Lumichrome (BioDeep_00000003489)

 

Secondary id: BioDeep_00000412673

human metabolite blood metabolite Chemicals and Drugs PANOMIX_OTCML-2023 BioNovoGene_Lab2019


代谢物信息卡片


7,8-dimethyl-1H,2H,3H,4H-benzo[g]pteridine-2,4-dione

化学式: C12H10N4O2 (242.0804)
中文名称: 光色素, Lumichrome
谱图信息: 最多检出来源 Homo sapiens(plant) 4.3%

Reviewed

Last reviewed on 2024-07-29.

Cite this Page

Lumichrome. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/lumichrome (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000003489). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC1=CC2=C(C=C1C)N=C3C(=N2)C(=O)NC(=O)N3
InChI: InChI=1S/C12H10N4O2/c1-5-3-7-8(4-6(5)2)14-10-9(13-7)11(17)16-12(18)15-10/h3-4H,1-2H3,(H2,14,15,16,17,18)

描述信息

Lumichrome, also known as light folinic acid or 7,8-dimethyl-10-ribitylisoalloxazine, is a derivative of riboflavin (vitamin B2). The chemical structure of lumichrome consists of a heterocyclic isoalloxazine ring, which is a fused pyridine and pyrazine ring system. The isoalloxazine ring contains a methyl group at the 7 and 8 positions and is substituted at the 10 position with a ribityl group, which is a 5-carbon chain derived from ribose with a methyl group at the 2’ position.

Photocatalytic Activity: Lumichrome exhibits photocatalytic activity and can act as a photosensitizer. It can absorb light energy and transfer it to other molecules, potentially triggering photochemical reactions.
Fluorescence: Lumichrome is known for its fluorescence properties. This characteristic makes it useful in various applications, including fluorescence microscopy and as a labeling agent in biological assays.
Antioxidant Properties: Lumichrome has been found to have antioxidant properties. It can scavenge free radicals, which may help in protecting cells from oxidative stress.
Metabolic Intermediate: In the body, lumichrome can be formed from riboflavin through photochemical or enzymatic degradation. It may play a role in the metabolism of flavins and could be involved in the recycling of flavin cofactors.
Potential Biomarker: Due to its presence in biological tissues and its fluorescence properties, lumichrome has been proposed as a potential biomarker for certain diseases and conditions.
Plant Pigment: In plants, lumichrome can be involved in light capture and energy transfer processes, although it is not a chlorophyll pigment. It may contribute to the overall light-harvesting capabilities of plant tissues.
While lumichrome has several interesting chemical and biological properties, it is not considered an essential nutrient like its parent compound, riboflavin. Its exact role in biological systems is still an area of ongoing research.
Lumichrome, a photodegradation product of Riboflavin, is an endogenous compound in humans. Lumichrome inhibits human lung cancer cell growth and induces apoptosis via a p53-dependent mechanism[1][2].

同义名列表

6 个代谢物同义名

7,8-dimethyl-1H,2H,3H,4H-benzo[g]pteridine-2,4-dione; 7,8-dimethyl-1H-benzo[g]pteridine-2,4-dione; 7,8-Dimethylalloxazine; Lumichrome; Lumichrome; Lumichrome



