L-Cysteine (BioDeep_00000001666)
Secondary id: BioDeep_00000405792
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin BioNovoGene_Lab2019 natural product
代谢物信息卡片
化学式: C3H7NO2S (121.0197)
中文名称: L-半胱氨酸, 半胱氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 23.72%
Last reviewed on 2024-07-01.
Cite this Page
L-Cysteine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/l-cysteine (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001666). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C(C(=O)O)N)S
InChI: InChI=1S/C3H7NO2S/c4-2(1-7)3(5)6/h2,7H,1,4H2,(H,5,6)
描述信息
Cysteine (Cys), also known as L-cysteine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-alanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Cysteine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar, sulfur-containing amino acid. Cysteine is an important source of sulfur in human metabolism, and although it is classified as a non-essential amino acid, cysteine may be essential for infants, the elderly, and individuals with certain metabolic disease or who suffer from malabsorption syndromes. Cysteine can occasionally be considered as an essential or conditionally essential amino acid. Cysteine is unique amongst the twenty natural amino acids as it contains a thiol group. Thiol groups can undergo oxidation/reduction (redox) reactions; when cysteine is oxidized it can form cystine, which is two cysteine residues joined by a disulfide bond. This reaction is reversible since the reduction of this disulphide bond regenerates two cysteine molecules. The disulphide bonds of cystine are crucial to defining the structures of many proteins. Cysteine is often involved in electron-transfer reactions, and help the enzyme catalyze its reaction. Cysteine is also part of the antioxidant glutathione. N-Acetyl-L-cysteine (NAC) is a form of cysteine where an acetyl group is attached to cysteines nitrogen atom and is sold as a dietary supplement. Cysteine is named after cystine, which comes from the Greek word kustis meaning bladder (cystine was first isolated from kidney stones). Oxidation of cysteine can produce a disulfide bond with another thiol and further oxidation can produce sulphfinic or sulfonic acids. The cysteine thiol group is also a nucleophile and can undergo addition and substitution reactions. Thiol groups become much more reactive when they are ionized, and cysteine residues in proteins have pKa values close to neutrality, so they are often in their reactive thiolate form in the cell. The thiol group also has a high affinity for heavy metals and proteins containing cysteine will bind metals such as mercury, lead, and cadmium tightly. Due to this ability to undergo redox reactions, cysteine has antioxidant properties. Cysteine is important in energy metabolism. As cystine, it is a structural component of many tissues and hormones. Cysteine has clinical uses ranging from treating baldness to psoriasis to preventing smokers hack. In some cases, oral cysteine therapy has proved excellent for treatment of asthmatics, enabling them to stop theophylline and other medications. Cysteine also enhances the effect of topically applied silver, tin, and zinc salts in preventing dental cavities. In the future, cysteine may play a role in the treatment of cobalt toxicity, diabetes, psychosis, cancer, and seizures (http://www.dcnutrition.com/AminoAcids/). Cysteine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821).
[Spectral] L-Cysteine (exact mass = 121.01975) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] L-Cysteine (exact mass = 121.01975) and Creatine (exact mass = 131.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
Detoxicant, dietary supplement, dough strengthener, yeast nutrient for leavened bakery products. Flavouring agent. Enzymic browning inhibitor. L-Cysteine is found in many foods, some of which are bilberry, mugwort, cowpea, and sweet bay.
L-(+)-Cysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-90-4 (retrieved 2024-07-01) (CAS RN: 52-90-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].
L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].
同义名列表
56 个代谢物同义名
α-amino-β-thiolpropionic acid; (2R)-2-Amino-3-sulphanylpropanoic acid; (R)-2-Amino-3-mercapto-propanoic acid; (2R)-2-Amino-3-sulfanylpropanoic acid; (2R)-2-Amino-3-mercaptopropanoic acid; alpha-Amino-beta-thiolpropionic acid; (R)-2-Amino-3-mercaptopropanoic acid; (+)-2-Amino-3-mercaptopropionic acid; L-2-Amino-3-mercaptopropanoic acid; (2R)-2-Amino-3-sulphanylpropanoate; L-2-Amino-3-mercaptopropionic acid; (R)-2-Amino-3-mercapto-propanoate; (2R)-2-Amino-3-mercaptopropanoate; (2R)-2-Amino-3-sulfanylpropanoate; (R)-2-Amino-3-mercaptopropanoate; 2-Amino-3-mercaptopropionic acid; 2-Amino-3-mercaptopropanoic acid; L-2-Amino-3-mercaptopropanoate; L-2-Amino-3-mercaptopropionate; 2-Amino-3-mercaptopropionate; 2-Amino-3-mercaptopropanoate; β-mercaptoalanine; Cysteine hydrochloride; 3-Mercapto-L-alanine; beta-Mercaptoalanine; b-Mercaptoalanine; (R)-(+)-Cysteine; Zinc cysteinate; L-(+)-Cysteine; Acetylcysteine; Carbocysteine; FREE cysteine; (R)-Cysteine; D,L-Cysteine; Polycysteine; Half cystine; Half-cystine; Thioserine; L Cysteine; L-cysteine; L-Cystein; Cisteinum; Cysteinum; L-Zystein; Cysteine; Cisteina; Cystein; Ecolan; e 920; e-920; e920; Cys; C; Cysteine; Cysteine; L-Cysteine
数据库引用编号
34 个数据库交叉引用编号
- ChEBI: CHEBI:17561
- KEGG: C00097
- KEGGdrug: D00026
- PubChem: 5862
- PubChem: 594
- HMDB: HMDB0000574
- Metlin: METLIN63299
- DrugBank: DB00151
- ChEMBL: CHEMBL863
- Wikipedia: Cysteine
- MeSH: Cysteine
- MetaCyc: CYS
- KNApSAcK: C00001351
- foodb: FDB012678
- chemspider: 5653
- CAS: 52-90-4
- MoNA: PB000439
- MoNA: KNA00370
- MoNA: PB000437
- MoNA: KNA00145
- MoNA: KNA00146
- MoNA: KNA00368
- MoNA: PB000438
- MoNA: PB000436
- PMhub: MS000000948
- PDB-CCD: CYS
- 3DMET: B01159
- NIKKAJI: J9.167G
- medchemexpress: HY-Y0337
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-15
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-762
- PubChem: 3397
- KNApSAcK: 17561
- LOTUS: LTS0081783
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
PlantCyc(0)
代谢反应
193 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(7)
- pantothenate and coenzyme A biosynthesis:
α-ketoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
- cysteine and homocysteine interconversion:
H2O + cystathionine ⟶ 2-oxobutanoate + L-cysteine + ammonia
- glutathione biosynthesis:
ATP + L-γ-glutamylcysteine + glycine ⟶ ADP + glutathione + phosphate
- gamma-glutamyl cycle:
Cys-Gly + an α-(γ-L-glutamyl)-L-amino acid ⟶ an amino acid + glutathione
- cysteine degradation:
α-ketoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + L-glutamate
- tRNA charging pathway:
ATP + L-serine ⟶ AMP + pyrophosphate
- threonine degradation:
2-oxobutanoate + ammonia + succinate ⟶ H2O + O-succinyl-L-homoserine
WikiPathways(9)
- Ethylmalonic encephalopathy:
SO3 2- (sulfite) ⟶ SO4 2- (sulfate)
- Oxidative stress and redox pathway:
GSH ⟶ Cysteinyl-glycine
- Trans-sulfuration and one-carbon metabolism:
Methionine ⟶ Decarboxylated SAM
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
- One-carbon metabolism and related pathways:
5-oxoproline ⟶ Glutamate
- Gamma-glutamyl cycle for the biosynthesis and degradation of glutathione, including diseases:
