Cellobiose (BioDeep_00000014320)

Main id: BioDeep_00000014974

 

human metabolite PANOMIX_OTCML-2023 BioNovoGene_Lab2019 natural product


代谢物信息卡片


(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R,6R)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxane-3,4,5-triol

化学式: C12H22O11 (342.1162)
中文名称: D(+)-纤维二糖, 纤维二糖, D-(+)-纤维二糖
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(C1C(C(C(C(O1)OC2C(OC(C(C2O)O)O)CO)O)O)O)O
InChI: InChI=1S/C12H22O11/c13-1-3-5(15)6(16)9(19)12(22-3)23-10-4(2-14)21-11(20)8(18)7(10)17/h3-20H,1-2H2/t3-,4-,5-,6+,7-,8-,9-,10-,11-,12+/m1/s1

描述信息

Cellobiose, also known as GLCB1-4GLCB or cellose, is a disaccharide. It is also classified as a reducing sugar. In terms of its chemical structure, it is derived from the condensation of a pair beta-glucose molecules creating a beta (1‚Üí4) bond. It belongs to the class of organic compounds known as O-glycosyl compounds. These are glycosides in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Cellobiose can be obtained by enzymatic hydrolysis of cellulose and cellulose-rich materials such as cotton, jute, or paper. Cellobiose is a plant metabolite found in flowering plants, conifers and other gymnosperms. Cellobiose can also be found in vertebrates that have consumed plant foods. It has been detected, but not quantified in, several different foods, such as okra, common chokecherries, cherry tomatoes, and welsh onions. Cellobiose can be used as an indicator carbohydrate for Crohns disease and malabsorption syndrome. Intestinal permeability to detect Crohns disease and malabsorption syndrome can be measured by the sugar absorption test. This test is based on determining the ratio of the urinary excretion of a large (a disaccharide such as cellobiose) and a small carbohydrate (a monosaccharide such as lactulose or rhamnose) after oral administration. Patients with Crohns disease or with ulcerative colitis have increased permeability indices in comparison to healthy controls (PMID: 15546811).
Cellobiose is a disaccharide consisting of two glucose units in a beta (1-4) glycosidic linkage. It is a microbial breakdown product from plant material (cellulose). It may be found in some food products (vegetables, fruits, corn syrups, etc.).
D-(+)-Cellobiose is an endogenous metabolite.
D-(+)-Cellobiose is an endogenous metabolite.

同义名列表

42 个代谢物同义名

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R,6R)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxane-3,4,5-triol; 4-beta-delta-Glucopyranosyl-delta-glucopyranose; 4-O-beta-D-Glucopyranosyl-beta-D-glucopyranose; 1-beta-D-Glucopyranosyl-4-beta-D-glucopyranose; 4-O-beta-delta-Glucopyranosyl-delta-glucose; 4 O beta D Glucopyranosyl D glucopyranose; 4-O-beta-D-Glucopyranosyl-D-glucopyranose; 4-O-Β-D-glucopyranosyl-β-D-glucopyranose; delta-Glucosyl-beta-(1->4)-delta-glucose; 1-Β-D-glucopyranosyl-4-β-D-glucopyranose; 4-O-b-D-Glucopyranosyl-b-D-glucopyranose; 1-b-D-Glucopyranosyl-4-b-D-glucopyranose; 4-beta-D-Glucopyranosyl-D-glucopyranose; delta-Glucosyl-beta-(1-4)-delta-glucose; 4-(beta-delta-Glucosido)-delta-glucose; beta-D-Glucosyl-(1->4)-beta-D-glucose; 4-O-beta-D-Glucopyranosyl-D-glucose; 4-(b-delta-Glucosido)-delta-glucose; D-Glucosyl-beta-(1->4)-D-glucose; 4-O-b-D-Glucopyranosyl-D-glucose; Β-D-glucosyl-(1->4)-β-D-glucose; b-D-Glucosyl-(1->4)-b-D-glucose; D-Glucosyl-beta-(1-4)-D-glucose; 4-(beta-D-Glucosido)-D-glucose; beta-D-GLCP-(1->4)-beta-D-GLCP; D-Glucosyl-b-(1->4)-D-glucose; beta-D-GLC-(1->4)-beta-D-GLC; 4-(b-D-Glucosido)-D-glucose; Β-D-GLCP-(1->4)-β-D-GLCP; b-D-GLCP-(1->4)-b-D-GLCP; Β-D-GLC-(1->4)-β-D-GLC; b-D-GLC-(1->4)-b-D-GLC; delta-(+)-Cellobiose; Glcbeta1-4glcbeta; D-(+)-Cellobiose; delta-Cellobiose; D-Cellobiose; b-Cellobiose; Β-cellobiose; GLCB1-4GLCB; Cellobiose; Cellose



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(1)

代谢反应

34 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(6)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(28)

  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ an exposed unphosphorylated, (α-1,6)-branched malto-oligosaccharide tail on amylopectin + maltose
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • starch degradation II: a glucan + maltotriose ⟶ D-glucopyranose + a glucan
  • xyloglucan biosynthesis: UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