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

11 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ACO1, BCL2, BLVRB, CASP3, CASP9, COL1A1, CTNNB1, LPO, NFATC1, PIK3CA, RBKS, RUNX2, TNFSF11
Peripheral membrane protein 1 ACHE
Endoplasmic reticulum membrane 1 BCL2
Nucleus 8 ACHE, BCL2, CASP3, CASP9, CTNNB1, NFATC1, RBKS, RUNX2
cytosol 13 ACO1, ACP5, BCL2, BLVRB, CASP3, CASP9, CTNNB1, NFATC1, PIK3CA, PRKCQ, RBKS, RUNX2, UAP1
nuclear body 1 NFATC1
centrosome 1 CTNNB1
nucleoplasm 7 BLVRB, CASP3, CD2, CTNNB1, NFATC1, RUNX2, UAP1
Cell membrane 4 ACHE, CD2, CTNNB1, TNFSF11
lamellipodium 2 CTNNB1, PIK3CA
Multi-pass membrane protein 1 SLC25A46
Synapse 2 ACHE, CTNNB1
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 2 ACHE, CD2
glutamatergic synapse 2 CASP3, CTNNB1
Golgi apparatus 3 ACHE, ACO1, CD2
neuromuscular junction 1 ACHE
neuronal cell body 1 CASP3
presynaptic membrane 1 CTNNB1
Cytoplasm, cytosol 2 ACO1, UAP1
Lysosome 1 ACP5
plasma membrane 8 ACHE, BLVRB, CD2, CTNNB1, PIK3CA, PRKCQ, TNFSF11, UAP1
Membrane 6 ACHE, ACP5, BCL2, COL1A1, CTNNB1, TNFSF11
basolateral plasma membrane 2 CTNNB1, LPO
extracellular exosome 4 ACO1, BLVRB, CTNNB1, LPO
endoplasmic reticulum 2 ACO1, BCL2
extracellular space 4 ACHE, COL1A1, LPO, TNFSF11
perinuclear region of cytoplasm 4 ACHE, CTNNB1, NFATC1, PIK3CA
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 5 ACO1, BCL2, CASP9, CISD1, SLC25A46
protein-containing complex 4 BCL2, CASP9, CD2, CTNNB1
intracellular membrane-bounded organelle 1 BLVRB
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 CD2
Secreted 3 ACHE, LPO, TNFSF11
extracellular region 5 ACHE, CD2, COL1A1, LPO, TNFSF11
cytoplasmic side of plasma membrane 1 CD2
Mitochondrion outer membrane 3 BCL2, CISD1, SLC25A46
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, CISD1, SLC25A46
Extracellular side 1 ACHE
transcription regulator complex 3 CTNNB1, NFATC1, RUNX2
centriolar satellite 1 PRKCQ
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 CD2
Secreted, extracellular space, extracellular matrix 1 COL1A1
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
Wnt signalosome 1 CTNNB1
sarcoplasm 1 NFATC1
apical part of cell 1 CTNNB1
cell-cell junction 2 CD2, CTNNB1
Single-pass type II membrane protein 1 TNFSF11
postsynaptic membrane 1 CTNNB1
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 1 CTNNB1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
basement membrane 1 ACHE
collagen trimer 1 COL1A1
collagen-containing extracellular matrix 1 COL1A1
secretory granule 1 COL1A1
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
chromatin 2 NFATC1, RUNX2
cell periphery 1 CTNNB1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
Lipid-anchor, GPI-anchor 1 ACHE
microvillus membrane 1 CTNNB1
Endomembrane system 1 CTNNB1
euchromatin 1 CTNNB1
side of membrane 1 ACHE
myelin sheath 1 BCL2
endoplasmic reticulum lumen 1 COL1A1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
beta-catenin-TCF complex 1 CTNNB1
Single-pass type III membrane protein 1 CISD1
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
apoptosome 1 CASP9
[Isoform 2]: Cytoplasm 1 TNFSF11
[Tumor necrosis factor ligand superfamily member 11, soluble form]: Secreted 1 TNFSF11
presynaptic active zone cytoplasmic component 1 CTNNB1
synaptic cleft 1 ACHE
protein-DNA complex 1 CTNNB1
death-inducing signaling complex 1 CASP3
catenin complex 1 CTNNB1
collagen type I trimer 1 COL1A1
BAD-BCL-2 complex 1 BCL2
beta-catenin-TCF7L2 complex 1 CTNNB1
[Isoform H]: Cell membrane 1 ACHE
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9


