Carbamic acid (BioDeep_00000004715)
Secondary id: BioDeep_00001868570
human metabolite Endogenous Chemicals and Drugs
代谢物信息卡片
化学式: CH3NO2 (61.0164)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 15.12%
分子结构信息
SMILES: C(=O)(N)O
InChI: InChI=1S/CH3NO2/c2-1(3)4/h2H2,(H,3,4)
描述信息
Carbamic acid is occasionally found as carbamate in workers exposed to pesticides. Carbamates, particularly carbofuran, seem to be more associated with exuberant and diversified symptomatology of pesticide exposure than organophosphates. Neurological symptoms occur among farmers occupationally exposed to acetylcholinesterase-inhibiting insecticides such as carbamates. Carbamic acid products of several amines, such as beta-N-methylamino-L-alanine (BMAA), ethylenediamine, and L-cysteine have been implicated in toxicity. Studies suggested that a significant portion of amino-compounds in biological samples (that naturally contain CO2/bicarbonate) can be present as a carbamic acid. The formation of carbamate glucuronide metabolites has been described for numerous pharmaceuticals and they have been identified in all of the species commonly used in drug metabolism studies (rat, dog, mouse, rabbit, guinea pig, and human). There has been no obvious species specificity for their formation and no preference for 1 or 2 degree amines. Many biological reactions have also been described in the literature that involve the reaction of CO2 with amino groups of biomolecules. For example, CO2 generated from cellular respiration is expired in part through the reversible formation of a carbamate between CO2 and the -amino groups of the alpha and beta-chains of hemoglobin. Glucuronidation is an important mechanism used by mammalian systems to clear and eliminate both endogenous and foreign chemicals. Many functional groups are susceptible to conjugation with glucuronic acid, including hydroxyls, phenols, carboxyls, activated carbons, thiols, amines, and selenium. Primary and secondary amines can also react with carbon dioxide (CO2) via a reversible reaction to form a carbamic acid. The carbamic acid is also a substrate for glucuronidation and results in a stable carbamate glucuronide metabolite. The detection and characterization of these products has been facilitated greatly by the advent of soft ionization mass spectrometry techniques and high field NMR instrumentation. (PMID: 16268118, 17168688, 12929145).
同义名列表
18 个代谢物同义名
Carbamic acid, potassium salt; Carbamic acid, calcium salt; Carbamic acid, ammonia salt; Carbamic acid, sodium salt; CHLORPHENESIN CARBAMATE; Potassium carbamate; Aminoameisensaeure; Ammonium carbamate; Calcium carbamate; Sodium carbamate; Aminoformic acid; Carbamidsaeure; Carbamate ion; CARBAMIC ACID; Aminoformate; Carbamate; Maolate; Carbamate
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:28616
- KEGG: C01563
- PubChem: 277
- HMDB: HMDB0003551
- Metlin: METLIN6950
- DrugBank: DB04261
- ChEMBL: CHEMBL125278
- Wikipedia: Carbamic_acid
- MetaCyc: CARBAMATE
- foodb: FDB023195
- chemspider: 271
- CAS: 463-77-4
- PMhub: MS000017280
- PubChem: 4721
- CAS: 302-11-4
- PDB-CCD: OUT
- 3DMET: B00320
- NIKKAJI: J39.572B
- RefMet: Carbamic acid
- KNApSAcK: 28616
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
265 个相关的代谢反应过程信息。
Reactome(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(258)
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-arginine degradation V (arginine deiminase pathway):
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-arginine degradation V (arginine deiminase pathway):
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-arginine degradation V (arginine deiminase pathway):
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- urea degradation I:
H+ + carbamate ⟶ CO2 + ammonium
- L-arginine degradation V (arginine deiminase pathway):
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-arginine degradation V (arginine deiminase pathway):
H+ + carbamate ⟶ CO2 + ammonium
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-arginine degradation V (arginine deiminase pathway):
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- L-arginine degradation V (arginine deiminase pathway):
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
ATP + carbamate ⟶ ADP + carbamoyl phosphate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-citrulline degradation:
L-ornithine + carbamoyl phosphate ⟶ H+ + L-citrulline + phosphate
COVID-19 Disease Map(0)
PathBank(6)
- Nitrogen Metabolism:
Ammonia + Hydrogen + NADPH + Oxoglutaric acid ⟶ L-Glutamic acid + NADP + Water
- Cyanate Degradation:
Carbon dioxide + Water ⟶ Hydrogen Ion + Hydrogen carbonate
- Nitrogen Metabolism:
Carbamic acid + Hydrogen Ion ⟶ Ammonia + Carbon dioxide
- Cyanate Degradation:
Cyanate + Hydrogen Ion + Hydrogen carbonate ⟶ Carbamic acid + Carbon dioxide
- Uracil Degradation III:
Hydrogen Ion + Malonic semialdehyde + NADPH ⟶ Hydroxypropionic acid + NADP
- Uracil Degradation III:
FMNH2 + Oxygen + Uracil ⟶ Flavin Mononucleotide + Hydrogen Ion + Peroxyaminoacrylate
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Elif Günal. Delineating reclamation zones for site-specific reclamation of saline-sodic soils in Dushak, Turkmenistan.
PloS one.