Glutathione ⟶ Cysteinylglycine
- Folate-alcohol and cancer pathway hypotheses:
Cysteine ⟶ Cystathionine
- Methionine metabolism leading to sulfur amino acids and related disorders:
Adenosine ⟶ AMP
- Ferroptosis:
GSH ⟶ GSSG
Plant Reactome(0)
INOH(5)
- Methionine and Cysteine metabolism ( Methionine and Cysteine metabolism ):
H2O + L-Cystathionine ⟶ 2-Oxo-butanoic acid + L-Cysteine + NH3
- Glutamic acid and Glutamine metabolism ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamine + tRNA(Gln) ⟶ AMP + L-Glutaminyl-tRNA(Gln) + Pyrophosphate
- 2-Oxo-glutaric acid + L-Cysteine = L-Glutamic acid + 3-Mercapto-pyruvic acid ( Glycine and Serine metabolism ):
3-Mercapto-pyruvic acid + L-Glutamic acid ⟶ 2-Oxo-glutaric acid + L-Cysteine
- 2-Oxo-glutaric acid + L-Cysteine = L-Glutamic acid + 3-Mercapto-pyruvic acid ( Methionine and Cysteine metabolism ):
2-Oxo-glutaric acid + L-Cysteine ⟶ 3-Mercapto-pyruvic acid + L-Glutamic acid
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(172)
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Methionine Biosynthesis:
L-Cysteine + O-succinyl-L-homoserine ⟶ Hydrogen Ion + L-Cystathionine + Succinic acid
- Methionine Biosynthesis:
L-Cysteine + O-succinyl-L-homoserine ⟶ Hydrogen Ion + L-Cystathionine + Succinic acid
- Glutathione Metabolism:
Glutathione + L-Cysteine ⟶ -Glutamylcysteine + Cysteinylglycine
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- beta-Alanine Metabolism:
(R)-pantoate + -Alanine + Adenosine triphosphate ⟶ Adenosine monophosphate + Hydrogen Ion + Pantothenic acid + Pyrophosphate
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- Cysteine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- Alanine Metabolism:
L-Tryptophan + Pyruvic acid ⟶ L-Alanine + indole-3-pyruvate
- Thio-Molybdenum Cofactor Biosynthesis:
Hydrogen Ion + Molybdate + Molybdopterin-AMP ⟶ Adenosine monophosphate + Water + molybdenum cofactor (Moco)
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- Methionine Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Glutathione Metabolism:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Glutathione Synthetase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- 5-Oxoprolinuria:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- gamma-Glutamyltransferase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- 5-Oxoprolinase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- gamma-Glutamyltranspeptidase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Glutathione Metabolism:
-Glutamylcysteine + Adenosine triphosphate + Glycine ⟶ Adenosine diphosphate + Glutathione + Hydrogen Ion + Phosphate
- Glutathione Metabolism II:
1-Nitronaphthalene-5,6-oxide + Glutathione ⟶ 1-Nitro-5-glutathionyl-6-hydroxy-5,6-dihydronaphthalene
- Glutathione Metabolism III:
-Glutamylcysteine + Adenosine triphosphate + Glycine ⟶ Adenosine diphosphate + Glutathione + Hydrogen Ion + Phosphate
- Hydrogen Sulfide Biosynthesis I:
L-Cysteine + Oxoglutaric acid ⟶ 3-Mercaptopyruvic acid + L-Glutamic acid
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 5-Oxoprolinuria:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltransferase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Synthetase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 5-Oxoprolinase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltranspeptidase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 5-Oxoprolinuria:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltransferase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Synthetase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 5-Oxoprolinase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltranspeptidase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutathione Metabolism:
Hydrogen Ion + NADPH + Oxidized glutathione ⟶ Glutathione + NADP
- Glutathione Metabolism II:
1-Nitronaphthalene-5,6-oxide + Glutathione ⟶ 1-Nitro-5-glutathionyl-6-hydroxy-5,6-dihydronaphthalene
- Glutathione Metabolism III:
Hydrogen Ion + NADPH + Oxidized glutathione ⟶ Glutathione + NADP
- Hydrogen Sulfide Biosynthesis I:
Adenosine triphosphate + L-Cysteine + Water ⟶ Adenosine diphosphate + Hydrogen Ion + L-Cysteine + Phosphate
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Secondary Metabolites: Cysteine Biosynthesis from Serine:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Secondary Metabolites: Cysteine Biosynthesis from Serine:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Taurine and Hypotaurine Metabolism:
L-Cysteine + Oxygen ⟶ 3-Sulfinoalanine
- Taurine and Hypotaurine Metabolism:
L-Cysteine + Oxygen ⟶ 3-Sulfinoalanine
- Taurine and Hypotaurine Metabolism:
L-Cysteine + Oxygen ⟶ 3-Sulfinoalanine
- Taurine and Hypotaurine Metabolism:
L-Cysteine + Oxygen ⟶ 3-Sulfinoalanine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- gamma-Cystathionase Deficiency (CTH):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria, Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- L-Cysteine Degradation:
L-Cysteine ⟶ 2-aminoprop-2-enoate + Hydrogen Ion + Hydrogen sulfide
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- gamma-Cystathionase Deficiency (CTH):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria, Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Protein Synthesis: Cysteine:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Cysteine:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Cysteine:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Cysteine:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- gamma-Cystathionase Deficiency (CTH):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria, Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Terpenoid Backbone Biosynthesis:
Farnesylcysteine + Oxygen + Water ⟶ 2-trans,6-trans-Farnesal + Hydrogen peroxide + L-Cysteine
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
PharmGKB(0)
122 个相关的物种来源信息
- 4678 - Allium: LTS0081783
- 4679 - Allium cepa: 10.1271/BBB.58.108
- 4679 - Allium cepa: LTS0081783
- 4668 - Amaryllidaceae: LTS0081783
- 3701 - Arabidopsis: LTS0081783
- 3702 - Arabidopsis thaliana: 10.1093/MP/SST168
- 3702 - Arabidopsis thaliana: LTS0081783
- 6656 - Arthropoda: LTS0081783
- 4890 - Ascomycota: LTS0081783
- 4210 - Asteraceae: LTS0081783
- 91061 - Bacilli: LTS0081783
- 2 - Bacteria: LTS0081783
- 6658 - Branchiopoda: LTS0081783
- 3705 - Brassica: LTS0081783
- 3708 - Brassica napus: 10.1021/JF00011A007
- 3708 - Brassica napus: LTS0081783
- 3700 - Brassicaceae: LTS0081783
- 3820 - Cajanus: LTS0081783
- 3821 - Cajanus cajan: 10.1055/S-2006-960880
- 3821 - Cajanus cajan: LTS0081783
- 5475 - Candida: LTS0081783
- 5476 - Candida albicans: LTS0081783
- 21019 - Castanea: LTS0081783
- 21020 - Castanea sativa: 10.1016/S0031-9422(00)83785-1
- 21020 - Castanea sativa: LTS0081783
- 3051 - Chlamydomonadaceae: LTS0081783
- 3052 - Chlamydomonas: LTS0081783
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0081783
- 3166 - Chlorophyceae: LTS0081783
- 3041 - Chlorophyta: LTS0081783
- 7711 - Chordata: LTS0081783
- 3660 - Cucurbita: LTS0081783
- 184136 - Cucurbita foetidissima: 10.1021/JF60216A022
- 184136 - Cucurbita foetidissima: LTS0081783
- 3650 - Cucurbitaceae: LTS0081783
- 6668 - Daphnia: LTS0081783