47 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Yazhe Liang, Wangli Ji, Xianhua Sun, Zhenzhen Hao, Xiaolu Wang, Yuan Wang, Wei Zhang, Yingguo Bai, Xing Qin, Huiying Luo, Bin Yao, Xiaoyun Su, Huoqing Huang. Production of cello-oligosaccharides from corncob residue by degradation-synthesis reactions. Applied microbiology and biotechnology. 2024 Dec; 108(1):13. doi: 10.1007/s00253-023-12832-6. [PMID: 38170309]
  • Bianca Oliva, Josman Velasco, Gabriela Leila Berto, Igor Polikarpov, Leandro Cristante de Oliveira, Fernando Segato. Recombinant cellobiose dehydrogenase from Thermothelomyces thermophilus: Its functional characterization and applicability in cellobionic acid production. Bioresource technology. 2024 Jun; 402(?):130763. doi: 10.1016/j.biortech.2024.130763. [PMID: 38692377]
  • Daguan Nong, Zachary K Haviland, Nerya Zexer, Sarah A Pfaff, Daniel J Cosgrove, Ming Tien, Charles T Anderson, William O Hancock. Single-molecule tracking reveals dual front door/back door inhibition of Cel7A cellulase by its product cellobiose. Proceedings of the National Academy of Sciences of the United States of America. 2024 Apr; 121(18):e2322567121. doi: 10.1073/pnas.2322567121. [PMID: 38648472]
  • Frédéric Kerff, Samuel Jourdan, Isolde M Francis, Benoit Deflandre, Silvia Ribeiro Monteiro, Nudzejma Stulanovic, Rosemary Loria, Sébastien Rigali. Common scab disease: structural basis of elicitor recognition in pathogenic Streptomyces species. Microbiology spectrum. 2023 Dec; 11(6):e0197523. doi: 10.1128/spectrum.01975-23. [PMID: 37791952]
  • Ake-Kavitch Siriatcharanon, Sawannee Sutheeworapong, Sirilak Baramee, Rattiya Waeonukul, Patthra Pason, Akihiko Kosugi, Ayaka Uke, Khanok Ratanakhanokchai, Chakrit Tachaapaikoon. Discovery of a Novel Cellobiose Dehydrogenase from Cellulomonas palmilytica EW123 and Its Sugar Acids Production. Journal of microbiology and biotechnology. 2023 Oct; 34(2):1-10. doi: 10.4014/jmb.2307.07004. [PMID: 38044713]
  • Pamela B Besada-Lombana, Wilfred Chen, Nancy A Da Silva. An extracellular glucose sensor for substrate-dependent secretion and display of cellulose-degrading enzymes. Biotechnology and bioengineering. 2023 Sep; ?(?):. doi: 10.1002/bit.28549. [PMID: 37749915]
  • Xiao Guo, Yajing An, Fuping Lu, Fufeng Liu, Bo Wang. Efficient Secretory Production of Lytic Polysaccharide Monooxygenase BaLPMO10 and Its Application in Plant Biomass Conversion. International journal of molecular sciences. 2023 Jun; 24(11):. doi: 10.3390/ijms24119710. [PMID: 37298661]
  • Alizée Le Moigne, Florian Randegger, Anubhav Gupta, Owen L Petchey, Jakob Pernthaler. Stochasticity causes high β-diversity and functional divergence of bacterial assemblages in closed systems. Ecology. 2023 04; 104(4):e4005. doi: 10.1002/ecy.4005. [PMID: 36807130]
  • Jiuxing He, Meng Kong, Yuanchao Qian, Min Gong, Guohua Lv, Jiqing Song. Cellobiose elicits immunity in lettuce conferring resistance to Botrytis cinerea. Journal of experimental botany. 2023 Feb; 74(3):1022-1038. doi: 10.1093/jxb/erac448. [PMID: 36385320]
  • Sree Kavya Penneru, Moumita Saharay, Marimuthu Krishnan. CelS-Catalyzed Processive Cellulose Degradation and Cellobiose Extraction for the Production of Bioethanol. Journal of chemical information and modeling. 2022 12; 62(24):6628-6638. doi: 10.1021/acs.jcim.2c00239. [PMID: 35649216]
  • Lianyu Zhou, Lu Jiao, Jiasheng Ju, Xuelan Ma. Effect of Sodium Selenite on the Metabolite Profile of Epichloë sp. Mycelia from Festuca sinensis in Solid Culture. Biological trace element research. 2022 Nov; 200(11):4865-4879. doi: 10.1007/s12011-021-03054-w. [PMID: 34973128]
  • Anshu Deewan, Jing-Jing Liu, Sujit Sadashiv Jagtap, Eun Ju Yun, Hanna Walukiewicz, Yong-Su Jin, Christopher V Rao. System analysis of Lipomyces starkeyi during growth on various plant-based sugars. Applied microbiology and biotechnology. 2022 Sep; 106(17):5629-5642. doi: 10.1007/s00253-022-12084-w. [PMID: 35906440]
  • Hassan Mohamed, Mohamed F Awad, Aabid Manzoor Shah, Beenish Sadaqat, Yusuf Nazir, Tahira Naz, Wu Yang, Yuanda Song. Coculturing of Mucor plumbeus and Bacillus subtilis bacterium as an efficient fermentation strategy to enhance fungal lipid and gamma-linolenic acid (GLA) production. Scientific reports. 2022 07; 12(1):13111. doi: 10.1038/s41598-022-17442-2. [PMID: 35908106]
