2-Methoxy-4-vinylphenol (BioDeep_00000001099)

 

Secondary id: BioDeep_00000860831

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


2-METHOXY-4-VINYLPHENOL (STABILIZED WITH TBC)

化学式: C9H10O2 (150.0681)
中文名称: 2-甲氧基-4-乙烯基苯酚, 4-乙烯基-2-甲氧基苯酚
谱图信息: 最多检出来源 Viridiplantae(plant) 17.38%

分子结构信息

SMILES: c1(ccc(cc1OC)C=C)O
InChI: InChI=1S/C9H10O2/c1-3-7-4-5-8(10)9(6-7)11-2/h3-6,10H,1H2,2H3

描述信息

2-methoxy-4-vinylphenol is a member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. It has a role as a pheromone, a flavouring agent and a plant metabolite.
2-Methoxy-4-vinylphenol is a natural product found in Coffea, Coffea arabica, and other organisms with data available.
4-Vinylguaiacol is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: Moringa oleifera leaf oil (part of).
2-Methoxy-4-vinylphenol is an aromatic substance used as a flavoring agent. It is one of the compounds responsible for the natural aroma of buckwheat.
A member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group.
Responsible for off-flavour of old fruit in stored orange juice
2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].
2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].

同义名列表

52 个代谢物同义名

2-METHOXY-4-VINYLPHENOL (STABILIZED WITH TBC); 3-06-00-04981 (Beilstein Handbook Reference); 2-Methoxy-4-vinylphenol, analytical standard; 4-Vinyl-2-methoxyphenol ( p-vinylguaiacol); 2-Methoxy-4-vinylphenol (4-vinylguaiacol); 4-Vinyl-2-methoxyphenol (4-vinylguaiacol); Vinylguaiacol (4-vinyl-2-methoxyphenol); 2-methoxy-4-vinylphenol (vinylguaiacol); 2-(4-hydroxy-3-methoxyphenyl)ethene; 2-Methoxy-4-vinylphenol, >=98\\%, FG; (4-Hydroxy-3-methoxyphenyl)ethene; Vinylcatechol-O-methyl ether, P-; 4-Hydroxy-3-methoxyvinylbenzene; 4-hydroxy-3-methoxyphenylethene; 2-METHOXY-4-VINYLPHENOL [FHFI]; Phenol, 4-ethenyl-2-methoxy-; Phenol, 2-methoxy-4-ethenyl; 3-Methoxy-4-hydroxystyrene; Phenol, 2-methoxy-4-vinyl-; 2-?Methoxy-?4-?vinylphenol; 4-ethenyl-2-methoxy-phenol; 4-hydroxy-3-methoxystyrene; Phenol, 4-vinyl, 2-methoxy; 2-Methoxy-4-ethenylphenol; 4-ETHENYL-2-METHOXYPHENOL; 2-METHOXY-4-VINYL-PHENOL; 4-vinyl-2-methoxyphenol; 2-Metoxy-4-vinyl-phenol; 2-Methoxy-4-vinylphenol; o-methoxy-p-vinylphenol; 2-Methoxy-vinylphenol; Guaiacol, 4-vinyl-; para-vinylguaiacol; 4-Vinyl-O-guaiacol; 4-Ethenylguaiacol; Guaiacol, 4-vinyl; 4-vinylguaiacole; 4-vinyl guaiacol; p-Vinyl guaiacol; p-Vinyl guaicol; p-Vinylguaiacol; 4-vinylguaiacol; Vinyl guaiacol; Vinylguajacol; Vinylguaiacol; Tox21_304024; Varamol 106; 2M4VP; 4M4; EUG; 4-Vinylguaiacol; 2-Methoxy-4-vinylphenol