- 35525 - Daphnia magna: 10.1016/J.ENVINT.2009.12.006
- 35525 - Daphnia magna: LTS0081783
- 77658 - Daphniidae: LTS0081783
- 766764 - Debaryomycetaceae: LTS0081783
- 543 - Enterobacteriaceae: LTS0081783
- 561 - Escherichia: LTS0081783
- 562 - Escherichia coli: LTS0081783
- 33682 - Euglenozoa: LTS0081783
- 2759 - Eukaryota: LTS0081783
- 3803 - Fabaceae: LTS0081783
- 3503 - Fagaceae: LTS0081783
- 4751 - Fungi: LTS0081783
- 1236 - Gammaproteobacteria: LTS0081783
- 9604 - Hominidae: LTS0081783
- 9605 - Homo: LTS0081783
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0081783
- 9606 - Homo sapiens: NA
- 20685 - Indigofera: LTS0081783
- 520844 - Indigofera hendecaphylla: 10.1021/JF60189A002
- 520844 - Indigofera hendecaphylla: LTS0081783
- 539088 - Indigofera hirsuta: 10.1021/JF60189A002
- 539088 - Indigofera hirsuta: LTS0081783
- 3089969 - Indigofera pilosa: LTS0081783
- 138272 - Indigofera schimperi: 10.1021/JF60189A002
- 138272 - Indigofera schimperi: LTS0081783
- 5653 - Kinetoplastea: LTS0081783
- 4447 - Liliopsida: LTS0081783
- 29683 - Lophatherum gracile: -
- 3398 - Magnoliopsida: LTS0081783
- 3629 - Malvaceae: LTS0081783
- 40674 - Mammalia: LTS0081783
- 33208 - Metazoa: LTS0081783
- 3487 - Moraceae: LTS0081783
- 10066 - Muridae: LTS0081783
- 10088 - Mus: LTS0081783
- 10090 - Mus musculus: 10.1021/PR5006394
- 10090 - Mus musculus: LTS0081783
- 10090 - Mus musculus: NA
- 4432 - Nelumbo nucifera: -
- 4085 - Nicotiana: LTS0081783
- 4097 - Nicotiana tabacum: 10.1007/BF02660305
- 4097 - Nicotiana tabacum: LTS0081783
- 148715 - Pentaclethra: LTS0081783
- 148716 - Pentaclethra macrophylla: 10.1007/BF02666050
- 148716 - Pentaclethra macrophylla: LTS0081783
- 3887 - Pisum: LTS0081783
- 3888 - Pisum sativum: LTS0081783
- 208194 - Pisum sativum subsp. sativum: 10.1007/BF00574236
- 208194 - Pisum sativum subsp. sativum: LTS0081783
- 3754 - Prunus: LTS0081783
- 3758 - Prunus domestica: 10.1021/JF00017A016
- 3758 - Prunus domestica: LTS0081783
- 2872799 - Ripariosida: LTS0081783
- 108447 - Ripariosida hermaphrodita: LTS0081783
- 3745 - Rosaceae: LTS0081783
- 4891 - Saccharomycetes: LTS0081783
- 590 - Salmonella: LTS0081783
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0081783
- 77655 - Sida: LTS0081783
- 108447 - Sida hermaphrodita: 10.1007/BF00607552
- 4070 - Solanaceae: LTS0081783
- 90964 - Staphylococcaceae: LTS0081783
- 1279 - Staphylococcus: LTS0081783
- 1280 - Staphylococcus aureus: LTS0081783
- 1883 - Streptomyces: LTS0081783
- 1901 - Streptomyces clavuligerus: 10.1128/AEM.07699-11
- 1901 - Streptomyces clavuligerus: LTS0081783
- 2062 - Streptomycetaceae: LTS0081783
- 35493 - Streptophyta: LTS0081783
- 56538 - Telekia: LTS0081783
- 56539 - Telekia speciosa: 10.1007/BF00633415
- 56539 - Telekia speciosa: LTS0081783
- 58023 - Tracheophyta: LTS0081783
- 709071 - Treculia: LTS0081783
- 709072 - Treculia africana: 10.1007/BF02666050
- 709072 - Treculia africana: LTS0081783
- 5690 - Trypanosoma: LTS0081783
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0081783
- 5654 - Trypanosomatidae: LTS0081783
- 33090 - Viridiplantae: LTS0081783
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Kaixue Zhang, Wenjuan Liu, Fukui Shen, Guoqing Luan, Yanqi Han, Jun Xu, Cheng Fu, Weidong Wu, Yuanyuan Hou, Min Jiang, Tiejun Zhang, Gang Bai. Ligustilide covalently binds to Cys703 in the pre-S1 helix of TRPA1, blocking the opening of channel and relieving pain in rats with acute soft tissue injury.
Journal of ethnopharmacology.
2024 Aug; 330(?):118217. doi:
10.1016/j.jep.2024.118217
. [PMID: 38641072] - Xiongbo Liu, Jiali Zhu, Qiangsheng Zhang, Hao Hu, Wei Zhang, Hui Xu, Yan Huang, Jialin Xie, Hongtao Liu, Yan Feng, Jianwei Li, Chunman Jia. Multifunctional fluorescent probe for simultaneous revealing Cys and ONOO- dynamic correlation in the ferroptosis.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2024 Jul; 315(?):124248. doi:
10.1016/j.saa.2024.124248
. [PMID: 38599026] - Viviane Maria de Sousa Fontes, Mércia de Sousa Galvão, Leila Moreira de Carvalho, Fabyan Laís do Nascimento Guedes, Marcos Dos Santos Lima, Taliana Kênia Alencar Bezerra, Marta Suely Madruga. Thiamine, cysteine and xylose added to the Maillard reaction of goat protein hydrolysate potentiates the formation of meat flavoring compounds.
Food chemistry.
2024 Jul; 445(?):138398. doi:
10.1016/j.foodchem.2024.138398
. [PMID: 38394903] - Qi Sun, Ting Zhang, Yuchen Ren, Yuan Qiu, Xiaogang Luo, Jingfang Yang, Genyan Liu. A two-photon fluorescent probe for highly selective detection of Cys over GSH and Hcy based on the Michael addition and transcyclization mechanism and its application in bioimaging and protein straining in SDS-PAGE.
Analytica chimica acta.
2024 Jun; 1309(?):342687. doi:
10.1016/j.aca.2024.342687
. [PMID: 38772659] - Bhupinder Kaur, Nitish Kumar, Laxmi Kumari, Ajai P Gupta, Rajni Sharma, Kanwaljit Chopra, Shweta Saxena. In-vitro antioxidant and anti-inflammatory potential along with p.o. pharmacokinetic profile of key bioactive phytocompounds of Snow Mountain Garlic: a comparative analysis vis-à-vis normal garlic.
Inflammopharmacology.
2024 Jun; 32(3):1871-1886. doi:
10.1007/s10787-024-01435-w
. [PMID: 38564091] - Zhuoqun Li, Lixing Cao, Kai Han, Lihong Fan, Chong Zhao, Shutao Yin, Hongbo Hu. Non-cytotoxic nanomolar concentration of arctigenin protects neuronal cells from chemotherapy-induced ferroptosis by regulating SLC7A11-cystine-cysteine axis.
Biochemical and biophysical research communications.
2024 May; 710(?):149895. doi:
10.1016/j.bbrc.2024.149895
. [PMID: 38593620] - Rishi Sharma, Md Meraj Ansari, Manzar Alam, Mohammad Fareed, Nemat Ali, Anas Ahmad, Sarwat Sultana, Rehan Khan. Sophorin mitigates flutamide-induced hepatotoxicity in wistar rats.
Toxicon : official journal of the International Society on Toxinology.
2024 May; 243(?):107722. doi:
10.1016/j.toxicon.2024.107722
. [PMID: 38653393] - Chhychhy Chao, Hyun Jin Park, Hyun Woo Kim. Effect of l-cysteine on functional properties and fibrous structure formation of 3D-printed meat analogs from plant-based proteins.
Food chemistry.
2024 May; 439(?):137972. doi:
10.1016/j.foodchem.2023.137972
. [PMID: 38100878] - Steven A Higgins, David O Igwe, Samuel Coradetti, John S Ramsey, Stacy L DeBlasio, Marco Pitino, Robert G Shatters, Randall Niedz, Laura A Fleites, Michelle Heck. Plant-Derived, Nodule-Specific Cysteine-Rich Peptides as a Novel Source of Biopesticides for Controlling Citrus Greening Disease.
Phytopathology.
2024 May; 114(5):971-981. doi:
10.1094/phyto-09-23-0322-kc
. [PMID: 38376984] - Maike Cosse, Tanja Rehders, Jürgen Eirich, Iris Finkemeier, Jennifer Selinski. Cysteine oxidation as a regulatory mechanism of Arabidopsis plastidial NAD-dependent malate dehydrogenase.
Physiologia plantarum.
2024 May; 176(3):e14340. doi:
10.1111/ppl.14340
. [PMID: 38741259] - Wenhui Wu, Yang Xu, Yadi Zhang, Zhengjiao Yu, Yumeng Pang, Lei Qin, Yong Wang. [Cloning and functional analysis of AcFMO from onion during alliine biosynthesis].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2024 Apr; 40(4):1076-1088. doi:
10.13345/j.cjb.230527
. [PMID: 38658150] - Meng Liu, Li He. Dietary cysteine and methionine promote peroxisome elevation and fat loss by induction of CG33474 expression in Drosophila adipose tissue.