  • Victoria Pastor, Raquel Cervero, Jordi Gamir. The simultaneous perception of self- and non-self-danger signals potentiates plant innate immunity responses. Planta. 2022 Jun; 256(1):10. doi: 10.1007/s00425-022-03918-y. [PMID: 35697869]
  • Jiwei Zhang, Lye Meng Markillie, Hugh D Mitchell, Matthew J Gaffrey, Galya Orr, Jonathan S Schilling. Distinctive carbon repression effects in the carbohydrate-selective wood decay fungus Rhodonia placenta. Fungal genetics and biology : FG & B. 2022 04; 159(?):103673. doi: 10.1016/j.fgb.2022.103673. [PMID: 35150839]
  • Marta Acin-Albiac, Pasquale Filannino, Rossana Coda, Carlo Giuseppe Rizzello, Marco Gobbetti, Raffaella Di Cagno. How water-soluble saccharides drive the metabolism of lactic acid bacteria during fermentation of brewers' spent grain. Microbial biotechnology. 2022 03; 15(3):915-930. doi: 10.1111/1751-7915.13846. [PMID: 34132488]
  • Susanne Zibek, Gloria Soberón-Chávez. Overview on Glycosylated Lipids Produced by Bacteria and Fungi: Rhamno-, Sophoro-, Mannosylerythritol and Cellobiose Lipids. Advances in biochemical engineering/biotechnology. 2022; 181(?):73-122. doi: 10.1007/10_2021_200. [PMID: 35526186]
  • Benoit Deflandre, Nudzejma Stulanovic, Sören Planckaert, Sinaeda Anderssen, Beatrice Bonometti, Latifa Karim, Wouter Coppieters, Bart Devreese, Sébastien Rigali. The virulome of Streptomyces scabiei in response to cello-oligosaccharide elicitors. Microbial genomics. 2022 01; 8(1):. doi: 10.1099/mgen.0.000760. [PMID: 35040428]
  • Yanguo Xu, Min Yang, Rong Yin, Luotao Wang, Lifen Luo, Bianxian Zi, Haijiao Liu, Huichuan Huang, Yixiang Liu, Xiahong He, Shusheng Zhu. Autotoxin Rg1 Induces Degradation of Root Cell Walls and Aggravates Root Rot by Modifying the Rhizospheric Microbiome. Microbiology spectrum. 2021 12; 9(3):e0167921. doi: 10.1128/spectrum.01679-21. [PMID: 34908454]
  • Clara Kampik, Nian Liu, Mohamed Mroueh, Nathalie Franche, Romain Borne, Yann Denis, Séverine Gagnot, Chantal Tardif, Sandrine Pagès, Stéphanie Perret, Nicolas Vita, Pascale de Philip, Henri-Pierre Fierobe. Handling Several Sugars at a Time: a Case Study of Xyloglucan Utilization by Ruminiclostridium cellulolyticum. mBio. 2021 12; 12(6):e0220621. doi: 10.1128/mbio.02206-21. [PMID: 34749527]
  • Sören Planckaert, Benoit Deflandre, Anne-Mare de Vries, Maarten Ameye, José C Martins, Kris Audenaert, Sébastien Rigali, Bart Devreese. Identification of Novel Rotihibin Analogues in Streptomyces scabies, Including Discovery of Its Biosynthetic Gene Cluster. Microbiology spectrum. 2021 09; 9(1):e0057121. doi: 10.1128/spectrum.00571-21. [PMID: 34346752]
  • Xia Wang, Yudie Fu, Meiyan Wang, Guoqing Niu. Synthetic Cellobiose-Inducible Regulatory Systems Allow Tight and Dynamic Controls of Gene Expression in Streptomyces. ACS synthetic biology. 2021 08; 10(8):1956-1965. doi: 10.1021/acssynbio.1c00152. [PMID: 34347449]
  • Parthasarathy Santhanam, Caroline Labbé, Luciano Gomes Fietto, Richard R Bélanger. A reassessment of flocculosin-mediated biocontrol activity of Pseudozyma flocculosa through CRISPR/Cas9 gene editing. Fungal genetics and biology : FG & B. 2021 08; 153(?):103573. doi: 10.1016/j.fgb.2021.103573. [PMID: 34029708]
  • Sun-Ki Kim, Jordan Russell, Minseok Cha, Michael E Himmel, Yannick J Bomble, Janet Westpheling. Coexpression of a β-d-Xylosidase from Thermotoga maritima and a Family 10 Xylanase from Acidothermus cellulolyticus Significantly Improves the Xylan Degradation Activity of the Caldicellulosiruptor bescii Exoproteome. Applied and environmental microbiology. 2021 06; 87(14):e0052421. doi: 10.1128/aem.00524-21. [PMID: 33990300]
  • Daiki Tanaka, Ken-Ichiro Ohnishi, Seiya Watanabe, Satoru Suzuki. Isolation of cellulase-producing Microbulbifer sp. from marine teleost blackfish (Girella melanichthys) intestine and the enzyme characterization. The Journal of general and applied microbiology. 2021 Jun; 67(2):47-53. doi: 10.2323/jgam.2020.05.001. [PMID: 33250506]
  • Ai-Ping Pang, Haiyan Wang, Yongsheng Luo, Zihuayuan Yang, Zhiyu Liu, Zhao Wang, Bingzhi Li, Song Yang, Zhihua Zhou, Xiaolin Lu, Fu-Gen Wu, Zuhong Lu, Fengming Lin. Dissecting Cellular Function and Distribution of β-Glucosidases in Trichoderma reesei. mBio. 2021 05; 12(3):. doi: 10.1128/mbio.03671-20. [PMID: 33975944]