2021; 16(8):e0256355. doi:
10.1371/journal.pone.0256355
. [PMID: 34403439] - Jinwei Suo, Heng Zhang, Qi Zhao, Nan Zhang, Yongxue Zhang, Ying Li, Baohua Song, Juanjuan Yu, Jianguo Cao, Tai Wang, Ji Luo, Lihai Guo, Jun Ma, Xumin Zhang, Yimin She, Lianwei Peng, Weimin Ma, Siyi Guo, Yuchen Miao, Sixue Chen, Zhi Qin, Shaojun Dai. Na2CO3-responsive Photosynthetic and ROS Scavenging Mechanisms in Chloroplasts of Alkaligrass Revealed by Phosphoproteomics.
Genomics, proteomics & bioinformatics.
2020 06; 18(3):271-288. doi:
10.1016/j.gpb.2018.10.011
. [PMID: 32683046] - Ethan Bernstein, Danielle L Saly, Asghar Rastegar. Patient With Lethargy and Hypercalcemia.
American journal of kidney diseases : the official journal of the National Kidney Foundation.
2019 05; 73(5):A14-A16. doi:
10.1053/j.ajkd.2018.06.035
. [PMID: 31010485] - C Nicolas, S Jaisson, L Gorisse, F J Tessier, C Niquet-Léridon, P Jacolot, C Pietrement, P Gillery. Carbamylation is a competitor of glycation for protein modification in vivo.
Diabetes & metabolism.
2018 Mar; 44(2):160-167. doi:
10.1016/j.diabet.2017.05.006
. [PMID: 28690125] - Fuyuhiko Inagaki, Chiaki Matsumoto, Takashi Iwata, Chisato Mukai. CO2-Selective Absorbents in Air: Reverse Lipid Bilayer Structure Forming Neutral Carbamic Acid in Water without Hydration.
Journal of the American Chemical Society.
2017 04; 139(13):4639-4642. doi:
10.1021/jacs.7b01049
. [PMID: 28306250] - Toshio Morikawa, Niichiro Kitagawa, Genzoh Tanabe, Kiyofumi Ninomiya, Shuhei Okugawa, Chiaki Motai, Iyori Kamei, Masayuki Yoshikawa, I-Jung Lee, Osamu Muraoka. Quantitative Determination of Alkaloids in Lotus Flower (Flower Buds of Nelumbo nucifera) and Their Melanogenesis Inhibitory Activity.
Molecules (Basel, Switzerland).
2016 Jul; 21(7):. doi:
10.3390/molecules21070930
. [PMID: 27447599] - Lei Yin, Kevin Shengyang Yu, Kun Lu, Xiaozhong Yu. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis.
Toxicology in vitro : an international journal published in association with BIBRA.
2016 Apr; 32(?):297-309. doi:
10.1016/j.tiv.2016.01.010
. [PMID: 26820058] - Sahir Kalim, S Ananth Karumanchi, Ravi I Thadhani, Anders H Berg. Protein carbamylation in kidney disease: pathogenesis and clinical implications.
American journal of kidney diseases : the official journal of the National Kidney Foundation.
2014 Nov; 64(5):793-803. doi:
10.1053/j.ajkd.2014.04.034
. [PMID: 25037561] - Małgorzata Janicka. Correlations between chromatographic parameters and bioactivity predictors of potential herbicides.
Journal of chromatographic science.
2014 Aug; 52(7):676-84. doi:
10.1093/chromsci/bmt098
. [PMID: 23872809] - Hakan Karaca, María B Pérez-Gago, Verònica Taberner, Lluís Palou. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums.
International journal of food microbiology.
2014 Jun; 179(?):72-9. doi:
10.1016/j.ijfoodmicro.2014.03.027
. [PMID: 24742996] - Geert J Behets, Geert Dams, Stephen J Damment, Patrick Martin, Marc E De Broe, Patrick C D'Haese. Differences in gastrointestinal calcium absorption after the ingestion of calcium-free phosphate binders.
American journal of physiology. Renal physiology.
2014 Jan; 306(1):F61-7. doi:
10.1152/ajprenal.00219.2013
. [PMID: 24197066] - J J McGrath, D B Savage, J V Nolan, N J Rodgers, R Elliott. Anionic salts and dietary 25-hydroxyvitamin D stimulate calcium availability in steers.
Animal : an international journal of animal bioscience.
2013 Mar; 7(3):404-9. doi:
10.1017/s1751731112001887
. [PMID: 23084000] - Eugene O Apostolov, Ercan Ok, Samuel Burns, Safia Nawaz, Alena Savenka, Sudhir V Shah, Alexei G Basnakian. Carbamylated-oxidized LDL: proatherosclerotic effects on endothelial cells and macrophages.
Journal of atherosclerosis and thrombosis.
2013; 20(12):878-92. doi:
10.5551/jat.14035
. [PMID: 24067603] - Nunzio Denora, Tommaso Cassano, Valentino Laquintana, Antonio Lopalco, Adriana Trapani, Concetta Stefania Cimmino, Leonardo Laconca, Andrea Giuffrida, Giuseppe Trapani. Novel codrugs with GABAergic activity for dopamine delivery in the brain.
International journal of pharmaceutics.
2012 Nov; 437(1-2):221-31. doi:
10.1016/j.ijpharm.2012.08.023
. [PMID: 22940209] - Olga I Kubrak, Tetiana M Atamaniuk, Viktor V Husak, Ivanna Z Drohomyretska, Janet M Storey, Kenneth B Storey, Volodymyr I Lushchak. Oxidative stress responses in blood and gills of Carassius auratus exposed to the mancozeb-containing carbamate fungicide Tattoo.
Ecotoxicology and environmental safety.
