NCBI Taxonomy: 155132

Akebia trifoliata (ncbi_taxid: 155132)

found 156 associated metabolites at species taxonomy rank level.

Ancestor: Akebia

Child Taxonomies: Akebia trifoliata subsp. australis, Akebia trifoliata subsp. trifoliata

1-Hederin

(4aS,6aS,6bR,8aR,9R,10S,12aR,12bR,14bS)-10-(((2S,3R,4S,5S)-4,5-Dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C41H66O12 (750.4554036000001)


Kalopanaxsaponin A is a triterpenoid saponin that is hederagenin attached to a 2-O-(6-deoxy-alpha-L-mannopyranosyl)-alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. It has been isolated from the stem bark of Kalopanax pictus. It has a role as an anti-inflammatory agent and a plant metabolite. It is a pentacyclic triterpenoid, a triterpenoid saponin, a disaccharide derivative and a hydroxy monocarboxylic acid. It is functionally related to a hederagenin. alpha-Hederin is a natural product found in Lonicera japonica, Hedera caucasigena, and other organisms with data available. A triterpenoid saponin that is hederagenin attached to a 2-O-(6-deoxy-alpha-L-mannopyranosyl)-alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. It has been isolated from the stem bark of Kalopanax pictus. alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1]. alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1].

   

Maslinic acid

(4aS,6aS,6bR,8aR,10R,11R,12aR,12bR,14bS)-10,11-Dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O4 (472.3552408)


Maslinic acid is a compound derived from dry olive-pomace oil (an olive skin wax) which is a byproduct of olive oil extraction. It is a member of the group of triterpenes known as oleananes.; Maslinic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Maslinic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID: 17292619) Maslinic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Maslinic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID: 17292619). Maslinic acid is a pentacyclic triterpenoid that is olean-12-ene substituted by hydroxy groups at positions 2 and 3 and a carboxy group at position 28 (the 2alpha,3beta stereoisomer). It is isolated from Olea europaea and Salvia canariensis and exhibits anti-inflammatory, antioxidant and antineoplastic activity. It has a role as an antioxidant, an antineoplastic agent, an anti-inflammatory agent and a plant metabolite. It is a pentacyclic triterpenoid and a dihydroxy monocarboxylic acid. It derives from a hydride of an oleanane. Maslinic acid is a natural product found in Chaenomeles speciosa, Salvia tomentosa, and other organisms with data available. See also: Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is olean-12-ene substituted by hydroxy groups at positions 2 and 3 and a carboxy group at position 28 (the 2alpha,3beta stereoisomer). It is isolated from Olea europaea and Salvia canariensis and exhibits anti-inflammatory, antioxidant and antineoplastic activity. Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation. Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation.

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Acetyl oleanolic acid

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-acetoxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-4a(2H)-carboxylic acid

C32H50O4 (498.37089000000003)


3-O-Acetyloleanolic acid is a natural product found in Diospyros eriantha, Mussaenda macrophylla, and other organisms with data available.

   

Alphitolsaure

(1R,3aS,5aR,5bR,7aR,9R,10R,11aR,11bR,13aR,13bR)-9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O4 (472.3552408)


2alpha,3beta-dihydroxy-20(29)-lupen-28-oic acid is a pentacyclic triterpenoid that is betulinic acid carrying an additional alpha-hydroxy group at position 2. It has been isolated from Breynia fruticosa. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a dihydroxy monocarboxylic acid. It is functionally related to a betulinic acid. It derives from a hydride of a lupane. Alphitolic acid is a natural product found in Quercus aliena, Alphitonia petriei, and other organisms with data available. A pentacyclic triterpenoid that is betulinic acid carrying an additional alpha-hydroxy group at position 2. It has been isolated from Breynia fruticosa.

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

SAPONIN K3

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C35H56O8 (604.3974976000001)


Hederagenin 3-O-arabinoside is a triterpenoid saponin that is hederagenin attached to an alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a triterpenoid saponin, a monosaccharide derivative, a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and an alpha-L-arabinopyranoside. It is functionally related to a hederagenin. It derives from a hydride of an oleanane. Cauloside A is a natural product found in Lonicera japonica, Hedera caucasigena, and other organisms with data available. See also: Caulophyllum robustum Root (part of). A triterpenoid saponin that is hederagenin attached to an alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2]. Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2].

   

2-Methoxy-4-vinylphenol

2-METHOXY-4-VINYLPHENOL (STABILIZED WITH TBC)

C9H10O2 (150.06807600000002)


2-methoxy-4-vinylphenol is a member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. It has a role as a pheromone, a flavouring agent and a plant metabolite. 2-Methoxy-4-vinylphenol is a natural product found in Coffea, Coffea arabica, and other organisms with data available. 4-Vinylguaiacol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Moringa oleifera leaf oil (part of). 2-Methoxy-4-vinylphenol is an aromatic substance used as a flavoring agent. It is one of the compounds responsible for the natural aroma of buckwheat. A member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. Responsible for off-flavour of old fruit in stored orange juice 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].