  • Nadine Paßlack, Barbara Kohn, Wilfried Vahjen, Jürgen Zentek. Effects of dietary cellobiose on the intestinal microbiota and excretion of nitrogen metabolites in healthy adult dogs. Journal of animal physiology and animal nutrition. 2021 May; 105(3):569-578. doi: 10.1111/jpn.13485. [PMID: 33480132]
  • Shangshang Sun, Xinlei Wei, Xigui Zhou, Chun You. Construction of an Artificial In Vitro Synthetic Enzymatic Platform for Upgrading Low-Cost Starch to Value-Added Disaccharides. Journal of agricultural and food chemistry. 2021 Jan; 69(1):302-314. doi: 10.1021/acs.jafc.0c06936. [PMID: 33371670]
  • Chih-Hao Huang, Tzu-Ling Huang, Yu-Chang Liu, Ting-Chieh Chen, Shih-Ming Lin, Shyh-Yu Shaw, Ching-Chun Chang. Overexpression of a multifunctional β-glucosidase gene from thermophilic archaeon Sulfolobus solfataricus in transgenic tobacco could facilitate glucose release and its use as a reporter. Transgenic research. 2020 12; 29(5-6):511-527. doi: 10.1007/s11248-020-00212-z. [PMID: 32776308]
  • Lan Liu, Jian-Yu Jiao, Bao-Zhu Fang, Ai-Ping Lv, Yu-Zhen Ming, Meng-Meng Li, Nimaichand Salam, Wen-Jun Li. Isolation of Clostridium from Yunnan-Tibet hot springs and description of Clostridium thermarum sp. nov. with lignocellulosic ethanol production. Systematic and applied microbiology. 2020 Sep; 43(5):126104. doi: 10.1016/j.syapm.2020.126104. [PMID: 32847779]
  • May Thin Kyu, Shunsuke Nishio, Koki Noda, Bay Dar, San San Aye, Tsukasa Matsuda. Predominant secretion of cellobiohydrolases and endo-β-1,4-glucanases in nutrient-limited medium by Aspergillus spp. isolated from subtropical field. Journal of biochemistry. 2020 Sep; 168(3):243-256. doi: 10.1093/jb/mvaa049. [PMID: 32330257]
  • Nadine Paßlack, Wilfried Vahjen, Jürgen Zentek. Impact of Dietary Cellobiose on the Fecal Microbiota of Horses. Journal of equine veterinary science. 2020 08; 91(?):103106. doi: 10.1016/j.jevs.2020.103106. [PMID: 32684251]
  • Dan Liu, Yisong Liu, Duoduo Zhang, Xiaoting Chen, Qian Liu, Bentao Xiong, Lihui Zhang, Linfang Wei, Yifan Wang, Hao Fang, Johannes Liesche, Yahong Wei, N Louise Glass, Zhiqi Hao, Shaolin Chen. Quantitative Proteome Profiling Reveals Cellobiose-Dependent Protein Processing and Export Pathways for the Lignocellulolytic Response in Neurospora crassa. Applied and environmental microbiology. 2020 07; 86(15):. doi: 10.1128/aem.00653-20. [PMID: 32471912]
  • Michael Brysch-Herzberg, Marizeth Groenewald, Dénes Dlauchy, Martin Seidel, Gábor Péter. Hyphopichia lachancei, f.a., sp. nov., a yeast species from diverse origins. Antonie van Leeuwenhoek. 2020 Jun; 113(6):773-778. doi: 10.1007/s10482-020-01387-5. [PMID: 32086682]
  • Xiangjun Zhou, Kun Jiang, Haijun Luo, Cheng Wu, Weimin Yu, Fan Cheng. Novel lncRNA XLOC_032768 alleviates cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells through TNF-α. International immunopharmacology. 2020 Jun; 83(?):106472. doi: 10.1016/j.intimp.2020.106472. [PMID: 32278129]
  • Ching-Yi Cheng, Ashanul Haque, Ming-Fa Hsieh, Syed Imran Hassan, Md Serajul Haque Faizi, Necmi Dege, Muhammad S Khan. 1,4-Disubstituted 1H-1,2,3-Triazoles for Renal Diseases: Studies of Viability, Anti-Inflammatory, and Antioxidant Activities. International journal of molecular sciences. 2020 May; 21(11):. doi: 10.3390/ijms21113823. [PMID: 32481556]
  • Qingling Gou, Mou Tang, Yanan Wang, Wenting Zhou, Yi Liu, Zhiwei Gong. Deficiency of β-Glucosidase Beneficial for the Simultaneous Saccharification and Lipid Production by the Oleaginous Yeast Lipomyces starkeyi. Applied biochemistry and biotechnology. 2020 Feb; 190(2):745-757. doi: 10.1007/s12010-019-03129-4. [PMID: 31485895]
  • Nagendra P Kurumbang, Jessica M Vera, Alexander S Hebert, Joshua J Coon, Robert Landick. Heterologous expression of a glycosyl hydrolase and cellular reprogramming enable Zymomonas mobilis growth on cellobiose. PloS one. 2020; 15(8):e0226235. doi: 10.1371/journal.pone.0226235. [PMID: 32797046]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Weijun Wang, Tania Archbold, Joseph S Lam, Matthew S Kimber, Ming Z Fan. A processive endoglucanase with multi-substrate specificity is characterized from porcine gut microbiota. Scientific reports. 2019 09; 9(1):13630. doi: 10.1038/s41598-019-50050-1. [PMID: 31541154]
  • Sun-Ki Kim, Daehwan Chung, Michael E Himmel, Yannick J Bomble, Janet Westpheling. Heterologous co-expression of two β-glucanases and a cellobiose phosphorylase resulted in a significant increase in the cellulolytic activity of the Caldicellulosiruptor bescii exoproteome. Journal of industrial microbiology & biotechnology. 2019 May; 46(5):687-695. doi: 10.1007/s10295-019-02150-0. [PMID: 30783893]