2012 Nov; 85(?):37-43. doi:
10.1016/j.ecoenv.2012.08.021
. [PMID: 22963715] - J Allen Crow, Victoria Bittles, Abdolsamad Borazjani, Philip M Potter, Matthew K Ross. Covalent inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by the carbamates JZL184 and URB597.
Biochemical pharmacology.
2012 Nov; 84(9):1215-22. doi:
10.1016/j.bcp.2012.08.017
. [PMID: 22943979] - Fatma Goksin Bahar, Kayoko Ohura, Takuo Ogihara, Teruko Imai. Species difference of esterase expression and hydrolase activity in plasma.
Journal of pharmaceutical sciences.
2012 Oct; 101(10):3979-88. doi:
10.1002/jps.23258
. [PMID: 22833171] - Muthuviveganandavel Veerappan, Inho Hwang, Muthuraman Pandurangan. Effect of cypermethrin, carbendazim and their combination on male albino rat serum.
International journal of experimental pathology.
2012 Oct; 93(5):361-9. doi:
10.1111/j.1365-2613.2012.00828.x
. [PMID: 22974217] - Yu-Jie Liang, Hui-Ping Wang, Ding-Xin Long, Yi-Jun Wu. (1)H NMR-based metabonomic profiling of rat serum and urine to characterize the subacute effects of carbamate insecticide propoxur.
Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.
2012 Sep; 17(6):566-74. doi:
10.3109/1354750x.2012.704527
. [PMID: 22780197] - Alberto Diez-Torrubia, Silvia Cabrera, Ingrid De Meester, María-José Camarasa, Jan Balzarini, Sonsoles Velázquez. Dipeptidyl peptidase IV-activated prodrugs of anti-varicella zoster virus bicyclic nucleoside analogues containing different self-cleavage spacer systems.
ChemMedChem.
2012 Sep; 7(9):1612-22. doi:
10.1002/cmdc.201200295
. [PMID: 22887971] - Ali Gül, A Çağlan Karasu Benli, Ayşen Ayhan, Burcu Koçak Memmi, Mahmut Selvi, Aylin Sepici-Dinçel, Gül Çelik Cakiroğullari, Figen Erkoç. Sublethal propoxur toxicity to juvenile common carp (Cyprinus carpio L., 1758): biochemical, hematological, histopathological, and genotoxicity effects.
Environmental toxicology and chemistry.
2012 Sep; 31(9):2085-92. doi:
10.1002/etc.1924
. [PMID: 22730006] - Xuejin Mao, Yiqun Wan, Aiping Yan, Mingyue Shen, Yuanlong Wei. Simultaneous determination of organophosphorus, organochlorine, pyrethriod and carbamate pesticides in Radix astragali by microwave-assisted extraction/dispersive-solid phase extraction coupled with GC-MS.
Talanta.
2012 Aug; 97(?):131-41. doi:
10.1016/j.talanta.2012.04.007
. [PMID: 22841057] - Takayuki Hamano. [Kidney and bone update : the 5-year history and future of CKD-MBD. Pharmacoeconomics in the field of CKD-MBD].
Clinical calcium.
2012 Jul; 22(7):1043-9. doi:
clica120710431049
. [PMID: 22750937] - Nobuhiko Joki, Masaki Iwasaki. [Kidney and bone update : the 5-year history and future of CKD-MBD. Vascular calcification in CKD patients].
Clinical calcium.
2012 Jul; 22(7):993-9. doi:
clica1207993999
. [PMID: 22750931] - Mikhail A Maslov, Tatyana O Kabilova, Ivan A Petukhov, Nina G Morozova, Galina A Serebrennikova, Valentine V Vlassov, Marina A Zenkova. Novel cholesterol spermine conjugates provide efficient cellular delivery of plasmid DNA and small interfering RNA.
Journal of controlled release : official journal of the Controlled Release Society.
2012 Jun; 160(2):182-93. doi:
10.1016/j.jconrel.2011.11.023
. [PMID: 22138073] - Jean-Claude Mwanza, Danielle F Lyke, Richard C Hertzberg, Lynne Haber, Melissa Kohrman-Vincent, Ruosha Li, Yi Pan, Robert H Lyles, Jane Ellen Simmons, Denise K Macmillan, R Dan Zehr, Adam E Swank, David W Herr. Cholinesterase inhibition and depression of the photic after discharge of flash evoked potentials following acute or repeated exposures to a mixture of carbaryl and propoxur.
Neurotoxicology.
2012 Jun; 33(3):332-46. doi:
10.1016/j.neuro.2012.02.006
. [PMID: 22353443] - Emma C Barnes, Vanida Choomuenwai, Katherine T Andrews, Ronald J Quinn, Rohan A Davis. Design and synthesis of screening libraries based on the muurolane natural product scaffold.
Organic & biomolecular chemistry.
2012 May; 10(20):4015-23. doi:
10.1039/c2ob00029f
. [PMID: 22422350] - Andrea Duranti, Andrea Tontini, Francesca Antonietti, Federica Vacondio, Alessandro Fioni, Claudia Silva, Alessio Lodola, Silvia Rivara, Carlos Solorzano, Daniele Piomelli, Giorgio Tarzia, Marco Mor. N-(2-oxo-3-oxetanyl)carbamic acid esters as N-acylethanolamine acid amidase inhibitors: synthesis and structure-activity and structure-property relationships.
Journal of medicinal chemistry.