Cellular and molecular life sciences : CMLS.
2024 Apr; 81(1):190. doi:
10.1007/s00018-024-05226-y
. [PMID: 38649521] - Ariadne N M Furtado, Sávio Torres de Farias, Mayara Dos Santos Maia. Structural analyzes suggest that MiSSP13 and MiSSP16.5 may act as proteases inhibitors during ectomycorrhiza establishment in Laccaria bicolor.
Bio Systems.
2024 Apr; 238(?):105194. doi:
10.1016/j.biosystems.2024.105194
. [PMID: 38513884] - Yanyan Deng, Xiayan Chu, Qian Li, Guanghao Zhu, Jing Hu, Jianming Sun, Hairong Zeng, Jian Huang, Guangbo Ge. Xanthohumol ameliorates drug-induced hepatic ferroptosis via activating Nrf2/xCT/GPX4 signaling pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Apr; 126(?):155458. doi:
10.1016/j.phymed.2024.155458
. [PMID: 38394733] - Chuan Wan, Dongyan Yang, Xiaochun Guo, Tuanjie Zhang, Zhijun Ruan, Chuan Dai, Yun Xing, Feng Yin, Rui Wang, Zigang Li. β-Carbonyl sulfonium enables cysteine-specific bioconjugation for activity-based protein profiling in live cells.
Chemical communications (Cambridge, England).
2024 Mar; 60(27):3725-3728. doi:
10.1039/d4cc00295d
. [PMID: 38482888] - Patric W Sadecki, Garrett D Laws, Johnathon J Morgan, Andrew J Wommack, Robert Nawrot, Leslie M Hicks. The Greater Celandine: Identification and Characterization of an Antimicrobial Peptide from Chelidonium majus.
Journal of natural products.
2024 Mar; 87(3):544-553. doi:
10.1021/acs.jnatprod.3c00939
. [PMID: 38366995] - Beibei Zhang, Lifang Hao, Jing Zhang, Jinze Feng, Cheng Wang, Jingfang Zhang. Integration of transcriptome, volatile and non-volatile metabolite profile reveals characteristic aroma formation in Toona sinensis.
Food chemistry.
2024 Mar; 436(?):137788. doi:
10.1016/j.foodchem.2023.137788
. [PMID: 37866100] - Zhengquan Yan, Yulian Tang, Zhaoran Zhang, Jing Feng, Junkai Hao, Shuo Sun, Meng Li, Yuguang Song, Wei Dong, Lei Hu. Biocompatible Folic-Acid-Strengthened Ag-Ir Quantum Dot Nanozyme for Cell and Plant Root Imaging of Cysteine/Stress and Multichannel Monitoring of Hg2+ and Dopamine.
Analytical chemistry.
2024 Mar; 96(10):4299-4307. doi:
10.1021/acs.analchem.4c00081
. [PMID: 38414258] - Zhiping Mi, Jie Ma, Dennis J Zeh, Marie E Rose, Jeremy J Henchir, Hao Liu, Xiecheng Ma, Guodong Cao, C Edward Dixon, Steven H Graham. Systemic treatment with ubiquitin carboxy terminal hydrolase L1 TAT protein ameliorates axonal injury and reduces functional deficits after traumatic brain injury in mice.
Experimental neurology.
2024 Mar; 373(?):114650. doi:
10.1016/j.expneurol.2023.114650
. [PMID: 38092186] - Philipp Hartmann, Kostiantyn Bohdan, Moritz Hommrich, Fabio Juliá, Lara Vogelsang, Jürgen Eirich, Rene Zangl, Christophe Farès, Julia Beatrice Jacobs, Dwaipayan Mukhopadhyay, Johanna Marie Mengeler, Alessandro Vetere, Marie Sophie Sterling, Heike Hinrichs, Stefan Becker, Nina Morgner, Wolfgang Schrader, Iris Finkemeier, Karl-Josef Dietz, Christian Griesinger, Tobias Ritter. Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation.
Nature chemistry.
2024 Mar; 16(3):380-388. doi:
10.1038/s41557-023-01388-7
. [PMID: 38123842] - Yanxia Yu, Chunying Zuo, Mingrui Li, Yuanyuan Tang, Lingxi Li, Fang Wang, Shuting Zhang, Baoshan Sun. Novel l-Cysteine Incomplete Degradation Method for Preparation of Procyanidin B2-3'-O-Gallate and Exploration of its in Vitro Anti-inflammatory Activity and in Vivo Tissue Distribution.
Journal of agricultural and food chemistry.
2024 Feb; 72(8):4023-4034. doi:
10.1021/acs.jafc.3c05616
. [PMID: 38357881] - R Z Huang, Y W Wang, H Y Huang, R H Jiang, N N Xue, S P Yin, H Y Zhao. [Application effect of a dual release system of androgen and its antagonist in the repair of full-thickness burn wounds in mice].
Zhonghua shao shang yu chuang mian xiu fu za zhi.
2024 Feb; 40(2):180-189. doi:
10.3760/cma.j.cn501225-20230802-00033
. [PMID: 38418180] - Kiyotaka Fujita, Hanako Tsunomachi, Pan Lixia, Shun Maruyama, Masayuki Miyake, Aimi Dakeshita, Kanefumi Kitahara, Katsunori Tanaka, Yukishige Ito, Akihiro Ishiwata, Shinya Fushinobu. Bifidobacterial GH146 β-L-arabinofuranosidase for the removal of β1,3-L-arabinofuranosides on plant glycans.
Applied microbiology and biotechnology.
2024 Feb; 108(1):199. doi:
10.1007/s00253-024-13014-8
. [PMID: 38324037] - Wonseok Kim, Sunhyung Kim, Thomas P Mawhinney, Hari B Krishnan. Elemental sulfur concentration can be used as a rapid, reliable, and cost-effective predictor of sulfur amino acid content of soybean seeds.
Scientific reports.
2024 02; 14(1):3093. doi:
10.1038/s41598-024-53590-3
. [PMID: 38326523] - Areej A Alhhazmi, Sarah S Alluhibi, Rahaf Alhujaily, Maymona E Alenazi, Taif L Aljohani, Al-Anoud T Al-Jazzar, Ahaad D Aljabri, Razan Albaqami, Dalal Almutairi, Lujain K Alhelali, Hibah M Albasri, Yahya A Almutawif, Mohammad A Alturkostani, Abullah Z Almutairi. Novel antimicrobial peptides identified in legume plant, Medicago truncatula.
Microbiology spectrum.
2024 Feb; 12(2):e0182723. doi:
10.1128/spectrum.01827-23
. [PMID: 38236024] - Chaoyi Xia, Xiyue Xing, Wenxia Zhang, Yang Wang, Xin Jin, Yang Wang, Meihong Tian, Xueqing Ba, Fengqi Hao. Cysteine and homocysteine can be exploited by GPX4 in ferroptosis inhibition independent of GSH synthesis.
Redox biology.
2024 Feb; 69(?):102999. doi:
10.1016/j.redox.2023.102999
. [PMID: 38150992] - Kylie E Walden, Anthony M Hagele, Logan S Orr, Kristen N Gross, Joesi M Krieger, Ralf Jäger, Chad M Kerksick. Probiotic BC30 Improves Amino Acid Absorption from Plant Protein Concentrate in Older Women.
Probiotics and antimicrobial proteins.
2024 Feb; 16(1):125-137. doi:
10.1007/s12602-022-10028-4
. [PMID: 36515888] - Franziska S Hanschen. Acidification and tissue disruption affect glucosinolate and S-methyl-l-cysteine sulfoxide hydrolysis and formation of amines, isothiocyanates and other organosulfur compounds in red cabbage (Brassica oleracea var. capitata f. rubra).
Food research international (Ottawa, Ont.).