文献列表

  • Karl Speer, Norman Tanner, Isabelle Kölling-Speer, Anke Rohleder, Linda Zeippert, Nicole Beitlich, Birgit Lichtenberg-Kraag. Cornflower Honey as a Model for Authentication of Unifloral Honey Using Classical Methods Combined with Plant-Based Marker Substances Such as Lumichrome. Journal of agricultural and food chemistry. 2021 Sep; 69(38):11406-11416. doi: 10.1021/acs.jafc.1c03621. [PMID: 34529418]
  • Aloke Bapli, Rajesh Kumar Gautam, Rabindranath Jana, Debabrata Seth. Investigation of Different Prototropic Forms of Biologically Active Flavin Lumichrome in the Presence of Liposome. Photochemistry and photobiology. 2019 09; 95(5):1151-1159. doi: 10.1111/php.13105. [PMID: 30932194]
  • Ana J S Alves, José A Pereira, Tida Dethoup, Sara Cravo, Sharad Mistry, Artur M S Silva, Madalena M M Pinto, Anake Kijjoa. A New Meroterpene, A New Benzofuran Derivative and Other Constituents from Cultures of the Marine Sponge-Associated Fungus Acremonium persicinum KUFA 1007 and Their Anticholinesterase Activities. Marine drugs. 2019 Jun; 17(6):. doi: 10.3390/md17060379. [PMID: 31242631]
  • Motlalepula Pholo, Beatrix Coetzee, Hans J Maree, Philip R Young, James R Lloyd, Jens Kossmann, Paul N Hills. Cell division and turgor mediate enhanced plant growth in Arabidopsis plants treated with the bacterial signalling molecule lumichrome. Planta. 2018 Aug; 248(2):477-488. doi: 10.1007/s00425-018-2916-8. [PMID: 29777364]
  • Victoria J Valerón Bergh, Hanne Hjorth Tønnesen. Interaction between the photosensitizer lumichrome and human serum albumin: effect of excipients. Pharmaceutical development and technology. 2017 Dec; 22(8):992-1000. doi: 10.1080/10837450.2016.1212883. [PMID: 27465857]
  • Mallika Kumarihamy, Shabana I Khan, Melissa Jacob, Babu L Tekwani, Stephen O Duke, Daneel Ferreira, N P Dhammika Nanayakkara. Antiprotozoal and antimicrobial compounds from the plant pathogen Septoria pistaciarum. Journal of natural products. 2012 May; 75(5):883-9. doi: 10.1021/np200940b. [PMID: 22530813]
  • Liezel M Gouws, Eileen Botes, Anna J Wiese, Sandra Trenkamp, Ivone Torres-Jerez, Yuhong Tang, Paul N Hills, Björn Usadel, James R Lloyd, Alisdair R Fernie, Jens Kossmann, Margaretha J van der Merwe. The plant growth promoting substance, lumichrome, mimics starch, and ethylene-associated symbiotic responses in lotus and tomato roots. Frontiers in plant science. 2012; 3(?):120. doi: 10.3389/fpls.2012.00120. [PMID: 22701462]
  • Nan Wang, Wajahatullah Khan, Donald L Smith. Changes in soybean global gene expression after application of lipo-chitooligosaccharide from Bradyrhizobium japonicum under sub-optimal temperature. PloS one. 2012; 7(2):e31571. doi: 10.1371/journal.pone.0031571. [PMID: 22348109]
  • David P Dixon, Jonathan D Sellars, Robert Edwards. The Arabidopsis phi class glutathione transferase AtGSTF2: binding and regulation by biologically active heterocyclic ligands. The Biochemical journal. 2011 Aug; 438(1):63-70. doi: 10.1042/bj20101884. [PMID: 21631432]
  • Maria Marchena, Michał Gil, Cristina Martín, Juan Angel Organero, Francisco Sanchez, Abderrazzak Douhal. Stability and photodynamics of lumichrome structures in water at different pHs and in chemical and biological caging media. The journal of physical chemistry. B. 2011 Mar; 115(10):2424-35. doi: 10.1021/jp110134f. [PMID: 21332111]
  • Wajahatullah Khan, Balakrishnan Prithiviraj, Donald L Smith. Nod factor [Nod Bj V (C(18:1), MeFuc)] and lumichrome enhance photosynthesis and growth of corn and soybean. Journal of plant physiology. 2008 Sep; 165(13):1342-51. doi: 10.1016/j.jplph.2007.11.001. [PMID: 18190997]