2012 May; 55(10):4824-36. doi:
10.1021/jm300349j
. [PMID: 22515328] - Justyna Wojno, John-Paul Jukes, Hemza Ghadbane, Dawn Shepherd, Gurdyal S Besra, Vincenzo Cerundolo, Liam R Cox. Amide analogues of CD1d agonists modulate iNKT-cell-mediated cytokine production.
ACS chemical biology.
2012 May; 7(5):847-55. doi:
10.1021/cb2005017
. [PMID: 22324848] - Amada Y Escobedo-Lozano, Norma Estrada, Felipe Ascencio, Gerardo Contreras, Rosalba Alonso-Rodriguez. Accumulation, biotransformation, histopathology and paralysis in the Pacific calico scallop Argopecten ventricosus by the paralyzing toxins of the dinoflagellate Gymnodinium catenatum.
Marine drugs.
2012 May; 10(5):1044-65. doi:
10.3390/md10051044
. [PMID: 22822356] - Fred R Musser, Katherine S Knighten, John F Smith, Angus L Catchot. Pyrethroid insecticide tolerance in bean leaf beetle, Cerotoma trifurcata, in the Mississippi Delta.
Pest management science.
2012 Apr; 68(4):658-62. doi:
10.1002/ps.2314
. [PMID: 22052768] - Liang Feng, You-Hua Xu, Shan-Shan Wang, Wai Au-Yeung, Zhao-Guang Zheng, Ru-Shang Wang, Quan Zhu, Ping Xiang. Preventative effects of 4,4'-diphenylmethane-bis(methyl) carbamate isolated from cortex mori on human umbilical vein endothelial cell dysfunction induced by advanced glycation end products.
Phytotherapy research : PTR.
2012 Mar; 26(3):412-9. doi:
10.1002/ptr.3569
. [PMID: 21796706] - Ellen G Duysen, John R Cashman, Lawrence M Schopfer, Florian Nachon, Patrick Masson, Oksana Lockridge. Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresyl saligenin phosphate, cyclosarin thiocholine, tabun thiocholine, and carbofuran.
Chemico-biological interactions.
2012 Feb; 195(3):189-98. doi:
10.1016/j.cbi.2011.12.006
. [PMID: 22209767] - J R Savinainen, S M Saario, J T Laitinen. The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors.
Acta physiologica (Oxford, England).
2012 Feb; 204(2):267-76. doi:
10.1111/j.1748-1716.2011.02280.x
. [PMID: 21418147] - Jean-Claude Alvarez, Charlotte Duverneuil, Khémais Zouaoui, Emuri Abe, Philippe Charlier, Geoffroy Lorin de la Grandmaison, Stanislas Grassin-Delyle. Evaluation of the first immunoassay for the semi-quantitative measurement of meprobamate in human whole blood or plasma using biochip array technology.
Clinica chimica acta; international journal of clinical chemistry.
2012 Jan; 413(1-2):273-7. doi:
10.1016/j.cca.2011.10.025
. [PMID: 22057036] - Diego Jose Z Delfiol, Jose P Oliveira-Filho, Fernanda L Casalecchi, Thatiane Kievitsbosch, Carlos A Hussni, Franklin Riet-Correa, João P Araujo, Alexandre S Borges. Equine poisoning by coffee husk (Coffea arabica L.).
BMC veterinary research.
2012 01; 8(?):4. doi:
10.1186/1746-6148-8-4
. [PMID: 22239973] - Jana Polláková, Natália Kovalkovičová, Tomáš Csank, Juraj Pistl, Alica Kočišová, Jaroslav Legáth. Evaluation of bendiocarb cytotoxicity in mammalian and insect cell cultures.
Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes.
2012; 47(6):538-43. doi:
10.1080/03601234.2012.665671
. [PMID: 22494377] - Tomokazu Hashiguchi, Hanae Izu, Shigetoshi Sudo. Lignin is linked to ethyl-carbamate formation in ume (Prunus mume) liqueur.
Bioscience, biotechnology, and biochemistry.
2012; 76(1):148-52. doi:
10.1271/bbb.110656
. [PMID: 22232267] - H-J Kim, K-H Yoon, M-J Kang, H-W Yim, K-S Lee, V Vuksan, M-K Sung. A six-month supplementation of mulberry, korean red ginseng, and banaba decreases biomarkers of systemic low-grade inflammation in subjects with impaired glucose tolerance and type 2 diabetes.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):735191. doi:
10.1155/2012/735191
. [PMID: 22474520] - Cátia S A Santos, Marta S Monteiro, Amadeu M V M Soares, Susana Loureiro. Characterization of cholinesterases in plasma of three Portuguese native bird species: application to biomonitoring.
PloS one.
2012; 7(3):e33975. doi:
10.1371/journal.pone.0033975
. [PMID: 22470503] - M Soledade C Pedras, Zoran Minic, Sajjad Hossain. Discovery of inhibitors and substrates of brassinin hydrolase: Probing selectivity with dithiocarbamate bioisosteres.
Bioorganic & medicinal chemistry.
2012 Jan; 20(1):225-33. doi:
10.1016/j.bmc.2011.11.009
. [PMID: 22137599] - Yi-Chang Liu, I-Hsuan Lin, Wei-Jen Chung, Wensi S Hu, Wailap Victor Ng, Chi-Yu Lu, Tsung-Yen Huang, Hung-Wei Shu, Kwang-Jen Hsiao, Shih-Feng Tsai, Chuan-Hsiung Chang, Chao-Hsiung Lin. Proteomics characterization of cytoplasmic and lipid-associated membrane proteins of human pathogen Mycoplasma fermentans M64.