2024 Feb; 178(?):114004. doi:
10.1016/j.foodres.2024.114004
. [PMID: 38309927] - Ava Bachari, Nazim Nassar, Srinivasareddy Telukutla, Roby Zomer, Terrence J Piva, Nitin Mantri. Evaluating the Mechanism of Cell Death in Melanoma Induced by the Cannabis Extract PHEC-66.
Cells.
2024 Jan; 13(3):. doi:
10.3390/cells13030268
. [PMID: 38334660] - Hayate Higashino, Asuka Karatsu, Toshiya Masuda. Catalytic Antioxidant Activity of Two Diterpenoid Polyphenols of Rosemary, Carnosol, and Isorosmanol, against Lipid Oxidation in the Presence of Cysteine Thiol.
Journal of agricultural and food chemistry.
2024 Jan; 72(4):2193-2201. doi:
10.1021/acs.jafc.3c08248
. [PMID: 38254316] - Yang Liu, Tingting Gong, Xiangjiu Kong, Jiaqi Sun, Lijing Liu. XYLEM CYSTEINE PEPTIDASE 1 and its inhibitor CYSTATIN 6 regulate pattern-triggered immunity by modulating the stability of the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D.
The Plant cell.
2024 Jan; 36(2):471-488. doi:
10.1093/plcell/koad262
. [PMID: 37820743] - John C Berude, Paul Kennouche, Michelle L Reniere, Daniel A Portnoy. Listeria monocytogenes utilizes glutathione and limited inorganic sulfur compounds as sources of essential cysteine.
Infection and immunity.
2024 Jan; ?(?):e0042223. doi:
10.1128/iai.00422-23
. [PMID: 38289071] - Jinshuai Lan, Li Liu, Zhe Li, Ruifeng Zeng, Lixia Chen, Yitian He, Hai Wei, Yue Ding, Tong Zhang. A multi-signal mitochondria-targeted fluorescent probe for simultaneously distinguishing biothiols and realtime visualizing its metabolism in cancer cells and tumor models.
Talanta.
2024 Jan; 267(?):125104. doi:
10.1016/j.talanta.2023.125104
. [PMID: 37703779] - Sonam Gurung, Oskar Vilhelmsson Timmermand, Dany Perocheau, Ana Luisa Gil-Martinez, Magdalena Minnion, Loukia Touramanidou, Sherry Fang, Martina Messina, Youssef Khalil, Justyna Spiewak, Abigail R Barber, Richard S Edwards, Patricia Lipari Pinto, Patrick F Finn, Alex Cavedon, Summar Siddiqui, Lisa Rice, Paolo G V Martini, Deborah Ridout, Wendy Heywood, Ian Hargreaves, Simon Heales, Philippa B Mills, Simon N Waddington, Paul Gissen, Simon Eaton, Mina Ryten, Martin Feelisch, Andrea Frassetto, Timothy H Witney, Julien Baruteau. mRNA therapy corrects defective glutathione metabolism and restores ureagenesis in preclinical argininosuccinic aciduria.
Science translational medicine.
2024 Jan; 16(729):eadh1334. doi:
10.1126/scitranslmed.adh1334
. [PMID: 38198573] - Ningxiang Yu, Zeyi Wu, Yijue Wang, Abel Wend-Soo Zongo, Xiaohua Nie, Yuanchao Lu, Qin Ye, Xianghe Meng. Formation of adducts during digestion triggered dietary protein for alleviating cytotoxicity of 2-tert-butyl-1,4-benzoquinone.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2024 Jan; 183(?):114200. doi:
10.1016/j.fct.2023.114200
. [PMID: 38029872] - Margot Di Cesare, Elise Kaplan, Julia Rendon, Guillaume Gerbaud, Sepideh Valimehr, Alexia Gobet, Thu-Anh Thi Ngo, Vincent Chaptal, Pierre Falson, Marlène Martinho, Pierre Dorlet, Eric Hanssen, Jean-Michel Jault, Cédric Orelle. The transport activity of the multidrug ABC transporter BmrA does not require a wide separation of the nucleotide-binding domains.
The Journal of biological chemistry.
2024 Jan; 300(1):105546. doi:
10.1016/j.jbc.2023.105546
. [PMID: 38072053] - Guilherme Dos Santos, Mayara de Souza Costa Tamanini, Leonardo Abreu Leal, Lucas Michel Wolf, Thaís Spohr Christ, Yasmin Vendruscolo Piton, Marcelo Dutra Arbo, Mari Lourdes Bernardi, Rafael da Rosa Ulguim, Fernando Pandolfo Bortolozzo, Ana Paula Gonçalves Mellagi. L-cysteine improves boar semen motility at 5 ºC but does not affect the oxidative status.
Animal reproduction science.
2024 Jan; 260(?):107384. doi:
10.1016/j.anireprosci.2023.107384
. [PMID: 38043165] - Lars Andernach, Katja Witzel, Franziska S Hanschen. Effect of long-term storage on glucosinolate and S-methyl-l-cysteine sulfoxide hydrolysis in cabbage (Brassica oleracea var. capitata).
Food chemistry.
2024 Jan; 430(?):136969. doi:
10.1016/j.foodchem.2023.136969
. [PMID: 37531915] - Md Amin Hossain, Richa Sarin, Daniel P Donnelly, Brandon C Miller, Alexandra Weiss, Luke McAlary, Svetlana V Antonyuk, Joseph P Salisbury, Jakal Amin, Jeremy B Conway, Samantha S Watson, Jenifer N Winters, Yu Xu, Novera Alam, Rutali R Brahme, Haneyeh Shahbazian, Durgalakshmi Sivasankar, Swathi Padmakumar, Aziza Sattarova, Aparna C Ponmudiyan, Tanvi Gawde, David E Verrill, Wensheng Yang, Sunanda Kannapadi, Leigh D Plant, Jared R Auclair, Lee Makowski, Gregory A Petsko, Dagmar Ringe, Nathalie Y R Agar, David J Greenblatt, Mary Jo Ondrechen, Yunqiu Chen, Justin J Yerbury, Roman Manetsch, S Samar Hasnain, Robert H Brown, Jeffrey N Agar. Evaluating protein cross-linking as a therapeutic strategy to stabilize SOD1 variants in a mouse model of familial ALS.
PLoS biology.
2024 Jan; 22(1):e3002462. doi:
10.1371/journal.pbio.3002462
. [PMID: 38289969] - Yijiao Chen, Yongsheng Li, Lei Wu. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment.
Frontiers in immunology.
2024; 15(?):1337478. doi:
10.3389/fimmu.2024.1337478
. [PMID: 38415253] - Gabriela Traczyk, Aneta Hromada-Judycka, Anna Świątkowska, Julia Wiśniewska, Anna Ciesielska, Katarzyna Kwiatkowska. Diacylglycerol kinase-ε is S-palmitoylated on cysteine in the cytoplasmic end of its N-terminal transmembrane fragment.
Journal of lipid research.
2024 Jan; 65(1):100480. doi:
10.1016/j.jlr.2023.100480
. [PMID: 38008259] - Dankan Yan, Kelei Han, Yuwen Lu, Jiejun Peng, Shaofei Rao, Guanwei Wu, Yong Liu, Jianping Chen, Hongying Zheng, Fei Yan. The nanovirus U2 protein suppresses RNA silencing via three conserved cysteine residues.
Molecular plant pathology.
2024 Jan; 25(1):e13394. doi:
10.1111/mpp.13394
. [PMID: 37823358] - Qingying Lan, Chang Zhang, Hong Hua, Xiaosheng Hu. Compositional and functional changes in the salivary microbiota related to oral leukoplakia and oral squamous cell carcinoma: a case control study.
BMC oral health.
2023 12; 23(1):1021. doi:
10.1186/s12903-023-03760-y
. [PMID: 38115005] - Yaoguang Hua, Shuli Liu, Sai-Sai Xie, Linjing Shi, Juncheng Li, Qunfeng Luo. Heterobifunctional Cross-Linker with Dinitroimidazole and N-Hydroxysuccinimide Ester Motifs for Protein Functionalization and Cysteine-Lysine Peptide Stapling.
Organic letters.