  • Sathish Rajamani, Wolfgang D Bauer, Jayne B Robinson, John M Farrow, Everett C Pesci, Max Teplitski, Mengsheng Gao, Richard T Sayre, Donald A Phillips. The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Molecular plant-microbe interactions : MPMI. 2008 Sep; 21(9):1184-92. doi: 10.1094/mpmi-21-9-1184. [PMID: 18700823]
  • Heather L Reddy, Anthony D Dayan, Joy Cavagnaro, Shayne Gad, Junzhi Li, Raymond P Goodrich. Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation. Transfusion medicine reviews. 2008 Apr; 22(2):133-53. doi: 10.1016/j.tmrv.2007.12.003. [PMID: 18353253]
  • S Supanjani, A Habib, F Mabood, K D Lee, D Donnelly, D L Smith. Nod factor enhances calcium uptake by soybean. Plant physiology and biochemistry : PPB. 2006 Nov; 44(11-12):866-72. doi: 10.1016/j.plaphy.2006.10.001. [PMID: 17092733]
  • Viviene N Matiru, Felix D Dakora. The rhizosphere signal molecule lumichrome alters seedling development in both legumes and cereals. The New phytologist. 2005 May; 166(2):439-44. doi: 10.1111/j.1469-8137.2005.01344.x. [PMID: 15819908]
  • V N Matiru, F D Dakora. Xylem transport and shoot accumulation of lumichrome, a newly recognized rhizobial signal, alters root respiration, stomatal conductance, leaf transpiration and photosynthetic rates in legumes and cereals. The New phytologist. 2005 Mar; 165(3):847-55. doi: 10.1111/j.1469-8137.2004.01254.x. [PMID: 15720696]
  • Frank Corbin. Pathogen inactivation of blood components: current status and introduction of an approach using riboflavin as a photosensitizer. International journal of hematology. 2002 Aug; 76 Suppl 2(?):253-7. doi: 10.1007/bf03165125. [PMID: 12430933]
  • N Yanagawa, R N Shih, O D Jo, H M Said. Riboflavin transport by isolated perfused rabbit renal proximal tubules. American journal of physiology. Cell physiology. 2000 Dec; 279(6):C1782-6. doi: 10.1152/ajpcell.2000.279.6.c1782. [PMID: 11078692]
  • D G Kindack, A MacIntosh, M Lebelle, G Carignan, S Sved. Separation, identification and determination of lumichrome in swine feed and kidney. Food additives and contaminants. 1991 Nov; 8(6):737-48. doi: 10.1080/02652039109374032. [PMID: 1812021]
  • M Oka, D B McCormick. Urinary lumichrome-level catabolites of riboflavin are due to microbial and photochemical events and not rat tissue enzymatic cleavage of the ribityl chain. The Journal of nutrition. 1985 Apr; 115(4):496-9. doi: 10.1093/jn/115.4.496. [PMID: 3981268]
  • H Ohkawa, N Ohishi, K Yagi. New metabolites of riboflavin appeared in rat urine. Biochemistry international. 1983 Feb; 6(2):239-47. doi: NULL. [PMID: 6679322]
  • P S Song, I S Kim, T R Hahn. Purification of phytochrome by Affi-Gel Blue chromatography; an effect of lumichrome on purified phytochrome. Analytical biochemistry. 1981 Oct; 117(1):32-9. doi: 10.1016/0003-2697(81)90687-4. [PMID: 7316195]
  • R Spector. Lumiflavin and lumichrome transport in the central nervous system. Journal of neurochemistry. 1981 Mar; 36(3):1186-91. doi: 10.1111/j.1471-4159.1981.tb01717.x. [PMID: 7205265]
  • D D Bikle, E W Murphy, H Rasmussen. The ionic control of 1,25-dihydroxyvitamin D-3 synthesis in isolated chick renal mitochondria. The role of potassium. Biochimica et biophysica acta. 1976 Jul; 437(2):394-402. doi: 10.1016/0304-4165(76)90009-x. [PMID: 8103]
  • R M Graham, H F Oates, M A Weber, G S Stokes. Suppression of renin release by timolol. Archives internationales de pharmacodynamie et de therapie. 1976 Feb; 219(2):205-10. doi: . [PMID: 5974]