  • Ning Liu, Hongjie Li, Marc G Chevrette, Lei Zhang, Lin Cao, Haokui Zhou, Xuguo Zhou, Zhihua Zhou, Phillip B Pope, Cameron R Currie, Yongping Huang, Qian Wang. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. The ISME journal. 2019 01; 13(1):104-117. doi: 10.1038/s41396-018-0255-1. [PMID: 30116044]
  • Mingxiao Yang, Zheng Yu, Xiaomin Chen, Zhenyu Guo, Shufang Deng, Lin Chen, Qiaofeng Wu, Fanrong Liang. Active Acupoints Differ from Inactive Acupoints in Modulating Key Plasmatic Metabolites of Hypertension: A Targeted Metabolomics Study. Scientific reports. 2018 12; 8(1):17824. doi: 10.1038/s41598-018-36199-1. [PMID: 30546033]
  • Sören Planckaert, Samuel Jourdan, Isolde M Francis, Benoit Deflandre, Sébastien Rigali, Bart Devreese. Proteomic Response to Thaxtomin Phytotoxin Elicitor Cellobiose and to Deletion of Cellulose Utilization Regulator CebR in Streptomyces scabies. Journal of proteome research. 2018 11; 17(11):3837-3852. doi: 10.1021/acs.jproteome.8b00528. [PMID: 30229651]
  • Yaoyao Fu, Soo-Jin Yeom, Kil Koang Kwon, Jungwon Hwang, Haseong Kim, Eui-Jeon Woo, Dae-Hee Lee, Seung-Goo Lee. Structural and functional analyses of the cellulase transcription regulator CelR. FEBS letters. 2018 08; 592(16):2776-2785. doi: 10.1002/1873-3468.13206. [PMID: 30062758]
  • Wei Xiong, Luis H Reyes, William E Michener, Pin-Ching Maness, Katherine J Chou. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously. Biotechnology and bioengineering. 2018 07; 115(7):1755-1763. doi: 10.1002/bit.26590. [PMID: 29537062]
  • Sara Casado López, Mao Peng, Tedros Yonatan Issak, Paul Daly, Ronald P de Vries, Miia R Mäkelä. Induction of Genes Encoding Plant Cell Wall-Degrading Carbohydrate-Active Enzymes by Lignocellulose-Derived Monosaccharides and Cellobiose in the White-Rot Fungus Dichomitus squalens. Applied and environmental microbiology. 2018 06; 84(11):. doi: 10.1128/aem.00403-18. [PMID: 29572208]
  • Sujittra Sujittra, Kanit Vichitphan, Jaehong Han, Sukanda Vichitphan, Jutaporn Swangkaew. Hanseniaspora thailandica BC9 β-Glucosidase for the Production of β-D-Hexyl Glucoside. Journal of microbiology and biotechnology. 2018 Apr; 28(4):579-587. doi: 10.4014/jmb.1712.12037. [PMID: 29385667]
  • Sun-Ki Kim, Michael E Himmel, Yannick J Bomble, Janet Westpheling. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity. Applied and environmental microbiology. 2018 02; 84(3):. doi: 10.1128/aem.02348-17. [PMID: 29101202]
  • Joan Laur, Gowsica Bojarajan Ramakrishnan, Caroline Labbé, François Lefebvre, Pietro D Spanu, Richard R Bélanger. Effectors involved in fungal-fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent-powdery mildew-plant. The New phytologist. 2018 01; 217(2):713-725. doi: 10.1111/nph.14851. [PMID: 29044534]
  • Sun-Ki Kim, Daehwan Chung, Michael E Himmel, Yannick J Bomble, Janet Westpheling. Heterologous expression of a β-D-glucosidase in Caldicellulosiruptor bescii has a surprisingly modest effect on the activity of the exoproteome and growth on crystalline cellulose. Journal of industrial microbiology & biotechnology. 2017 Dec; 44(12):1643-1651. doi: 10.1007/s10295-017-1982-4. [PMID: 28942503]
  • Ana Solopova, Jan Kok, Oscar P Kuipers. Disruption of a Transcriptional Repressor by an Insertion Sequence Element Integration Leads to Activation of a Novel Silent Cellobiose Transporter in Lactococcus lactis MG1363. Applied and environmental microbiology. 2017 Dec; 83(23):. doi: 10.1128/aem.01279-17. [PMID: 28970222]
  • Kulika Chomvong, Daniel I Benjamin, Daniel K Nomura, Jamie H D Cate. Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae. mBio. 2017 08; 8(4):. doi: 10.1128/mbio.00855-17. [PMID: 28790206]
  • Johan S Hero, José H Pisa, Nora I Perotti, Cintia M Romero, María A Martínez. Endoglucanase and xylanase production by Bacillus sp. AR03 in co-culture. Preparative biochemistry & biotechnology. 2017 Jul; 47(6):589-596. doi: 10.1080/10826068.2017.1280826. [PMID: 28106512]
  • Gammadde Hewa Ishan Maduka Wickramasinghe, Pilimathalawe Panditharathna Attanayake Mudiyanselage Samith Indika Rathnayake, Naduviladath Vishvanath Chandrasekharan, Mahindagoda Siril Samantha Weerasinghe, Ravindra Lakshman Chundananda Wijesundera, Wijepurage Sandhya Sulochana Wijesundera. Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies. BMC microbiology. 2017 06; 17(1):137. doi: 10.1186/s12866-017-1049-8. [PMID: 28637443]