2023 Dec; 25(49):8792-8796. doi:
10.1021/acs.orglett.3c03250
. [PMID: 38059767] - Valentina Evic, Ruzica Soic, Marko Mocibob, Mario Kekez, Josef Houser, Michaela Wimmerová, Dubravka Matković-Čalogović, Ita Gruic-Sovulj, Ivana Kekez, Jasmina Rokov-Plavec. Evolutionarily conserved cysteines in plant cytosolic seryl-tRNA synthetase are important for its resistance to oxidation.
FEBS letters.
2023 12; 597(23):2975-2992. doi:
10.1002/1873-3468.14748
. [PMID: 37804069] - Xue Wu, Huaixuan Ao, Xiaoyong Wu, Yunfeng Cao. Sulfur-containing amino acids and risk of schizophrenia.
Schizophrenia research.
2023 Dec; 262(?):8-17. doi:
10.1016/j.schres.2023.10.016
. [PMID: 37918291] - N Dehghanbanadaki, H Mehralitabar, R Sotoudeh, H Naderi-Manesh. The role of Wnt palmitoleylated loop conserved disulfide bonds in Wnt-frizzled complex structural dynamics: Insights from molecular dynamics simulations.
Computers in biology and medicine.
2023 12; 167(?):107703. doi:
10.1016/j.compbiomed.2023.107703
. [PMID: 37979393] - Berivan Güngör, János Barnabás Biró, Ágota Domonkos, Beatrix Horváth, Péter Kaló. Targeted mutagenesis of Medicago truncatula Nodule-specific Cysteine-Rich (NCR) genes using the Agrobacterium rhizogenes-mediated CRISPR/Cas9 system.
Scientific reports.
2023 11; 13(1):20676. doi:
10.1038/s41598-023-47608-5
. [PMID: 38001333] - Minoru Inoue, Yusuke Iizuka, Kiyonao Nakamura, Genki E Sato, Takashi Mizowaki. Role of albumin Cys34 redox state in the progression of differentiated thyroid carcinoma and induction of ferroptosis.
Free radical biology & medicine.
2023 11; 209(Pt 1):108-115. doi:
10.1016/j.freeradbiomed.2023.10.015
. [PMID: 37806598] - Dongxu Wang, Han Zhao, Chuan Xing, Bo Lv, Xiaochen Wang, Bing He. Androgens exacerbate hepatic triglyceride accumulation in rats with polycystic ovary syndrome by downregulating MTTP expression.
Endocrine.
2023 Nov; ?(?):. doi:
10.1007/s12020-023-03590-6
. [PMID: 37950821] - Kobra Mahdavian. Detoxification role of amino acids and phytochelatins on two populations of harmel plant under silver stress.
Environmental science and pollution research international.
2023 Nov; 30(51):110970-110980. doi:
10.1007/s11356-023-30233-0
. [PMID: 37798526] - Marcela de Paiva Foletto-Felipe, Josielle Abrahão, Rita de Cássia Siqueira-Soares, Isabela de Carvalho Contesoto, Luiz Henryque Escher Grizza, Guilherme Henrique Gonçalves de Almeida, Renato Polimeni Constantin, Gisele Strieder Philippsen, Flavio Augusto Vicente Seixas, Paulo Sérgio Alves Bueno, Marco Aurélio Schüler de Oliveira, Rodrigo Polimeni Constantin, Wanderley Dantas Dos Santos, Osvaldo Ferrarese-Filho, Rogério Marchiosi. Inhibition of O-acetylserine (thiol) lyase as a promising new mechanism of action for herbicides.
Plant physiology and biochemistry : PPB.
2023 Nov; 204(?):108127. doi:
10.1016/j.plaphy.2023.108127
. [PMID: 37890229] - Jingjing Huang, An Staes, Francis Impens, Vadim Demichev, Frank Van Breusegem, Kris Gevaert, Patrick Willems. CysQuant: Simultaneous quantification of cysteine oxidation and protein abundance using data dependent or independent acquisition mass spectrometry.
Redox biology.
2023 11; 67(?):102908. doi:
10.1016/j.redox.2023.102908
. [PMID: 37793239] - Yong Cheng, Xi Chen, Tian Yang, Zhaojun Wang, Qiuming Chen, Maomao Zeng, Fang Qin, Jie Chen, Zhiyong He. Effects of whey protein isolate and ferulic acid/phloridzin/naringin/cysteine on the thermal stability of mulberry anthocyanin extract at neutral pH.
Food chemistry.
2023 Nov; 425(?):136494. doi:
10.1016/j.foodchem.2023.136494
. [PMID: 37270886] - Alan Cunningham, Lieve Oudejans, Marjan Geugien, Diego A Pereira-Martins, Albertus Tj Wierenga, Ayşegül Erdem, Dominique Sternadt, Gerwin A Huls, Jan Jacob Schuringa. The 'non-essential' amino acid cysteine is required to prevent ferroptosis in acute myeloid leukemia.
Blood advances.
2023 Oct; ?(?):. doi:
10.1182/bloodadvances.2023010786
. [PMID: 37906522] - Shiwu Zhang, Mengyi Wang, Hongxia Li, Qianzhu Li, Ning Liu, Shiyun Dong, Yajun Zhao, Kemiao Pang, Jiayi Huang, Cheng Ren, Yan Wang, Zhen Tian, Fanghao Lu, Weihua Zhang. Exogenous H2 S promotes ubiquitin-mediated degradation of SREBP1 to alleviate diabetic cardiomyopathy via SYVN1 S-sulfhydration.
Journal of cachexia, sarcopenia and muscle.
2023 Oct; ?(?):. doi:
10.1002/jcsm.13347
. [PMID: 37899701] - Xiaohui Wu, Ziqi Sun, Feiyan Qi, Hua Liu, Mingbo Zhao, Juan Wang, Mengmeng Wang, Ruifang Zhao, Yue Wu, Wenzhao Dong, Zheng Zheng, Xinyou Zhang. Cytological and transcriptomic analysis to unveil the mechanism of web blotch resistance in Peanut.
BMC plant biology.
2023 Oct; 23(1):518. doi:
10.1186/s12870-023-04545-9
. [PMID: 37884908] - Rui Zhang, Yitong Shen, Juanxia He, Chenyan Zhang, Yelin Ma, Chenghui Sun, Xiaopan Song, Li Li, Sisi Zhang, János Barnabás Biró, Farheen Saifi, Péter Kaló, Rujin Chen. Nodule-specific cysteine-rich peptide 343 is required for symbiotic nitrogen fixation in Medicago truncatula.
Plant physiology.
2023 Oct; 193(3):1897-1912. doi:
10.1093/plphys/kiad454
. [PMID: 37555448] - Zhiqiang Yang, Jia Li, Sining Li, Jingxi Zhou, Zhixing Cao, Longxuan Li, Dongbin Zheng, Xuan Zhao, Wei Wang, Yun Deng, Yuyu Fang. Real-time monitoring of endogenous cysteine in LPS-induced oxidative stress process with a novel lysosome-targeted fluorescent probe.
Analytica chimica acta.
2023 Oct; 1279(?):341819. doi:
10.1016/j.aca.2023.341819
. [PMID: 37827641] - Mikel Lavilla-Puerta, Rebecca Latter, Francesca Bellè, Tiziana Cervelli, Alvaro Galli, Pierdomenico Perata, Andrea Chini, Emily Flashman, Beatrice Giuntoli. Identification of novel plant cysteine oxidase inhibitors from a yeast chemical genetic screen.
The Journal of biological chemistry.
2023 Oct; ?(?):105366. doi:
10.1016/j.jbc.2023.105366
. [PMID: 37863264] - Sen Yang, Bin Fan, Xinghan Chen, Zining Meng. Effects of supplementation of cryopreservation media with cysteine on the post-thaw quality and fertility of brown-marbled grouper (Epinephelus fuscoguttatus) spermatozoa.
Theriogenology.
2023 Oct; 210(?):62-67. doi:
10.1016/j.theriogenology.2023.07.016
. [PMID: 37478673] - Zhelin Song, Yu Xu, Honghai Wu, Jiahui Huang, Yanlin Zhang. Superior photo-Fenton degradation of acetamiprid by α- Fe2O3-pillared bentonite/L-cysteine complex: Synergy of L-cysteine and visible light.
Journal of environmental management.