   

4-Methoxybenzaldehyde

4-anisaldehyde, 1,2,3,4,5,6-(14)C6-labeled

C8H8O2 (136.0524268)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Cyanidin 3-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

[C21H21O11]+ (449.10838160000003)


Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-​glucoside is a product of cyanidin 3-​sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Acquisition and generation of the data is financially supported in part by CREST/JST. Found in many plants and fruits, e.g. cherries, olives and grapes

   

3-Epioleanolic acid

(4aS,6aS,6bR,8aR,10R,12aR,12bR,14bS)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


3-epioleanolic acid is a triterpenoid. It has a role as a metabolite. 3-Epioleanolic acid is a natural product found in Conandron ramondioides, Gardenia ternifolia, and other organisms with data available. 3-Epioleanolic acid is found in common sage. 3-Epioleanolic acid is isolated from sage Salvia officinalis and other plants. Isolated from sage Salvia officinalis and other plants. 3-Epioleanolic acid is found in common sage. A natural product found in Radermachera boniana. 3-Epioleanolic acid is an active component of Verbena officinalis Linn, with anti-inflammatory activity[1]. 3-Epioleanolic acid is an active component of Verbena officinalis Linn, with anti-inflammatory activity[1].

   

TG(18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z))

1-(9Z,12Z-Octadecadienoyl)-2-(9Z,12Z-octadecadienoyl)-3-(9Z,12Z-octadecadienoyl)-glycerol

C57H98O6 (878.7363008)


TG(18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z)) is a trilinoleic acid triglyceride. Triglycerides (TGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.e. fatty acid tri-esters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z)), in particular, consists of one chain of linoleic acid at the C-1 position, one chain of linoleic acid at the C-2 position and one chain of linoleic acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. (www.cyberlipid.org, www.wikipedia.org)TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols. 1,2,3-trilinoleoylglycerol is a triglyceride formed by acylation of the three hydroxy groups of glycerol with linoleic acid. It has a role as a mouse metabolite. It is a triglyceride, a TG(18:2/18:2/18:2) and a linoleoyl containing 1,2,3-triacyl-sn-glycerol. It is functionally related to a linoleic acid. Trilinolein is a natural product found in Lysiphlebia japonica, Phoradendron reichenbachianum, and other organisms with data available. See also: Coix lacryma-jobi seed (part of). D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors Trilinolein is an endogenous metabolite. Trilinolein is an endogenous metabolite.

   

2-Decenal

trans-2-Decen-1-al (contaisn trans-2-decen-1-al diethyl acetal) (10\\% in ethanol); trans-2-Decenal

C10H18O (154.1357578)


Constituent of essential oil of corianderand is also present in French fries, tomato, wheat bread, cooked meats, roasted pecans, roasted filbert and rice. Flavouring agent. 2-Decenal is found in many foods, some of which are herbs and spices, potato, animal foods, and garden tomato. (2E)-dec-2-enal is a dec-2-enal in which the olefinic double bond has E configuration. It has a role as an alarm pheromone, a nematicide and a mutagen. 2-Decenal is a natural product found in Vaccinium macrocarpon, Akebia trifoliata, and other organisms with data available. 2-Decenal is found in animal foods. 2-Decenal is a constituent of essential oil of coriander. Also present in French fries, tomato, wheat bread, cooked meats, roasted pecans, roasted filbert and rice. 2-Decenal is a flavouring agent

   

(2E)-2-Heptenal

2-Heptenal, (e)-isomer

C7H12O (112.0888102)


(2E)-2-Heptenal, also known as 3-butylacrolein or 2-trans-heptenal, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. (2E)-2-Heptenal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (2E)-2-heptenal is considered to be a fatty aldehyde lipid molecule. Uremic toxins such as 2-Heptenal are actively transported into the kidneys via organic ion transporters (especially OAT3). (2E)-2-Heptenal is an almond, and fatty tasting compound. (2E)-2-Heptenal is found, on average, in the highest concentration within safflowers. (2E)-2-Heptenal has also been detected, but not quantified, in several different foods, such as roselles, common grapes, cucumbers, garden tomato, and evergreen blackberries. (2E)-2-Heptenal is a potentially toxic compound. Uremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. As a uremic toxin, this compound can cause uremic syndrome. Chronic exposure to uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (A7868). Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. (2e)-2-heptenal, also known as 3-butylacrolein or alpha-heptenal, is a member of the class of compounds known as medium-chain aldehydes. Medium-chain aldehydes are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, (2e)-2-heptenal is considered to be a fatty aldehyde lipid molecule (2e)-2-heptenal is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (2e)-2-heptenal is an almond, fat, and fatty tasting compound and can be found in a number of food items such as watermelon, safflower, oat, and common grape, which makes (2e)-2-heptenal a potential biomarker for the consumption of these food products (2e)-2-heptenal can be found primarily in blood and saliva (2e)-2-heptenal is a non-carcinogenic (not listed by IARC) potentially toxic compound. As a uremic toxin, this compound can cause uremic syndrome. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Heart problems, such as an irregular heartbeat, inflammation in the sac that surrounds the heart (pericarditis), and increased pressure on the heart can be seen in patients with uremic syndrome. Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present (T3DB).