  • Clarice de Azevedo Souza, Shundai Li, Andrew Z Lin, Freddy Boutrot, Guido Grossmann, Cyril Zipfel, Shauna C Somerville. Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses. Plant physiology. 2017 04; 173(4):2383-2398. doi: 10.1104/pp.16.01680. [PMID: 28242654]
  • Kulika Chomvong, Eric Lin, Michael Blaisse, Abigail E Gillespie, Jamie H D Cate. Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation. ACS synthetic biology. 2017 02; 6(2):206-210. doi: 10.1021/acssynbio.6b00211. [PMID: 27676450]
  • Sirilak Baramee, Thitiporn Teeravivattanakit, Paripok Phitsuwan, Rattiya Waeonukul, Patthra Pason, Chakrit Tachaapaikoon, Akihiko Kosugi, Kazuo Sakka, Khanok Ratanakhanokchai. A novel GH6 cellobiohydrolase from Paenibacillus curdlanolyticus B-6 and its synergistic action on cellulose degradation. Applied microbiology and biotechnology. 2017 Feb; 101(3):1175-1188. doi: 10.1007/s00253-016-7895-8. [PMID: 27743043]
  • Chenlu Zhang, Ligia Acosta-Sampson, Vivian Yaci Yu, Jamie H D Cate. Screening of transporters to improve xylodextrin utilization in the yeast Saccharomyces cerevisiae. PloS one. 2017; 12(9):e0184730. doi: 10.1371/journal.pone.0184730. [PMID: 28886200]
  • Arpita Sen, Ligia Acosta-Sampson, Christopher G Alvaro, Jonathan S Ahn, Jamie H D Cate, Jeremy Thorner. Internalization of Heterologous Sugar Transporters by Endogenous α-Arrestins in the Yeast Saccharomyces cerevisiae. Applied and environmental microbiology. 2016 12; 82(24):7074-7085. doi: 10.1128/aem.02148-16. [PMID: 27694235]
  • Saravanan Devendran, Ahmed M Abdel-Hamid, Anton F Evans, Michael Iakiviak, In Hyuk Kwon, Roderick I Mackie, Isaac Cann. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides. Scientific reports. 2016 10; 6(?):35342. doi: 10.1038/srep35342. [PMID: 27748409]
  • Daniela E Koeck, Sarah Hahnke, Vladimir V Zverlov. Herbinix luporum sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. International journal of systematic and evolutionary microbiology. 2016 Oct; 66(10):4132-4137. doi: 10.1099/ijsem.0.001324. [PMID: 27453473]
  • Shungo Fujii, Nobuyuki Takahashi, Hirofumi Inoue, Shin-Ichi Katsumata, Yuji Kikkawa, Makoto Machida, Yoshiko Ishimi, Mariko Uehara. A combination of soy isoflavones and cello-oligosaccharides changes equol/O-desmethylangolensin production ratio and attenuates bone fragility in ovariectomized mice. Bioscience, biotechnology, and biochemistry. 2016 Aug; 80(8):1632-5. doi: 10.1080/09168451.2016.1184559. [PMID: 27191709]
  • Seockmo Ku, Hyun Ju You, Myeong Soo Park, Geun Eog Ji. Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG. Journal of microbiology and biotechnology. 2016 Jul; 26(7):1206-15. doi: 10.4014/jmb.1601.01002. [PMID: 27012233]
  • Niki Baccile, Mohamed Selmane, Patrick Le Griel, Sylvain Prévost, Javier Perez, Christian V Stevens, Elisabeth Delbeke, Susanne Zibek, Michael Guenther, Wim Soetaert, Inge N A Van Bogaert, Sophie Roelants. pH-Driven Self-Assembly of Acidic Microbial Glycolipids. Langmuir : the ACS journal of surfaces and colloids. 2016 06; 32(25):6343-59. doi: 10.1021/acs.langmuir.6b00488. [PMID: 27307097]
  • Samuel Jourdan, Isolde Maria Francis, Min Jung Kim, Joren Jeico C Salazar, Sören Planckaert, Jean-Marie Frère, André Matagne, Frédéric Kerff, Bart Devreese, Rosemary Loria, Sébastien Rigali. The CebE/MsiK Transporter is a Doorway to the Cello-oligosaccharide-mediated Induction of Streptomyces scabies Pathogenicity. Scientific reports. 2016 06; 6(?):27144. doi: 10.1038/srep27144. [PMID: 27250236]
  • Riffat I Munir, Victor Spicer, Oleg V Krokhin, Dmitry Shamshurin, XiangLi Zhang, Marcel Taillefer, Warren Blunt, Nazim Cicek, Richard Sparling, David B Levin. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose. BMC microbiology. 2016 May; 16(?):91. doi: 10.1186/s12866-016-0711-x. [PMID: 27215540]
  • Yun-Hao Dai, Man Wang, Ya-Nan Zhu, Lu-Lu Wang, Jian-Ming Ju, Zhen-Hai Zhang. [Effect of D-cellobiose on oral bioavailability of gentiopicroside]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2016 May; 41(10):1855-1859. doi: 10.4268/cjcmm20161015. [PMID: 28895332]
  • Xiaoqun Nie, Bin Yang, Lei Zhang, Yang Gu, Sheng Yang, Weihong Jiang, Chen Yang. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum. Molecular microbiology. 2016 Apr; 100(2):289-302. doi: 10.1111/mmi.13316. [PMID: 26691835]