2023 Oct; 344(?):118523. doi:
10.1016/j.jenvman.2023.118523
. [PMID: 37393869] - Luca Mazzei, Arundhati Paul, Michele Cianci, Marta Devodier, Davide Mandelli, Paolo Carloni, Stefano Ciurli. Kinetic and structural details of urease inactivation by thiuram disulphides.
Journal of inorganic biochemistry.
2023 Oct; 250(?):112398. doi:
10.1016/j.jinorgbio.2023.112398
. [PMID: 37879152] - Vaishali Sharma, Neera Garg. Nitric oxide and AMF-mediated regulation of soil enzymes activities, cysteine-H2S system and thiol metabolites in mitigating chromium (Cr (VI)) toxicity in pigeonpea genotypes.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2023 Oct; ?(?):. doi:
10.1007/s10534-023-00540-7
. [PMID: 37792256] - Hatice Kubra Sasmaz, Eda Adal, Pınar Kadiroğlu, Serkan Selli, Turkan Uzlasir, Hasim Kelebek. Optimization of complex coacervation parameters for the production of encapsulated black garlic using response surface methodology.
Journal of food science.
2023 Oct; ?(?):. doi:
10.1111/1750-3841.16768
. [PMID: 37786327] - Wenhao Xu, Shengwei Chen, Ludi Song, Huachang Jin, Faxiang Pu, Weike Su, Zimo Lou, Xinhua Xu. Mechanochemical synthesis of cysteine-gum acacia intermolecular complex for multiple metal(loid) sequestration from herbal extracts.
Chemosphere.
2023 Oct; 338(?):139612. doi:
10.1016/j.chemosphere.2023.139612
. [PMID: 37482312] - Eduardo Méndez-López, Miguel A Aranda. A regulatory role for the redox status of the pepino mosaic virus coat protein.
PLoS pathogens.
2023 Oct; 19(10):e1011732. doi:
10.1371/journal.ppat.1011732
. [PMID: 37851701] - Wenxiao Zhang, Wenjiao Zhi, Hong Qiao, Jingjing Huang, Shuo Li, Qing Lu, Nan Wang, Qiang Li, Qian Zhou, Jiaqi Sun, Yuting Bai, Xiaojian Zheng, Mingyi Bai, Frank Van Breusegem, Fengning Xiang. H2O2-dependent oxidation of the transcription factor GmNTL1 promotes salt tolerance in soybean.
The Plant cell.
2023 Sep; ?(?):. doi:
10.1093/plcell/koad250
. [PMID: 37770034] - Alyssa Paoletti, Paul B Pencharz, Ronald O Ball, Dehan Kong, Libai Xu, Rajavel Elango, Glenda Courtney-Martin. The Minimum Methionine Requirement for Adults Aged ≥60 Years Is the Same in Males and Females.
Nutrients.
2023 Sep; 15(19):. doi:
10.3390/nu15194112
. [PMID: 37836396] - Krister J Barkovich, Zhuohong Wu, Zhongchao Zhao, Andrea Simms, Eric Y Chang, Nicole F Steinmetz. Physalis Mottle Virus-Like Nanocarriers with Expanded Internal Loading Capacity.
Bioconjugate chemistry.
2023 09; 34(9):1585-1595. doi:
10.1021/acs.bioconjchem.3c00269
. [PMID: 37615599] - Yuan Meng, Yupeng Cui, Fanjia Peng, Lixue Guo, Ruifeng Cui, Nan Xu, Hui Huang, Mingge Han, Yapeng Fan, Menghao Zhang, Yupin Sun, Lidong Wang, Zhining Yang, Mengyue Liu, Wenhua Chen, Kesong Ni, Delong Wang, Lanjie Zhao, Xuke Lu, Xiugui Chen, Junjuan Wang, Shuai Wang, Wuwei Ye. GhCYS2 governs the tolerance against cadmium stress by regulating cell viability and photosynthesis in cotton.
Ecotoxicology and environmental safety.
2023 Sep; 263(?):115386. doi:
10.1016/j.ecoenv.2023.115386
. [PMID: 37598545] - Neelam Gautam, Madhu Tiwari, Maria Kidwai, Prasanna Dutta, Debasis Chakrabarty. Functional characterization of rice metallothionein OsMT-I-Id: Insights into metal binding and heavy metal tolerance mechanisms.
Journal of hazardous materials.
2023 09; 458(?):131815. doi:
10.1016/j.jhazmat.2023.131815
. [PMID: 37336105] - Adam Zeiner, Francisco J Colina, Matteo Citterico, Michael Wrzaczek. CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES: their evolution, structure, and roles in stress response and development.
Journal of experimental botany.
2023 09; 74(17):4910-4927. doi:
10.1093/jxb/erad236
. [PMID: 37345909] - Mingli Li, Leisi Zhang, Chun-Wei Chen. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond.
Cells.
2023 09; 12(18):. doi:
10.3390/cells12182209
. [PMID: 37759431] - Zuli Wang, Lianlian Ouyang, Na Liu, Tiansheng Li, Bokang Yan, Chao Mao, Desheng Xiao, Boyi Gan, Shuang Liu, Yongguang Tao. The DUBA-SLC7A11-c-Myc axis is critical for stemness and ferroptosis.
Oncogene.
2023 09; 42(36):2688-2700. doi:
10.1038/s41388-023-02744-0
. [PMID: 37537342] - Beatrix Horváth, Berivan Güngör, Mónika Tóth, Ágota Domonkos, Ferhan Ayaydin, Farheen Saifi, Yuhui Chen, János Barnabás Biró, Mickael Bourge, Zoltán Szabó, Zoltán Tóth, Rujin Chen, Péter Kaló. The Medicago truncatula nodule-specific cysteine-rich peptides, NCR343 and NCR-new35 are required for the maintenance of rhizobia in nitrogen-fixing nodules.
The New phytologist.
2023 09; 239(5):1974-1988. doi:
10.1111/nph.19097
. [PMID: 37381081] - Jennifer K Frediani, Asim A Lal, Esther Kim, Sharon L Leslie, David W Boorman, Vinita Singh. The role of diet and non-pharmacologic supplements in the treatment of chronic neuropathic pain: A systematic review.
Pain practice : the official journal of World Institute of Pain.
2023 Aug; ?(?):. doi:
10.1111/papr.13291
. [PMID: 37654090] - Mengyu Hao, Zhihua Li, Xiaowei Huang, Yuan Wang, Xiaoou Wei, Xiaobo Zou, Jiyong Shi, Zhangqi Huang, Litao Yin, Liying Gao, Yanxiao Li, Melvin Holmes, Haroon Elrasheid Tahir. A cell-based electrochemical taste sensor for detection of Hydroxy-α-sanshool.
Food chemistry.
2023 Aug; 418(?):135941. doi:
10.1016/j.foodchem.2023.135941
. [PMID: 36989650] - Xue-Dan Zhao, Zhi-Hao Li, Jun-Wei Hu, Yue-Lai Chen, Ge Xu. [Effects of electroacupuncture on the secretion function of ovarian cells and kisspeptin/kiss1r system in rats with polycystic ovarian syndrome].
Zhen ci yan jiu = Acupuncture research.
2023 Aug; 48(8):804-11. doi:
10.13702/j.1000?0607.20220481
. [PMID: 37614139] - Xiaofeng Wang, Cong Shi, Yanfeng Hu, Ying Ma, Yuying Yi, Honglei Jia, Fali Li, Haotian Sun, Tian Li, Xiuyu Wang, Tianjinhong Li, Jisheng Li. Persulfidation maintains cytosolic G6PDs activity through changing tetrameric structure and competing cysteine sulfur oxidation under salt stress in Arabidopsis and tomato.
The New phytologist.