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

34 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AIMP2, CAT, CCND1, CDK2, CDK4, EGFR, KEAP1, MAPK8, NOS2, PTGS2, PTK2, TYR
Peripheral membrane protein 3 GORASP1, PTGS2, PTK2
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 4 EGFR, HMOX1, PON1, PTGS2
Nucleus 11 AIMP2, CCND1, CDK2, CDK4, EGFR, HMOX1, KEAP1, MAPK8, NOS2, PCNA, PTK2
cytosol 10 AIMP2, CAT, CCND1, CDK2, CDK4, HMOX1, KEAP1, MAPK8, NOS2, PTK2
nuclear body 1 PCNA
centrosome 4 CCND1, CDK2, PCNA, PTK2
nucleoplasm 8 CCND1, CDK2, CDK4, HMOX1, KEAP1, MAPK8, NOS2, PCNA
Cell membrane 3 EGFR, KIT, PTK2
Cytoplasmic side 3 GORASP1, HMOX1, PTK2
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 1 GORASP1
Synapse 1 MAPK8
cell cortex 1 PTK2
cell junction 1 EGFR
cell surface 1 EGFR
glutamatergic synapse 1 EGFR
Golgi apparatus 1 GORASP1
Golgi membrane 2 EGFR, GORASP1
lysosomal membrane 1 EGF
Cytoplasm, cytosol 2 AIMP2, NOS2
Lysosome 1 TYR
acrosomal vesicle 1 KIT
endosome 2 CDK2, EGFR
plasma membrane 5 EGF, EGFR, KIT, NOS2, PTK2
Membrane 6 AIMP2, CAT, EGF, EGFR, HMOX1, KIT
apical plasma membrane 1 EGFR
axon 1 MAPK8
basolateral plasma membrane 1 EGFR
caveola 1 PTGS2
extracellular exosome 4 CAT, EGF, PCNA, PON1
endoplasmic reticulum 3 HMOX1, KEAP1, PTGS2
extracellular space 6 EGF, EGFR, HMOX1, IL6, KIT, PON1
perinuclear region of cytoplasm 5 EGFR, HMOX1, NOS2, PTK2, TYR
bicellular tight junction 2 CCND1, CDK4
mitochondrion 1 CAT
protein-containing complex 3 CAT, EGFR, PTGS2
intracellular membrane-bounded organelle 3 CAT, PTK2, TYR
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 3 EGFR, KIT, TYR
Secreted 1 IL6
extracellular region 4 CAT, EGF, IL6, PON1
cytoplasmic side of plasma membrane 1 KIT
mitochondrial outer membrane 1 HMOX1
mitochondrial matrix 1 CAT
anchoring junction 1 PTK2
transcription regulator complex 2 CDK2, CDK4
centriolar satellite 1 KEAP1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 CDK2, PTK2
Nucleus membrane 2 CCND1, CDK4
nuclear membrane 3 CCND1, CDK4, EGFR
external side of plasma membrane 1 KIT
high-density lipoprotein particle 1 PON1
dendritic spine 1 PTK2
nucleolus 1 CDK4
Melanosome membrane 1 TYR
midbody 1 KEAP1
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
cell-cell junction 1 KIT
Golgi-associated vesicle 1 TYR
Cytoplasm, perinuclear region 2 NOS2, PTK2
Membrane raft 1 EGFR
Cell junction, focal adhesion 1 PTK2
Cytoplasm, cytoskeleton 1 PTK2
focal adhesion 3 CAT, EGFR, PTK2
cis-Golgi network 1 GORASP1
Peroxisome 2 CAT, NOS2
intracellular vesicle 1 EGFR
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, NOS2
peroxisomal membrane 1 CAT
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 2 EGFR, KIT
neuron projection 1 PTGS2
ciliary basal body 1 PTK2
chromatin 2 CDK4, PCNA
cell projection 1 PTK2
cytoskeleton 1 PTK2
Cytoplasm, cytoskeleton, cilium basal body 1 PTK2
nuclear replication fork 1 PCNA
chromosome, telomeric region 2 CDK2, PCNA
Cytoplasm, cell cortex 1 PTK2
actin filament 1 KEAP1
blood microparticle 1 PON1
Cul3-RING ubiquitin ligase complex 1 KEAP1
fibrillar center 1 KIT
nuclear envelope 1 CDK2
Melanosome 1 TYR
replication fork 1 PCNA
stress fiber 1 PTK2
basal plasma membrane 1 EGFR
[Isoform 3]: Cytoplasm 1 KIT
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 2 IL6, PTGS2
transcription repressor complex 1 CCND1
male germ cell nucleus 2 CDK2, PCNA
platelet alpha granule lumen 1 EGF
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
nuclear lamina 1 PCNA
clathrin-coated endocytic vesicle membrane 2 EGF, EGFR
Cajal body 1 CDK2
basal dendrite 1 MAPK8
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
condensed chromosome 1 CDK2
Nucleus, Cajal body 1 CDK2
X chromosome 1 CDK2
Y chromosome 1 CDK2
cyclin-dependent protein kinase holoenzyme complex 4 CCND1, CDK2, CDK4, PCNA
spherical high-density lipoprotein particle 1 PON1
cyclin E1-CDK2 complex 1 CDK2
cyclin E2-CDK2 complex 1 CDK2
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
cortical cytoskeleton 1 NOS2
catalase complex 1 CAT
inclusion body 1 KEAP1
interleukin-6 receptor complex 1 IL6
cyclin D1-CDK4 complex 2 CCND1, CDK4
cyclin D2-CDK4 complex 1 CDK4
cyclin D3-CDK4 complex 1 CDK4
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
cyclin A2-CDK2 complex 1 CDK2
cyclin D1-CDK6 complex 1 CCND1
cyclin A1-CDK2 complex 1 CDK2