  • Evasio Pasini, Roberto Aquilani, Cristian Testa, Paola Baiardi, Stefania Angioletti, Federica Boschi, Manuela Verri, Francesco Dioguardi. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC. Heart failure. 2016 Mar; 4(3):220-7. doi: 10.1016/j.jchf.2015.10.009. [PMID: 26682791]
  • Xue Pei, Junqi Zhao, Pengli Cai, Wenliang Sun, Jie Ren, Qiaqing Wu, Shihong Zhang, Chaoguang Tian. Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides. Protein expression and purification. 2016 Mar; 119(?):75-84. doi: 10.1016/j.pep.2015.11.010. [PMID: 26596358]
  • Neha Sawhney, Casey Crooks, Virginia Chow, James F Preston, Franz J St John. Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides. BMC genomics. 2016 Feb; 17(?):131. doi: 10.1186/s12864-016-2436-5. [PMID: 26912334]
  • Minseok Cha, Daehwan Chung, Janet Westpheling. Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism. Applied microbiology and biotechnology. 2016 Feb; 100(4):1823-1831. doi: 10.1007/s00253-015-7025-z. [PMID: 26536872]
  • Celeste M Karch, Lubov Ezerskiy, Veronica Redaelli, Anna Rita Giovagnoli, Pietro Tiraboschi, Giuseppe Pelliccioni, Paolo Pelliccioni, Dimos Kapetis, Ilaria D'Amato, Elena Piccoli, Maria Giulia Ferretti, Fabrizio Tagliavini, Giacomina Rossi. Missense mutations in progranulin gene associated with frontotemporal lobar degeneration: study of pathogenetic features. Neurobiology of aging. 2016 Feb; 38(?):215.e1-215.e12. doi: 10.1016/j.neurobiolaging.2015.10.029. [PMID: 26652843]
  • A F Hernández-Pérez, I A L Costa, D D V Silva, K J Dussán, T R Villela, E V Canettieri, J A Carvalho, T G Soares Neto, M G A Felipe. Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresource technology. 2016 Jan; 200(?):1085-8. doi: 10.1016/j.biortech.2015.11.036. [PMID: 26615771]
  • In Jung Kim, Ju Yeon Jung, Hee Jin Lee, Hyong Seok Park, Young Hoon Jung, Kyungmoon Park, Kyoung Heon Kim. Customized optimization of cellulase mixtures for differently pretreated rice straw. Bioprocess and biosystems engineering. 2015 May; 38(5):929-37. doi: 10.1007/s00449-014-1338-7. [PMID: 25547288]
  • Daniel P Oehme, Matthew T Downton, Monika S Doblin, John Wagner, Michael J Gidley, Antony Bacic. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations. Plant physiology. 2015 May; 168(1):3-17. doi: 10.1104/pp.114.254664. [PMID: 25786828]
  • Isolde M Francis, Samuel Jourdan, Steven Fanara, Rosemary Loria, Sébastien Rigali. The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity. mBio. 2015 Feb; 6(2):e02018. doi: 10.1128/mbio.02018-14. [PMID: 25714708]
  • Amanda Hildebrand, Edyta Szewczyk, Hui Lin, Takao Kasuga, Zhiliang Fan. Engineering Neurospora crassa for improved cellobiose and cellobionate production. Applied and environmental microbiology. 2015 Jan; 81(2):597-603. doi: 10.1128/aem.02885-14. [PMID: 25381238]
  • Olga V Moroz, Michelle Maranta, Tarana Shaghasi, Paul V Harris, Keith S Wilson, Gideon J Davies. The three-dimensional structure of the cellobiohydrolase Cel7A from Aspergillus fumigatus at 1.5 Å resolution. Acta crystallographica. Section F, Structural biology communications. 2015 Jan; 71(Pt 1):114-20. doi: 10.1107/s2053230x14027307. [PMID: 25615982]
  • Christopher G Struchtemeyer, Abhaya Ranganathan, M B Couger, Audra S Liggenstoffer, Noha H Youssef, Mostafa S Elshahed. Survival of the anaerobic fungus Orpinomyces sp. strain C1A after prolonged air exposure. Scientific reports. 2014 Nov; 4(?):6892. doi: 10.1038/srep06892. [PMID: 25367149]
  • Marielle Aleixo Giraldo, Heloísa Bressan Gonçalves, Rosa Dos Prazeres Melo Furriel, João Atílio Jorge, Luis Henrique Souza Guimarães. Characterization of the co-purified invertase and β-glucosidase of a multifunctional extract from Aspergillus terreus. World journal of microbiology & biotechnology. 2014 May; 30(5):1501-10. doi: 10.1007/s11274-013-1570-3. [PMID: 24307498]
  • Gerald N Presley, Matthew J Payea, Logan R Hurst, Annie E Egan, Brandon S Martin, Gopal R Periyannan. Extracellular gluco-oligosaccharide degradation by Caulobacter crescentus. Microbiology (Reading, England). 2014 Mar; 160(Pt 3):635-645. doi: 10.1099/mic.0.072314-0. [PMID: 24421404]
  • Kosei Yamauchi, Tohru Mitsunaga, Irmanida Batubara. Synthesis of quercetin glycosides and their melanogenesis stimulatory activity in B16 melanoma cells. Bioorganic & medicinal chemistry. 2014 Feb; 22(3):937-44. doi: 10.1016/j.bmc.2013.12.062. [PMID: 24433966]