2023 Aug; ?(?):. doi:
10.1111/nph.19188
. [PMID: 37574819] - Karuppiah Nagaraj, Pilavadi Thangamuniyandi, Subramaniam Kamalesu, Snehal Lokhandwala, Nikhil M Parekh, Swapna Rekha Panda, Subramanian Sakthinathan, Te-Wei Chiu, Karuppiah Chelladurai, Ammasai Karthikeyan, Iruthaya Kalai Selvam. Metallo-Surfactant assisted silver nanoparticles: A new approach for the colorimetric detection of amino acids.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2023 Aug; 296(?):122693. doi:
10.1016/j.saa.2023.122693
. [PMID: 37028097] - Ying-Lan Chen, Fan-Wei Lin, Kai-Tan Cheng, Chi-Hsin Chang, Sheng-Chi Hung, Thomas Efferth, Yet-Ran Chen. XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis.
Nature communications.
2023 08; 14(1):4697. doi:
10.1038/s41467-023-40406-7
. [PMID: 37542077] - Qianqian Chen, Jinhe Zhang, Mutu Huang, Peiqi Wang, Xiao Zhang, Mingjun Ma. Construction of 131I-RGDyC-PEG-PAMAM-DTX targeted drug delivery system and study of its physicochemical properties and biological activity.
Hellenic journal of nuclear medicine.
2023 Aug; ?(?):. doi:
10.1967/s002449912574
. [PMID: 37527047] - Abou Yobi, Huda Ansaf, Ruthie Angelovici. A High-Throughput Absolute Quantification of Protein-Bound Sulfur Amino Acids from Model and Crop Plant Seeds.
Current protocols.
2023 Aug; 3(8):e861. doi:
10.1002/cpz1.861
. [PMID: 37540769] - Kaitlyn Varela, Hadi D Arman, Mitchel S Berger, Valerie M Sponsel, Chin-Hsing Annie Lin, Francis K Yoshimoto. Inhibition of Cysteine Proteases via Thiol-Michael Addition Explains the Anti-SARS-CoV-2 and Bioactive Properties of Arteannuin B.
Journal of natural products.
2023 07; 86(7):1654-1666. doi:
10.1021/acs.jnatprod.2c01146
. [PMID: 37458412] - Hana Nůsková, Fabiola Garcia Cortizo, Lena Sophie Schwenker, Timo Sachsenheimer, Egor Diakonov, Marcel Tiebe, Martin Schneider, Jasmin Lohbeck, Carissa Reid, Annette Kopp-Schneider, Dominic Helm, Britta Brügger, Aubry K Miller, Aurelio A Teleman. Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome.
The Journal of biological chemistry.
2023 Jul; ?(?):105088. doi:
10.1016/j.jbc.2023.105088
. [PMID: 37495107] - Huixian Fu, Qiaohui Feng, Dan Qiu, Xuanri Shen, Chuan Li, Yanfu He, Wenting Shang. Improving the flavor of tilapia fish head soup by adding lipid oxidation products and cysteine.
Food chemistry.
2023 Jul; 429(?):136976. doi:
10.1016/j.foodchem.2023.136976
. [PMID: 37517226] - Kathrine J Vinknes, Thomas Olsen, Hasse Khiabani Zaré, Nasser E Bastani, Emma Stolt, Anja F Dahl, Roger D Cox, Helga Refsum, Kjetil Retterstøl, Anders Åsberg, Amany Elshorbagy. Cysteine-lowering treatment with mesna against obesity: Proof of concept and results from a human phase I, dose-finding study.
Diabetes, obesity & metabolism.
2023 Jul; ?(?):. doi:
10.1111/dom.15210
. [PMID: 37435697] - Daniela Strenkert, Stefan Schmollinger, Yuntao Hu, Christian Hofmann, Kristen Holbrook, Helen W Liu, Samuel O Purvine, Carrie D Nicora, Si Chen, Mary S Lipton, Trent R Northen, Stephan Clemens, Sabeeha S Merchant. Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and Cysteine.
Metallomics : integrated biometal science.
2023 Jul; ?(?):. doi:
10.1093/mtomcs/mfad043
. [PMID: 37422438] - Kara Wegermann, Marat Fudim, Ricardo Henao, Catherine F Howe, Robert McGarrah, Cynthia Guy, Manal F Abdelmalek, Anna Mae Diehl, Cynthia A Moylan. Serum Metabolites Are Associated With HFpEF in Biopsy-Proven Nonalcoholic Fatty Liver Disease.
Journal of the American Heart Association.
2023 Jul; ?(?):e029873. doi:
10.1161/jaha.123.029873
. [PMID: 37421270] - Nazrul Islam, Hari B Krishnan, Janet Slovin, Savithiry Natarajan. Metabolic Profiling of a Fast Neutron Soybean Mutant Reveals an Increased Abundance of Isoflavones.
Journal of agricultural and food chemistry.
2023 Jul; 71(26):9994-10003. doi:
10.1021/acs.jafc.3c01493
. [PMID: 37343237] - Toshitaka Nakamura, Clara Hipp, André Santos Dias Mourão, Jan Borggräfe, Maceler Aldrovandi, Bernhard Henkelmann, Jonas Wanninger, Eikan Mishima, Elena Lytton, David Emler, Bettina Proneth, Michael Sattler, Marcus Conrad. Phase separation of FSP1 promotes ferroptosis.
Nature.
2023 Jul; 619(7969):371-377. doi:
10.1038/s41586-023-06255-6
. [PMID: 37380771] - Jiechen Wang, Jiaqi Song, Hongling Qi, Hongjiao Zhang, Lu Wang, Hongbo Zhang, Congcong Cui, Guangxin Ji, Salman Muhammad, Guangyu Sun, Zhiru Xu, Huihui Zhang. Overexpression of 2-Cys Peroxiredoxin alleviates the NaHCO3 stress-induced photoinhibition and reactive oxygen species damage of tobacco.
Plant physiology and biochemistry : PPB.
2023 Jul; 201(?):107876. doi:
10.1016/j.plaphy.2023.107876
. [PMID: 37413942] - Qianqian Ding, Hao Liu, Ruoyi Lin, Zhengfeng Wang, Shuguang Jian, Mei Zhang. Genome-wide functional characterization of Canavalia rosea cysteine-rich trans-membrane module (CrCYSTM) genes to reveal their potential protective roles under extreme abiotic stress.
Plant physiology and biochemistry : PPB.
2023 Jul; 200(?):107786. doi:
10.1016/j.plaphy.2023.107786
. [PMID: 37257408] - Jingjing Huang, Yanjie Xie. Hydrogen Sulfide Signaling in Plants.
Antioxidants & redox signaling.
2023 07; 39(1-3):40-58. doi:
10.1089/ars.2023.0267
. [PMID: 36924280] - Rafael Rosell, Anisha Jain, Jordi Codony-Servat, Eloisa Jantus-Lewintre, Blake Morrison, Jordi Barretina Ginesta, María González-Cao. Biological insights in non-small cell lung cancer.
Cancer biology & medicine.
2023 Jun; ?(?):. doi:
10.20892/j.issn.2095-3941.2023.0108
. [PMID: 37381723] - Huizhen Ma, Yong Feng, Qianqian Cao, Jing Jia, Muhammad Ali, Dilip Shah, Blake C Meyers, Hai He, Yu Zhang. Evolution of antimicrobial cysteine-rich peptides in plants.
Plant cell reports.
2023 Jun; ?(?):. doi:
10.1007/s00299-023-03044-3
. [PMID: 37378705] - Zhi-Ming Li, Ping Li, Lei Zhu, Yu-Wen Zhang, Yi-Chun Zhu, He Wang, Bo Yu, Ming-Jie Wang. S-propargyl-cysteine delays the progression of atherosclerosis and increases eNOS phosphorylation in endothelial cells.
Sheng li xue bao : [Acta physiologica Sinica].
2023 Jun; 75(3):317-327. doi:
"
. [PMID: 37340641] - Yuankun Yang, Christina E Steidele, Clemens Rössner, Birgit Löffelhardt, Dagmar Kolb, Thomas Leisen, Weiguo Zhang, Christina Ludwig, Georg Felix, Michael F Seidl, Annette Becker, Thorsten Nürnberger, Matthias Hahn, Bertolt Gust, Harald Gross, Ralph Hückelhoven, Andrea A Gust. Convergent evolution of plant pattern recognition receptors sensing cysteine-rich patterns from three microbial kingdoms.
Nature communications.
2023 06; 14(1):3621. doi:
10.1038/s41467-023-39208-8
. [PMID: 37336953]