文献列表

  • Naoki Kitaoka, Taiji Nomura, Shinjiro Ogita, Yasuo Kato. Bioproduction of 4-Vinylphenol and 4-Vinylguaiacol β-Primeverosides Using Transformed Bamboo Cells Expressing Bacterial Phenolic Acid Decarboxylase. Applied biochemistry and biotechnology. 2021 Jul; 193(7):2061-2075. doi: 10.1007/s12010-021-03522-y. [PMID: 33544364]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • James J Williamson, Nurfariza Bahrin, Elizabeth M Hardiman, Timothy D H Bugg. Production of Substituted Styrene Bioproducts from Lignin and Lignocellulose Using Engineered Pseudomonas putida KT2440. Biotechnology journal. 2020 Jul; 15(7):e1900571. doi: 10.1002/biot.201900571. [PMID: 32488970]
  • Małgorzata Tańska, Natalia Mikołajczak, Iwona Konopka. Comparison of the effect of sinapic and ferulic acids derivatives (4-vinylsyringol vs. 4-vinylguaiacol) as antioxidants of rapeseed, flaxseed, and extra virgin olive oils. Food chemistry. 2018 Feb; 240(?):679-685. doi: 10.1016/j.foodchem.2017.08.007. [PMID: 28946329]
  • Diana Linke, Stephanie J L Riemer, Silke Schimanski, Annabel Nieter, Ulrich Krings, Ralf G Berger. Cold generation of smoke flavour by the first phenolic acid decarboxylase from a filamentous ascomycete - Isaria farinosa. Fungal biology. 2017 09; 121(9):763-774. doi: 10.1016/j.funbio.2017.05.006. [PMID: 28800848]
  • Toshiki Furuya, Mari Kuroiwa, Kuniki Kino. Biotechnological production of vanillin using immobilized enzymes. Journal of biotechnology. 2017 Feb; 243(?):25-28. doi: 10.1016/j.jbiotec.2016.12.021. [PMID: 28042012]
  • Tuba Esatbeyoglu, Katrin Ulbrich, Clemens Rehberg, Sascha Rohn, Gerald Rimbach. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food & function. 2015 Mar; 6(3):887-93. doi: 10.1039/c4fo00790e. [PMID: 25619943]
  • William J Hunter, Daniel K Manter, Daniel van der Lelie. Biotransformation of ferulic acid to 4-vinylguaiacol by Enterobacter soli and E. aerogenes. Current microbiology. 2012 Dec; 65(6):752-7. doi: 10.1007/s00284-012-0222-4. [PMID: 22986816]
  • Yongqing Cai, Xiaogang Hu, Mingchun Huang, Fengjun Sun, Bo Yang, Juying He, Xianfeng Wang, Peiyuan Xia, Jianhong Chen. Characterization of the antibacterial activity and the chemical components of the volatile oil of the leaves of Rubus parvifolius L. Molecules (Basel, Switzerland). 2012 Jun; 17(7):7758-68. doi: 10.3390/molecules17077758. [PMID: 22732887]
  • Upendra K Sharma, Nandini Sharma, Richa Salwan, Rakesh Kumar, Ramesh C Kasana, Arun K Sinha. Efficient synthesis of hydroxystyrenes via biocatalytic decarboxylation/deacetylation of substituted cinnamic acids by newly isolated Pantoea agglomerans strains. Journal of the science of food and agriculture. 2012 Feb; 92(3):610-7. doi: 10.1002/jsfa.4616. [PMID: 21919002]
  • Sha Sha Chu, Quan Ru Liu, Guo Hua Jiang, Zhi Long Liu. Chemical composition and insecticidal activity of the essential oil of Amethystea caerulea L. Natural product research. 2012; 26(13):1207-12. doi: 10.1080/14786419.2010.547195. [PMID: 21878001]
  • Ram Chandra, Ram Naresh Bharagava, Atya Kapley, Hemant J Purohit. Characterization of Phragmites cummunis rhizosphere bacterial communities and metabolic products during the two stage sequential treatment of post methanated distillery effluent by bacteria and wetland plants. Bioresource technology. 2012 Jan; 103(1):78-86. doi: 10.1016/j.biortech.2011.09.132. [PMID: 22047662]
  • Jin Boo Jeong, Se Chul Hong, Hyung Jin Jeong, Jin Suk Koo. Anti-inflammatory effect of 2-methoxy-4-vinylphenol via the suppression of NF-κB and MAPK activation, and acetylation of histone H3. Archives of pharmacal research. 2011 Dec; 34(12):2109-16. doi: 10.1007/s12272-011-1214-9. [PMID: 22210037]