  • Charles Rutter, Rachel Chen. Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms. Biotechnology letters. 2014 Feb; 36(2):301-7. doi: 10.1007/s10529-013-1355-7. [PMID: 24101240]
  • Elizabeth A Znameroski, Xin Li, Jordan C Tsai, Jonathan M Galazka, N Louise Glass, Jamie H D Cate. Evidence for transceptor function of cellodextrin transporters in Neurospora crassa. The Journal of biological chemistry. 2014 Jan; 289(5):2610-9. doi: 10.1074/jbc.m113.533273. [PMID: 24344125]
  • Aki Yoneda, Hsion-Wen David Kuo, Mayumi Ishihara, Parastoo Azadi, Su-May Yu, Tuan-hua David Ho. Glycosylation variants of a β-glucosidase secreted by a Taiwanese fungus, Chaetomella raphigera, exhibit variant-specific catalytic and biochemical properties. PloS one. 2014; 9(9):e106306. doi: 10.1371/journal.pone.0106306. [PMID: 25180973]
  • Ekaterina Kulakovskaya, Boris Baskunov, Anton Zvonarev. The antibiotic and membrane-damaging activities of cellobiose lipids and sophorose lipids. Journal of oleo science. 2014; 63(7):701-7. doi: 10.5650/jos.ess14037. [PMID: 24976613]
  • Dafina Mulla, Daniel Kracher, Roland Ludwig, Gabor Nagy, Melanie Grandits, Wolfgang Holzer, Yasser Saber, Nermeen Gabra, Helmut Viernstein, Frank M Unger. Azido derivatives of cellobiose: oxidation at C1 with cellobiose dehydrogenase from Sclerotium rolfsii. Carbohydrate research. 2013 Dec; 382(?):86-94. doi: 10.1016/j.carres.2013.09.004. [PMID: 24211370]
  • Makoto Yoshimoto, Kazuhiko Tanimura, Kazuki Tokunaga, Akio Kamimura. Hydrolysis of insoluble cellulose to glucose catalyzed by cellulase-containing liposomes in an aqueous solution of 1-butyl-3-methylimidazolium chloride. Biotechnology progress. 2013 Sep; 29(5):1190-6. doi: 10.1002/btpr.1779. [PMID: 23813807]
  • Blair Lawley, Ian M Sims, Gerald W Tannock. Whole-transcriptome shotgun sequencing (RNA-seq) screen reveals upregulation of cellobiose and motility operons of Lactobacillus ruminis L5 during growth on tetrasaccharides derived from barley β-glucan. Applied and environmental microbiology. 2013 Sep; 79(18):5661-9. doi: 10.1128/aem.01887-13. [PMID: 23851085]
  • Stephan Hetzler, Alexander Steinbüchel. Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630. Applied and environmental microbiology. 2013 May; 79(9):3122-5. doi: 10.1128/aem.03678-12. [PMID: 23435878]
  • Tomotake Morita, Tokuma Fukuoka, Tomohiro Imura, Dai Kitamoto. Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, Pseudozyma aphidis and Pseudozyma hubeiensis. FEMS yeast research. 2013 Feb; 13(1):44-9. doi: 10.1111/1567-1364.12005. [PMID: 22985214]
  • Verónica Fasulo, ZhiQiang Zhang, Edwin R Price, Juan G Chediack, William H Karasov, Enrique Caviedes-Vidal. Paracellular absorption in laboratory mice: Molecule size-dependent but low capacity. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 2013 Jan; 164(1):71-6. doi: 10.1016/j.cbpa.2012.09.008. [PMID: 23000883]
  • Siddhartha Kumar Mishra, Neelam Singh Sangwan, Rajender Singh Sangwan. Purification and physicokinetic characterization of a gluconolactone inhibition-insensitive β-glucosidase from Andrographis paniculata nees. Leaf. Preparative biochemistry & biotechnology. 2013; 43(5):481-99. doi: 10.1080/10826068.2012.759966. [PMID: 23581783]
  • Suk-Jin Ha, Jonathan M Galazka, Eun Joong Oh, Vesna Kordić, Heejin Kim, Yong-Su Jin, Jamie H D Cate. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metabolic engineering. 2013 Jan; 15(?):134-43. doi: 10.1016/j.ymben.2012.11.005. [PMID: 23178501]
  • Hui Wei, Wei Wang, John M Yarbrough, John O Baker, Lieve Laurens, Stefanie Van Wychen, Xiaowen Chen, Larry E Taylor, Qi Xu, Michael E Himmel, Min Zhang. Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production. PloS one. 2013; 8(9):e71068. doi: 10.1371/journal.pone.0071068. [PMID: 24023719]
  • Jerome Mauris, Flavio Mantelli, Ashley M Woodward, Ziyhi Cao, Carolyn R Bertozzi, Noorjahan Panjwani, Kamil Godula, Pablo Argüeso. Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers. PloS one. 2013; 8(8):e72304. doi: 10.1371/journal.pone.0072304. [PMID: 23977277]
  • E V Kulakovskaya, A A Mironov. [Resistance to cellobiose lipids and specific features of lipid composition in yeast]. Prikladnaia biokhimiia i mikrobiologiia. 2012 Nov; 52(6):584-9. doi: ". [PMID: 29513480]