PloS one.
2012; 7(4):e35304. doi:
10.1371/journal.pone.0035304
. [PMID: 22536369] - Andrea X Silva, Leonardo D Bacigalupe, Manuela Luna-Rudloff, Christian C Figueroa. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) II: Costs and benefits.
PloS one.
2012; 7(6):e36810. doi:
10.1371/journal.pone.0036810
. [PMID: 22685539] - Mayumi Allinson, Shiho Kageyama, Daisuke Nakajima, Ryo Kamata, Fujio Shiraishi, Sumio Goto, Scott Andrew Salzman, Graeme Allinson. A pilot survey of 39 Victorian WWTP effluents using a high speed luminescent umu test in conjunction with a novel GC-MS-database technique for automatic identification of micropollutants.
Water science and technology : a journal of the International Association on Water Pollution Research.
2012; 66(4):768-74. doi:
10.2166/wst.2012.242
. [PMID: 22766865] - Fabiola G Zuno-Floriano, Marion G Miller, Maria L Aldana-Madrid, Matt J Hengel, Nilesh W Gaikwad, Vladimir Tolstikov, Ana G Contreras-Cortés. Effect of Acinetobacter sp on metalaxyl degradation and metabolite profile of potato seedlings (Solanum tuberosum L.) alpha variety.
PloS one.
2012; 7(2):e31221. doi:
10.1371/journal.pone.0031221
. [PMID: 22363586] - Hisashi Shinkai. Cholesteryl ester transfer-protein modulator and inhibitors and their potential for the treatment of cardiovascular diseases.
Vascular health and risk management.
2012; 8(?):323-31. doi:
10.2147/vhrm.s25238
. [PMID: 22661899] - Karine Rigon Zimmer, Claiton Leonetti Lencina, Aline Rigon Zimmer, Flávia Vallãdao Thiesen. Influence of physical exercise and gender on acetylcholinesterase and butyrylcholinesterase activity in human blood samples.
International journal of environmental health research.
2012; 22(3):279-86. doi:
10.1080/09603123.2011.634389
. [PMID: 22149082] - Ning-ning Zhang, Cai-feng Liu, Fang Yang, Shuang-lin Dong, Zhao-jun Han. Resistance mechanisms to chlorpyrifos and F392W mutation frequencies in the acetylcholine esterase ace1 allele of field populations of the tobacco whitefly, Bemisia tabaci in China.
Journal of insect science (Online).
2012; 12(?):41. doi:
10.1673/031.012.4101
. [PMID: 22954331] - Vinicius P Venâncio, João Paulo L Silva, Alaor A Almeida, Maísa R P L Brigagão, Luciana Azevedo. Conventional (MG-BR46 Conquista) and transgenic (BRS Valiosa RR) soybeans have no mutagenic effects and may protect against induced-DNA damage in vivo.
Nutrition and cancer.
2012; 64(5):725-31. doi:
10.1080/01635581.2012.687677
. [PMID: 22662908] - Yangyang Liu, Hanying Zhang, Chuanling Qiao, Xiping Lu, Feng Cui. Correlation between carboxylesterase alleles and insecticide resistance in Culex pipiens complex from China.
Parasites & vectors.
2011 Dec; 4(?):236. doi:
10.1186/1756-3305-4-236
. [PMID: 22177233] - Joseph S Zakhari, Isao Kinoyama, Mark S Hixon, Antonia Di Mola, Daniel Globisch, Kim D Janda. Formulating a new basis for the treatment against botulinum neurotoxin intoxication: 3,4-Diaminopyridine prodrug design and characterization.
Bioorganic & medicinal chemistry.
2011 Nov; 19(21):6203-9. doi:
10.1016/j.bmc.2011.09.019
. [PMID: 21975066] - P Valbonesi, F Brunelli, M Mattioli, T Rossi, E Fabbri. Cholinesterase activities and sensitivity to pesticides in different tissues of silver European eel, Anguilla anguilla.
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2011 Nov; 154(4):353-9. doi:
10.1016/j.cbpc.2011.07.003
. [PMID: 21777695] - Kasim Abass Askar, A Caleb Kudi, A John Moody. Comparative analysis of cholinesterase activities in food animals using modified Ellman and Michel assays.
Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.
2011 Oct; 75(4):261-70. doi:
NULL
. [PMID: 22468023] - Serdal Ogut, Fatih Gultekin, A Nesimi Kisioglu, Erdoğan Kucukoner. Oxidative stress in the blood of farm workers following intensive pesticide exposure.
Toxicology and industrial health.
2011 Oct; 27(9):820-5. doi:
10.1177/0748233711399311
. [PMID: 21450927] - Michael S Filigenzi, Nanette Ehrke, Linda S Aston, Robert H Poppenga. Evaluation of a rapid screening method for chemical contaminants of concern in four food-related matrices using QuEChERS extraction, UHPLC and high resolution mass spectrometry.
Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.
2011 Oct; 28(10):1324-39. doi:
10.1080/19440049.2011.604796
. [PMID: 22007887] - Jeroen van den Bosch, Linda F Oemardien, Malgorzata I Srebniak, Monique Piraud, Jan G M Huijmans, Frans W Verheijen, George J G Ruijter. Prenatal screening of sialic acid storage disease and confirmation in cultured fibroblasts by LC-MS/MS.