  • Nora C Lawo, Georg J F Weingart, Rainer Schuhmacher, Astrid Forneck. The volatile metabolome of grapevine roots: first insights into the metabolic response upon phylloxera attack. Plant physiology and biochemistry : PPB. 2011 Sep; 49(9):1059-63. doi: 10.1016/j.plaphy.2011.06.008. [PMID: 21764593]
  • Carmen Formisano, Daniela Rigano, Felice Senatore, Franco Piozzi, Nelly Apostolides Arnold. Analysis of essential oils from Scutellaria orientalis ssp. alpina and S. utriculata by GC and GC-MS. Natural product communications. 2011 Sep; 6(9):1347-50. doi: . [PMID: 21941912]
  • Coralia V Garcia, Siew-Young Quek, Ralph J Stevenson, Robert A Winz. Characterization of the bound volatile extract from baby kiwi (Actinidia arguta). Journal of agricultural and food chemistry. 2011 Aug; 59(15):8358-65. doi: 10.1021/jf201469c. [PMID: 21702480]
  • Josip Mastelić, Ivica Blažević, Ivan Kosalec. Chemical composition and antimicrobial activity of volatiles from Degenia velebitica, a European stenoendemic plant of the Brassicaceae family. Chemistry & biodiversity. 2010 Nov; 7(11):2755-65. doi: 10.1002/cbdv.201000053. [PMID: 21072775]
  • Silvana A Rodriguez, Ana P Murray. Antioxidant activity and chemical composition of essential oil from Atriplex undulata. Natural product communications. 2010 Nov; 5(11):1841-4. doi: ". [PMID: 21213996]
  • Kanitha Tananuwong, Sittiwat Lertsiri. Changes in volatile aroma compounds of organic fragrant rice during storage under different conditions. Journal of the science of food and agriculture. 2010 Aug; 90(10):1590-6. doi: 10.1002/jsfa.3976. [PMID: 20564458]
  • Carmen Formisano, Daniela Rigano, Felice Senatore, Maurizio Bruno, Sergio Rosselli. Volatile constituents of the aerial parts of white salsify (Tragopogon porrifolius L., Asteraceae). Natural product research. 2010 Apr; 24(7):663-8. doi: 10.1080/14786410903172106. [PMID: 20401798]
  • Debra S Harris, Thomas Everhart, Peyton Jacob, Emil Lin, John E Mendelson, Reese T Jones. A phase 1 trial of pharmacologic interactions between transdermal selegiline and a 4-hour cocaine infusion. BMC clinical pharmacology. 2009 Aug; 9(?):13. doi: 10.1186/1472-6904-9-13. [PMID: 19646280]
  • Satomi Fukai, Shinichi Tanimoto, Aki Maeda, Hitomi Fukuda, Yoshiharu Okada, Masato Nomura. Pharmacological activity of compounds extracted from persimmon peel (Diospyros kaki THUNB.). Journal of oleo science. 2009; 58(4):213-9. doi: 10.5650/jos.58.213. [PMID: 19282644]
  • Jennifer A J Dungait, Natalie A Stear, Bart E van Dongen, Roland Bol, Richard P Evershed. Off-line pyrolysis and compound-specific stable carbon isotope analysis of lignin moieties: a new method for determining the fate of lignin residues in soil. Rapid communications in mass spectrometry : RCM. 2008 Jun; 22(11):1631-9. doi: 10.1002/rcm.3454. [PMID: 18446763]
  • Hossein Reza Darabi, Shabnam Mohandessi, Yadollah Balavar, Kioumars Aghapoor. A structure-activity relationship study on a natural germination inhibitor, 2-methoxy-4-vinylphenol (MVP), in wheat seeds to evaluate its mode of action. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2007 Sep; 62(9-10):694-700. doi: 10.1515/znc-2007-9-1012. [PMID: 18069243]
  • Karen J Parker, Kimberly L Rainwater, Christine L Buckmaster, Alan F Schatzberg, Steven E Lindley, David M Lyons. Early life stress and novelty seeking behavior in adolescent monkeys. Psychoneuroendocrinology. 2007 Aug; 32(7):785-92. doi: 10.1016/j.psyneuen.2007.05.008. [PMID: 17604913]
