Raaff, Bart van Wagensveld, Frits J Berends, Ignace M C Janssen, Cees J H M van Laarhoven, Hans de Boer, Edo O Aarts. A randomized controlled trial comparing oral and intravenous iron supplementation after Roux-en-Y gastric bypass surgery.
Clinical nutrition (Edinburgh, Scotland).
2020 12; 39(12):3779-3785. doi:
10.1016/j.clnu.2020.04.010
. [PMID: 32402684] - Rebecca Frazier, Alexander Hodakowski, Xuan Cai, Jungwha Lee, Anaadriana Zakarija, Brady Stein, Valentin David, Myles Wolf, Tamara Isakova, Rupal Mehta. Effects of ferric carboxymaltose on markers of mineral and bone metabolism: A single-center prospective observational study of women with iron deficiency.
Bone.
2020 12; 141(?):115559. doi:
10.1016/j.bone.2020.115559
. [PMID: 32730929] - Laura Gobbi, Giuseppe Scaparrotta, Matteo Rigato, Leda Cattarin, Laila Qassim, Gianni Carraro, Barbara Rossi, Lorenzo A Calò. Intravenous ferric carboxymaltose for iron deficiency anemia in dialysis patients: Effect of a new protocol adopted for a hemodialysis limited assistance center.
Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy.
2020 Dec; 24(6):642-647. doi:
10.1111/1744-9987.13488
. [PMID: 32154642] - Eun Yeong Jang, Ki-Bae Hong, Yeok Boo Chang, Jungcheul Shin, Eun Young Jung, Kyungae Jo, Hyung Joo Suh. In Vitro Prebiotic Effects of Malto-Oligosaccharides Containing Water-Soluble Dietary Fiber.
Molecules (Basel, Switzerland).
2020 Nov; 25(21):. doi:
10.3390/molecules25215201
. [PMID: 33182247] - Shashi Kant, Partha Haldar, Sumit Malhotra, Ravneet Kaur, Ramashankar Rath, Olivia Marie Jacob. Intravenous ferric carboxymaltose rapidly increases haemoglobin and serum ferritin among pregnant females with moderate-to-severe anaemia: A single-arm, open-label trial.
The National medical journal of India.
2020 Nov; 33(6):324-328. doi:
10.4103/0970-258x.321145
. [PMID: 34341207] - Hea Ree Park, Su Jung Choi, Eun Yeon Joo, Richard P Allen. Patient characteristics predicting responses to intravenous ferric carboxymaltose treatment of restless legs syndrome.
Sleep medicine.
2020 11; 75(?):81-87. doi:
10.1016/j.sleep.2020.02.027
. [PMID: 32853922] - Hidetomo Kikuchi, Nana Toyoda, Satoko Ezawa, Shiori Yoshida, Yasuhide Hibino, Katsuyoshi Sunaga. Effects of hot‑water extracts from 26 herbs on α‑glucosidase activity.
Molecular medicine reports.
2020 Oct; 22(4):3525-3532. doi:
10.3892/mmr.2020.11397
. [PMID: 32945423] - Javier Jacob, Òscar Miró, Carles Ferre, Carmen Borraz-Ordás, Guillermo Llopis-García, Rosa Comabella, José María Fernández-Cañadas, Amparo Mercado, Alex Roset, Fernando Richard-Espiga, Amparo Valero-Domènech, José Luis Martínez-Gimeno, Francisco Javier Martín-Sánchez, Pere Llorens, Pablo Berrocal-Gil, María José Pérez-Durá, José María Álvarez-Pérez, Pilar López-Díez, Pablo Herrero-Puente, Josep Comín-Colet. Iron deficiency and safety of ferric carboxymaltose in patients with acute heart failure. AHF-ID study.
International journal of clinical practice.
2020 Oct; 74(10):e13584. doi:
10.1111/ijcp.13584
. [PMID: 32533907] - Lan Liu, Jian-Yu Jiao, Bao-Zhu Fang, Ai-Ping Lv, Yu-Zhen Ming, Meng-Meng Li, Nimaichand Salam, Wen-Jun Li. Isolation of Clostridium from Yunnan-Tibet hot springs and description of Clostridium thermarum sp. nov. with lignocellulosic ethanol production.
Systematic and applied microbiology.
2020 Sep; 43(5):126104. doi:
10.1016/j.syapm.2020.126104
. [PMID: 32847779] - May Thin Kyu, Shunsuke Nishio, Koki Noda, Bay Dar, San San Aye, Tsukasa Matsuda. Predominant secretion of cellobiohydrolases and endo-β-1,4-glucanases in nutrient-limited medium by Aspergillus spp. isolated from subtropical field.
Journal of biochemistry.
2020 Sep; 168(3):243-256. doi:
10.1093/jb/mvaa049
. [PMID: 32330257] - Yuqi Yang, Yajun Ma, Xiuting Hu, Steve W Cui, Tao Zhang, Ming Miao. Reuteransucrase-catalytic kinetic modeling and functional characteristics for novel prebiotic gluco-oligomers.
Food & function.
2020 Aug; 11(8):7037-7047. doi:
10.1039/d0fo00225a
. [PMID: 32812985] - Ingvar R Möller, Patrick S Merkle, Dionisie Calugareanu, Gerard Comamala, Solveig Gaarde Schmidt, Claus J Loland, Kasper D Rand. Probing the conformational impact of detergents on the integral membrane protein LeuT by global HDX-MS.
