Classification Term: 204
Flavins (ontology term: CHEMONTID:0001249)
Compounds containing a flavin (7,8-dimethyl-benzo[g]pteridine-2,4-dione) moiety, with a structure characterized by an isoalloaxzine tricyclic ring." []
found 7 associated metabolites at category
metabolite taxonomy ontology rank level.
Ancestor: Alloxazines and isoalloxazines
Child Taxonomies: There is no child term of current ontology term.
Riboflavin (Vitamin B2)
Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolizing of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin is found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. Riboflavin is yellow or orange-yellow in color and in addition to being used as a food coloring it is also used to fortify some foods. It can be found in baby foods, breakfast cereals, sauces, processed cheese, fruit drinks and vitamin-enriched milk products. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin adenine dinucleotide. Riboflavin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-88-5 (retrieved 2024-07-01) (CAS RN: 83-88-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient. Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.
Lumichrome
Lumichrome, also known as light folinic acid or 7,8-dimethyl-10-ribitylisoalloxazine, is a derivative of riboflavin (vitamin B2). The chemical structure of lumichrome consists of a heterocyclic isoalloxazine ring, which is a fused pyridine and pyrazine ring system. The isoalloxazine ring contains a methyl group at the 7 and 8 positions and is substituted at the 10 position with a ribityl group, which is a 5-carbon chain derived from ribose with a methyl group at the 2’ position. Photocatalytic Activity: Lumichrome exhibits photocatalytic activity and can act as a photosensitizer. It can absorb light energy and transfer it to other molecules, potentially triggering photochemical reactions. Fluorescence: Lumichrome is known for its fluorescence properties. This characteristic makes it useful in various applications, including fluorescence microscopy and as a labeling agent in biological assays. Antioxidant Properties: Lumichrome has been found to have antioxidant properties. It can scavenge free radicals, which may help in protecting cells from oxidative stress. Metabolic Intermediate: In the body, lumichrome can be formed from riboflavin through photochemical or enzymatic degradation. It may play a role in the metabolism of flavins and could be involved in the recycling of flavin cofactors. Potential Biomarker: Due to its presence in biological tissues and its fluorescence properties, lumichrome has been proposed as a potential biomarker for certain diseases and conditions. Plant Pigment: In plants, lumichrome can be involved in light capture and energy transfer processes, although it is not a chlorophyll pigment. It may contribute to the overall light-harvesting capabilities of plant tissues. While lumichrome has several interesting chemical and biological properties, it is not considered an essential nutrient like its parent compound, riboflavin. Its exact role in biological systems is still an area of ongoing research. Lumichrome, a photodegradation product of Riboflavin, is an endogenous compound in humans. Lumichrome inhibits human lung cancer cell growth and induces apoptosis via a p53-dependent mechanism[1][2].
Riboflavin cyclic-4',5'-phosphate
Riboflavin cyclic-4,5-phosphate, also known as cfmn or cyclic flavin mononucleotide, is a member of the class of compounds known as flavins. Flavins are compounds containing a flavin (7,8-dimethyl-benzo[g]pteridine-2,4-dione) moiety, with a structure characterized by an isoalloaxzine tricyclic ring. Riboflavin cyclic-4,5-phosphate is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Riboflavin cyclic-4,5-phosphate can be found in a number of food items such as sea-buckthornberry, horseradish tree, malabar spinach, and wild rice, which makes riboflavin cyclic-4,5-phosphate a potential biomarker for the consumption of these food products. Riboflavin cyclic-4,5-phosphate is part of the Glycerolipid metabolism, and RIG-I-like receptor signaling pathway pathways. It is a substrate for: Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing).
Riboflavine 2',3',4',5'-tetrabutanoate
Riboflavine 2,3,4,5-tetrabutanoate is widely used food additiv Widely used food additive.