  • Shuifang Li, Ruizhi Wen, Dong Zeng, Zhonghai Li. [Extraction and determination of essential oils in Indocalamus latifolius leaves and Indocalamus tessellatus leaves]. Se pu = Chinese journal of chromatography. 2007 Jan; 25(1):53-7. doi: . [PMID: 17432576]
  • Heping Bi, Xiaoping Song, Changri Han, Xiong Xu, Hong Zhang. [Studies on the chemical constituents of the essential oil from the leaves of Dalbergia odorifera T. Chen]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2004 Oct; 27(10):733-5. doi: ". [PMID: 15850354]
  • Cesare Sabbioni, Maria Addolorata Saracino, Roberto Mandrioli, Sergio Pinzauti, Sandra Furlanetto, Gilberto Gerra, Maria Augusta Raggi. Simultaneous liquid chromatographic analysis of catecholamines and 4-hydroxy-3-methoxyphenylethylene glycol in human plasma. Comparison of amperometric and coulometric detection. Journal of chromatography. A. 2004 Apr; 1032(1-2):65-71. doi: 10.1016/j.chroma.2004.01.008. [PMID: 15065778]
  • Shi-feng Ni, Cheng-xin Fu, Yuan-jiang Pan, Yan-bin Lu, Ping Wu, Gilbert Y S Chan. [Contrastive analysis of volatile oil from Serissa serissoides in different seasons]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2004 Jan; 29(1):54-8. doi: . [PMID: 15709384]
  • Eisuke Kawahara, Satoshi Ikeda, Yoshiyuki Miyahara, Shigeru Kohno. Role of autonomic nervous dysfunction in electrocardio-graphic abnormalities and cardiac injury in patients with acute subarachnoid hemorrhage. Circulation journal : official journal of the Japanese Circulation Society. 2003 Sep; 67(9):753-6. doi: 10.1253/circj.67.753. [PMID: 12939550]
  • Masayuki Akiyama, Kazuya Murakami, Noboru Ohtani, Keiji Iwatsuki, Kazuyoshi Sotoyama, Akira Wada, Katsuya Tokuno, Hisakatsu Iwabuchi, Kiyofumi Tanaka. Analysis of volatile compounds released during the grinding of roasted coffee beans using solid-phase microextraction. Journal of agricultural and food chemistry. 2003 Mar; 51(7):1961-9. doi: 10.1021/jf020724p. [PMID: 12643659]
  • Peyton Jacob, Margaret Wilson, Lisa Yu, John Mendelson, Reese T Jones. Determination of 4-hydroxy-3-methoxyphenylethylene glycol 4-sulfate in human urine using liquid chromatography-tandem mass spectrometry. Analytical chemistry. 2002 Oct; 74(20):5290-6. doi: 10.1021/ac020101a. [PMID: 12403583]
  • Takashi Masuda, Kiyotaka Sato, Shin-ichiro Yamamoto, Narihisa Matsuyama, Takao Shimohama, Atsuhiko Matsunaga, Shuichi Obuchi, Yoshitaka Shiba, Shinobu Shimizu, Tohru Izumi. Sympathetic nervous activity and myocardial damage immediately after subarachnoid hemorrhage in a unique animal model. Stroke. 2002 Jun; 33(6):1671-6. doi: 10.1161/01.str.0000016327.74392.02. [PMID: 12053010]
  • M Takemoto, K Achiwa. Synthesis of styrenes through the biocatalytic decarboxylation of trans-cinnamic acids by plant cell cultures. Chemical & pharmaceutical bulletin. 2001 May; 49(5):639-41. doi: 10.1248/cpb.49.639. [PMID: 11383623]
  • H J Bestmann, K Haberkorn, O Vostrowsky, R Ferstl, F Eggert. GC profiles of volatile constituents from human urine obtained by closed loop stripping, purge and trap technique and simultaneous stem distillation-extraction. Zeitschrift fur Naturforschung. C, Journal of biosciences. 1996 Nov; 51(11-12):849-52. doi: 10.1515/znc-1996-11-1213. [PMID: 9081288]
  • W Scheider, H M Dintzis, J L Oncley. Changes in the electric dipole vector of human serum albumin due to complexing with fatty acids. Biophysical journal. 1976 May; 16(5):417-31. doi: 10.1016/s0006-3495(76)85698-6. [PMID: 6087]
  • V K Rudzit, V K Bumeĭster, E E Lerkh, Zh A Bol'shevich. [Effect of hypercapnia on tyrosine and tryptophan metabolism]. Biulleten' eksperimental'noi biologii i meditsiny. 1976; 81(4):416-8. doi: NULL. [PMID: 6098]