Journal of proteomics.
2020 08; 225(?):103845. doi:
10.1016/j.jprot.2020.103845
. [PMID: 32480080] - Nathalie Dautin, Manuela Argentini, Niloofar Mohiman, Cécile Labarre, David Cornu, Laila Sago, Mohamed Chami, Christiane Dietrich, Célia de Sousa d'Auria, Christine Houssin, Muriel Masi, Christophe Salmeron, Nicolas Bayan. Role of the unique, non-essential phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) in Corynebacterium glutamicum.
Microbiology (Reading, England).
2020 08; 166(8):759-776. doi:
10.1099/mic.0.000937
. [PMID: 32490790] - Nadine Paßlack, Wilfried Vahjen, Jürgen Zentek. Impact of Dietary Cellobiose on the Fecal Microbiota of Horses.
Journal of equine veterinary science.
2020 08; 91(?):103106. doi:
10.1016/j.jevs.2020.103106
. [PMID: 32684251] - Dan Liu, Yisong Liu, Duoduo Zhang, Xiaoting Chen, Qian Liu, Bentao Xiong, Lihui Zhang, Linfang Wei, Yifan Wang, Hao Fang, Johannes Liesche, Yahong Wei, N Louise Glass, Zhiqi Hao, Shaolin Chen. Quantitative Proteome Profiling Reveals Cellobiose-Dependent Protein Processing and Export Pathways for the Lignocellulolytic Response in Neurospora crassa.
Applied and environmental microbiology.
2020 07; 86(15):. doi:
10.1128/aem.00653-20
. [PMID: 32471912] - I E Emrich, F Lizzi, J D Siegel, S Seiler-Mussler, C Ukena, D Kaddu-Mulindwa, R D'Amelio, S Wagenpfeil, V M Brandenburg, M Böhm, D Fliser, G H Heine. Hypophosphatemia after high-dose iron repletion with ferric carboxymaltose and ferric derisomaltose-the randomized controlled HOMe aFers study.
BMC medicine.
2020 07; 18(1):178. doi:
10.1186/s12916-020-01643-5
. [PMID: 32654663] - Manuela Schoeb, Andrea Räss, Nicola Frei, Stefan Aczél, Michael Brändle, Stefan Bilz. High Risk of Hypophosphatemia in Patients with Previous Bariatric Surgery Receiving Ferric Carboxymaltose: A Prospective Cohort Study.
Obesity surgery.
2020 07; 30(7):2659-2666. doi:
10.1007/s11695-020-04544-x
. [PMID: 32221822] - Wendy Fang, Rachel Kenny, Qurat-Ul-Ain Rizvi, Lawrence P McMahon, Mayur Garg. Hypophosphataemia after ferric carboxymaltose is unrelated to symptoms, intestinal inflammation or vitamin D status.
BMC gastroenterology.
2020 Jun; 20(1):183. doi:
10.1186/s12876-020-01298-9
. [PMID: 32522150] - Xiangjun Zhou, Kun Jiang, Haijun Luo, Cheng Wu, Weimin Yu, Fan Cheng. Novel lncRNA XLOC_032768 alleviates cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells through TNF-α.
International immunopharmacology.
2020 Jun; 83(?):106472. doi:
10.1016/j.intimp.2020.106472
. [PMID: 32278129] - Michael Brysch-Herzberg, Marizeth Groenewald, Dénes Dlauchy, Martin Seidel, Gábor Péter. Hyphopichia lachancei, f.a., sp. nov., a yeast species from diverse origins.
Antonie van Leeuwenhoek.
2020 Jun; 113(6):773-778. doi:
10.1007/s10482-020-01387-5
. [PMID: 32086682] - Betty M Luan-Erfe, Meltem Yilmaz, BobbieJean Sweitzer. Preoperative Intravenous Iron and Erythropoietin to Treat Severe Anemia in Patient With Stage 4 Kidney Disease Before Oncologic Surgery: A Case Report.
A&A practice.
2020 Jun; 14(8):e01234. doi:
10.1213/xaa.0000000000001234
. [PMID: 32496428] - Dylan T Wilburn, Steven B Machek, Thomas D Cardaci, Paul S Hwang, Darryn S Willoughby. Acute Maltodextrin Supplementation During Resistance Exercise.
Journal of sports science & medicine.
2020 06; 19(2):282-288. doi:
. [PMID: 32390721]
- Peter Santer, Anne McGahey, Matthew C Frise, Nayia Petousi, Nick P Talbot, Richard Baskerville, Mona Bafadhel, Annabel H Nickol, Peter A Robbins. Intravenous iron and chronic obstructive pulmonary disease: a randomised controlled trial.
BMJ open respiratory research.
2020 06; 7(1):. doi:
10.1136/bmjresp-2020-000577
. [PMID: 32565444] - Ching-Yi Cheng, Ashanul Haque, Ming-Fa Hsieh, Syed Imran Hassan, Md Serajul Haque Faizi, Necmi Dege, Muhammad S Khan. 1,4-Disubstituted 1H-1,2,3-Triazoles for Renal Diseases: Studies of Viability, Anti-Inflammatory, and Antioxidant Activities.
International journal of molecular sciences.
2020 May; 21(11):. doi:
10.3390/ijms21113823
. [PMID: 32481556]