Journal of inherited metabolic disease.
2011 Oct; 34(5):1069-73. doi:
10.1007/s10545-011-9351-3
. [PMID: 21617927] - Ashraf S Alias, Muna H I Al-Zubaidy, Yaareb J Mousa, Fouad K Mohammad. Plasma and whole brain cholinesterase activities in three wild bird species in Mosul, IRAQ: In vitro inhibition by insecticides.
Interdisciplinary toxicology.
2011 Sep; 4(3):144-8. doi:
10.2478/v10102-011-0022-x
. [PMID: 22058655] - Ozgür Fırat, Hikmet Y Cogun, Tüzin A Yüzereroğlu, Gülbin Gök, Ozge Fırat, Ferit Kargin, Yasemin Kötemen. A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus.
Fish physiology and biochemistry.
2011 Sep; 37(3):657-66. doi:
10.1007/s10695-011-9466-3
. [PMID: 21229307] - Somayyeh Karami-Mohajeri, Mohammad Abdollahi. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review.
Human & experimental toxicology.
2011 Sep; 30(9):1119-40. doi:
10.1177/0960327110388959
. [PMID: 21071550] - Federica Vacondio, Claudia Silva, Alessio Lodola, Caterina Carmi, Silvia Rivara, Andrea Duranti, Andrea Tontini, Silvano Sanchini, Jason R Clapper, Daniele Piomelli, Giorgio Tarzia, Marco Mor. Biphenyl-3-yl alkylcarbamates as fatty acid amide hydrolase (FAAH) inhibitors: steric effects of N-alkyl chain on rat plasma and liver stability.
European journal of medicinal chemistry.
2011 Sep; 46(9):4466-73. doi:
10.1016/j.ejmech.2011.07.021
. [PMID: 21820769] - Pavel I Kitov, Eugenia Paszkiewicz, Joanna M Sadowska, Zhicheng Deng, Marya Ahmed, Ravin Narain, Thomas P Griener, George L Mulvey, Glen D Armstrong, David R Bundle. Impact of the nature and size of the polymeric backbone on the ability of heterobifunctional ligands to mediate shiga toxin and serum amyloid p component ternary complex formation.
Toxins.
2011 09; 3(9):1065-88. doi:
10.3390/toxins3091065
. [PMID: 22069757] - Ahmed Mostafa, Gregory Medley, Darren M Roberts, Mosaad Sayed Mohamed, Abdalla A Elshanawani, Michael S Roberts, Xin Liu. Simultaneous quantification of carbamate insecticides in human plasma by liquid chromatography/tandem mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2011 Aug; 879(23):2234-8. doi:
10.1016/j.jchromb.2011.06.006
. [PMID: 21723210] - Stephanie M Engel, James Wetmur, Jia Chen, Chenbo Zhu, Dana Boyd Barr, Richard L Canfield, Mary S Wolff. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood.
Environmental health perspectives.
2011 Aug; 119(8):1182-8. doi:
10.1289/ehp.1003183
. [PMID: 21507778] - Virginia Rauh, Srikesh Arunajadai, Megan Horton, Frederica Perera, Lori Hoepner, Dana B Barr, Robin Whyatt. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide.
Environmental health perspectives.
2011 Aug; 119(8):1196-201. doi:
10.1289/ehp.1003160
. [PMID: 21507777] - Melanie Gorman Ng, Ernst Stjernberg, Mieke Koehoorn, Paul A Demers, Hugh W Davies. Exposure to pesticides and metal contaminants of fertilizer among tree planters.
The Annals of occupational hygiene.
2011 Aug; 55(7):752-63. doi:
10.1093/annhyg/mer029
. [PMID: 21673126] - Eliningaya J Kweka, Mramba Nyindo, Franklin Mosha, Ary G Silva. Insecticidal activity of the essential oil from fruits and seeds of Schinus terebinthifolia Raddi against African malaria vectors.
Parasites & vectors.
2011 Jul; 4(?):129. doi:
10.1186/1756-3305-4-129
. [PMID: 21729280] - Marica Orioli, Giulio Vistoli, Luca Regazzoni, Alessandro Pedretti, Annunziata Lapolla, Giuseppe Rossoni, Renato Canevotti, Luca Gamberoni, Massimo Previtali, Marina Carini, Giancarlo Aldini. Design, synthesis, ADME properties, and pharmacological activities of β-alanyl-D-histidine (D-carnosine) prodrugs with improved bioavailability.
ChemMedChem.
2011 Jul; 6(7):1269-82. doi:
10.1002/cmdc.201100042
. [PMID: 21634010] - Xiaojuan Gong, Minoo J Moghaddam, Sharon M Sagnella, Charlotte E Conn, Stephen J Danon, Lynne J Waddington, Calum J Drummond. Lamellar crystalline self-assembly behaviour and solid lipid nanoparticles of a palmityl prodrug analogue of Capecitabine--a chemotherapy agent.
Colloids and surfaces. B, Biointerfaces.
2011 Jul; 85(2):349-59. doi:
10.1016/j.colsurfb.2011.03.007
. [PMID: 21477999] - Susanna Kp Lau, Gilman Km Wong, Alan Kl Tsang, Jade Ll Teng, Rachel Yy Fan, Herman Tse, Kwok-Yung Yuen, Patrick Cy Woo. Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis.
Cell & bioscience.
2011 Apr; 1(1):17. doi:
10.1186/2045-3701-1-17
. [PMID: 21711902] - Michael G Cahill, Giovanni Caprioli, Mary Stack, Sauro Vittori, Kevin J James. Semi-automated liquid chromatography-mass spectrometry (LC-MS/MS) method for basic pesticides in wastewater effluents.
Analytical and bioanalytical chemistry.
2011 Apr; 400(2):587-94. doi:
10.1007/s00216-011-4781-1
. [PMID: 21359575] - Kian Loong Lim, Annie Tay, Vishna Devi Nadarajah, Nilesh Kumar Mitra. The effect of consequent exposure of stress and dermal application of low doses of chlorpyrifos on the expression of glial fibrillary acidic protein in the hippocampus of adult mice.
Journal of occupational medicine and toxicology (London, England).
2011 Mar; 6(1):4. doi:
10.1186/1745-6673-6-4
. [PMID: 21385392] - A B Dongil, B Bachiller-Baeza, A Guerrero-Ruiz, I Rodríguez-Ramos, A Martínez-Alonso, J M D Tascón. Surface chemical modifications induced on high surface area graphite and carbon nanofibers using different oxidation and functionalization treatments.
Journal of colloid and interface science.
2011 Mar; 355(1):179-89. doi:
10.1016/j.jcis.2010.11.066
. [PMID: 21190698] - Ghousia Begum. Organ-specific ATPase and phosphorylase enzyme activities in a food fish exposed to a carbamate insecticide and recovery response.
Fish physiology and biochemistry.
2011 Mar; 37(1):61-9. doi:
10.1007/s10695-010-9417-4
. [PMID: 20623334] - Basar Cander, Ali Dur, Mesut Yildiz, Feridun Koyuncu, Abdullah Sadik Girisgin, Mehmet Gul, Mehmet Okumus. The prognostic value of the Glasgow coma scale, serum acetylcholinesterase and leukocyte levels in acute organophosphorus poisoning.
Annals of Saudi medicine.
2011 Mar; 31(2):163-6. doi:
10.4103/0256-4947.78203
. [PMID: 21422653] - Fa Yuan Wang, Rui Jian Tong, Zhao Yong Shi, Xiao Feng Xu, Xin Hua He. Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils.
PloS one.
2011 Feb; 6(2):e16949. doi:
10.1371/journal.pone.0016949
. [PMID: 21347374] - Wipawadee Sianglum, Potjanee Srimanote, Wijit Wonglumsom, Kanokwan Kittiniyom, Supayang P Voravuthikunchai. Proteome analyses of cellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone, a novel antibiotic candidate.
PloS one.
2011 Feb; 6(2):e16628. doi:
10.1371/journal.pone.0016628
. [PMID: 21326597] - Hayati M Iskandar, Rosanne E Casu, Andrew T Fletcher, Susanne Schmidt, Jingsheng Xu, Donald J Maclean, John M Manners, Graham D Bonnett. Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms.
BMC plant biology.
2011 Jan; 11(?):12. doi:
10.1186/1471-2229-11-12
. [PMID: 21226964] - Nicolas Ginet, Romain Pardoux, Géraldine Adryanczyk, Daniel Garcia, Catherine Brutesco, David Pignol. Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes.
PloS one.
2011; 6(6):e21442. doi:
10.1371/journal.pone.0021442
. [PMID: 21738665] - Tamar Berman, Drorit Hochner-Celnikier, Dana Boyd Barr, Larry L Needham, Yona Amitai, Uri Wormser, Elihu Richter. Pesticide exposure among pregnant women in Jerusalem, Israel: results of a pilot study.
Environment international.
2011 Jan; 37(1):198-203. doi:
10.1016/j.envint.2010.09.002
. [PMID: 20952069] - Maxwell A Ruby, Daniel K Nomura, Carolyn S S Hudak, Anne Barber, John E Casida, Ronald M Krauss. Acute overactive endocannabinoid signaling induces glucose intolerance, hepatic steatosis, and novel cannabinoid receptor 1 responsive genes.
PloS one.
2011; 6(11):e26415. doi:
10.1371/journal.pone.0026415
. [PMID: 22073164] - Yoshiyuki Hattori, Yasuo Nagaoka, Manami Kubo, Haruka Yamasaku, Yuta Ishii, Hiroko Okita, Hiroki Nakano, Shinichi Uesato, Yoshie Maitani. Antitumor effect of liposomal histone deacetylase inhibitor-lipid conjugates in vitro.
Chemical & pharmaceutical bulletin.
2011; 59(11):1386-92. doi:
10.1248/cpb.59.1386
. [PMID: 22041075] - Angela M Delucia, David A Six, Ruth E Caughlan, Patricia Gee, Ian Hunt, Joseph S Lam, Charles R Dean. Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa PAO1.
mBio.
2011; 2(4):. doi:
10.1128/mbio.00142-11
. [PMID: 21810964] - Jeroni Galmés, Miquel Ribas-Carbó, Hipólito Medrano, Jaume Flexas. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress.
Journal of experimental botany.
2011 Jan; 62(2):653-65. doi:
10.1093/jxb/erq303
. [PMID: 21115663] - Oludotun A Phillips, Leyla H Sharaf, Mohammed E Abdel-Hamid, Reny Varghese. Assessment of the stability of novel antibacterial triazolyl oxazolidinones using a stability-indicating high-performance liquid chromatography method.
Medical principles and practice : international journal of the Kuwait University, Health Science Centre.
2011; 20(1):51-9. doi:
10.1159/000319547
. [PMID: 21160215] - Hiroyuki Arai. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa.
Frontiers in microbiology.
2011; 2(?):103. doi:
10.3389/fmicb.2011.00103
. [PMID: 21833336] - Jörg Hofmann, Frederik Börnke, Alfred Schmiedl, Tatjana Kleine, Uwe Sonnewald. Detecting functional groups of Arabidopsis mutants by metabolic profiling and evaluation of pleiotropic responses.
Frontiers in plant science.
2011; 2(?):82. doi:
10.3389/fpls.2011.00082
. [PMID: 22639613] - C P Coyne, Toni Jones, Todd Pharr. Synthesis of a covalent gemcitabine-(carbamate)-[anti-HER2/neu] immunochemotherapeutic and its cytotoxic anti-neoplastic activity against chemotherapeutic-resistant SKBr-3 mammary carcinoma.
Bioorganic & medicinal chemistry.
2011 Jan; 19(1):67-76. doi:
10.1016/j.bmc.2010.11.046
. [PMID: 21169024] - Zhuzhao Tang, Haode Chen, Shiping Song, Chunhai Fan, Dabing Zhang, Aibo Wu. Disposable screen-printed electrode coupled with recombinant Drosophila melanogaster acetylcholinesterase and multiwalled carbon nanotubes for rapid detection of pesticides.
Journal of AOAC International.
2011 Jan; 94(1):307-12. doi:
10.1093/jaoac/94.1.307
. [PMID: 21391508] - Laura Canesi, Alessandro Negri, Cristina Barmo, Mohamed Banni, Gabriella Gallo, Aldo Viarengo, Francesco Dondero. The organophosphate Chlorpyrifos interferes with the responses to 17β-estradiol in the digestive gland of the marine mussel Mytilus galloprovincialis.
PloS one.
2011; 6(5):e19803. doi:
10.1371/journal.pone.0019803
. [PMID: 21625485] - Xiao Lin, Zhuo-Jun Wang, Fang Huang, Shuang Liang, Lan Shen, Yi Feng, Ke-Feng Ruan. Long-circulating delivery of bioactive polysaccharide from radix ophiopogonis by PEGylation.
International journal of nanomedicine.
2011; 6(?):2865-72. doi:
10.2147/ijn.s26306
. [PMID: 22131832] - Audra L E Miller, Kelly Tindall, B Rogers Leonard. Bioassays for monitoring insecticide resistance.
Journal of visualized experiments : JoVE.
2010 Dec; ?(46):. doi:
10.3791/2129
. [PMID: 21248689] - Hong-Ju Ma, Ru-Liang Xie, Qian-Fei Zhao, Xiang-Dong Mei, Jun Ning. Synthesis and insecticidal activity of novel carbamate derivatives as potential dual-binding site acetylcholinesterase inhibitors.
Journal of agricultural and food chemistry.
2010 Dec; 58(24):12817-21. doi:
10.1021/jf1032284
. [PMID: 21114293] - Yoshiaki Miura, Kentaro Kato, Yasuhiro Takegawa, Masaki Kurogochi, Jun-Ichi Furukawa, Yasuro Shinohara, Noriko Nagahori, Maho Amano, Hiroshi Hinou, Shin-Ichiro Nishimura. Glycoblotting-assisted O-glycomics: ammonium carbamate allows for highly efficient o-glycan release from glycoproteins.
Analytical chemistry.
2010 Dec; 82(24):10021-9. doi:
10.1021/ac101599p
. [PMID: 21077635] - Qiumin Tan, Lizhi Zhang, Jan Grant, Pauline Cooper, Mechthild Tegeder. Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants.
Plant physiology.
2010 Dec; 154(4):1886-96. doi:
10.1104/pp.110.166389
. [PMID: 20923886] - Lesetja J Legoabe, David D N'Da, Jaco C Breytenbach, Jan L du Preez, Jeanetta du Plessis. Synthesis and transdermal permeation of novel N4-methoxypoly(ethylene glycol) carbamates of cytarabine.
Drug development and industrial pharmacy.
2010 Dec; 36(12):1477-85. doi:
10.3109/03639045.2010.488646
. [PMID: 20560790] - Dipak Panigrahy, Arja Kaipainen, Emily R Greene, Sui Huang. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer.
Cancer metastasis reviews.
2010 Dec; 29(4):723-35. doi:
10.1007/s10555-010-9264-x
. [PMID: 20941528] - Amy R Marks, Kim Harley, Asa Bradman, Katherine Kogut, Dana Boyd Barr, Caroline Johnson, Norma Calderon, Brenda Eskenazi. Organophosphate pesticide exposure and attention in young Mexican-American children: the CHAMACOS study.
Environmental health perspectives.
2010 Dec; 118(12):1768-74. doi:
10.1289/ehp.1002056
. [PMID: 21126939] - Harald John, Florian Eyer, Thomas Zilker, Horst Thiermann. High-performance liquid-chromatographic tandem-mass spectrometric methods for atropinesterase-mediated enantioselective and chiral determination of R- and S-hyoscyamine in plasma.
Analytica chimica acta.
2010 Nov; 680(1-2):32-40. doi:
10.1016/j.aca.2010.09.018
. [PMID: 20969988] - Janet C McAllister, Mary F Adams. Mode of action for natural products isolated from essential oils of two trees is different from available mosquito adulticides.
Journal of medical entomology.
2010 Nov; 47(6):1123-6. doi:
10.1603/me10098
. [PMID: 21175062]