   

1-Heptanol

Heptyl alcohol, 8ci

C7H16O (116.12010860000001)


1-Heptanol is found in alcoholic beverages. 1-Heptanol is found in a few essential oils, e.g. Rosa rugosa. Also present in roasted peanut, roasted filbert, plum brandy, rice bran, cooked rice, peated malt, Bourbon vanilla, banana, morello cherry, orange, guava fruit, pineapple and plum. 1-Heptanol is a flavouring ingredient.1-Heptanol is an alcohol with a seven carbon chain and the structural formula of CH3(CH2)6OH. It is a clear colorless liquid that is very slightly soluble in water, but miscible with ether and ethanol Found in a few essential oils, e.g. Rosa rugosaand is also present in roasted peanut, roasted filbert, plum brandy, rice bran, cooked rice, peated malt, Bourbon vanilla, banana, morello cherry, orange, guava fruit, pineapple and plum. Flavouring ingredient

   

2-Pentylthiophene

1-Methylbutylthiophene

C9H14S (154.0816164)


2-Pentylthiophene is a member of thiophenes. 2-Pentylthiophene belongs to the class of organic compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. 2-Pentylthiophene is possibly neutral. 2-Pentylthiophene is a sweet, cranberry, and fatty tasting compound. 2-Pentylthiophene has been detected, but not quantified, in herbs and spices and mushrooms. 2-Pentylthiophene has been found to be associated with several diseases such as pervasive developmental disorder not otherwise specified and autism in humans. 2-pentylthiophene has also been linked to the inborn metabolic disorder celiac disease. Cysteine-derived Maillard product. Constituent of cooked pork, beef or lamb, yeast extract and ripe bell peppers. 2-Pentylthiophene is found in mushrooms, herbs and spices, and animal foods.

   

Pentyl acetate

Acetic acid, N-pentyl ester

C7H14O2 (130.09937440000002)


Flavouring agent. Pentyl acetate is found in many foods, some of which are cocoa bean, sweet bay, peach, and apple. Pentyl acetate is found in apple. Pentyl acetate is a flavouring agent.

   

Queretaroic acid

10-hydroxy-2-(hydroxymethyl)-2,6a,6b,9,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


Queretaroic acid is found in cereals and cereal products. Queretaroic acid is a constituent of Chenopodium quinoa (quinoa), Stenocereus thurberi (organ pipe cactus) Constituent of Chenopodium quinoa (quinoa), Stenocereus thurberi (organ pipe cactus). Queretaroic acid is found in cereals and cereal products and fruits.

   

4-Acetyl-1-methylcyclohexene

1-(4-Methyl-3-cyclohexen-1-yl)ethanone, 9ci

C9H14O (138.1044594)


4-Acetyl-1-methylcyclohexene is found in cereals and cereal products. 4-Acetyl-1-methylcyclohexene is a flavouring ingredient. It is isolated from the famine food Santalum album (sandalwood). Flavouring ingredient. Isolated from the famine food Santalum album (sandalwood). 4-Acetyl-1-methylcyclohexene is found in cereals and cereal products.

   

Bisacumol

2-methyl-6-(4-methylphenyl)hept-2-en-4-ol

C15H22O (218.1670562)


Constituent of Curcuma xanthorrhiza (Java turmeric). Bisacumol is found in many foods, some of which are herbs and spices, beverages, root vegetables, and turmeric. Bisacumol is found in beverages. Bisacumol is a constituent of Curcuma xanthorrhiza (Java turmeric).

   

4-Butyl-gamma-butyrolactone

4-Butyl-4-hydroxybutyric acid lactone

C8H14O2 (142.09937440000002)


Present in apricots, peaches and other fruits. Flavouring ingredient [DFC]. 4-Butyl-gamma-butyrolactone is found in many foods, some of which are peach, bilberry, papaya, and pineapple. 4-Butyl-gamma-butyrolactone is found in bilberry. 4-Butyl-gamma-butyrolactone is present in apricots, peaches and other fruits. 4-Butyl-gamma-butyrolactone is a flavouring ingredien

   

Methyl nonanoate

Pelargonic acid methyl ester

C10H20O2 (172.14632200000003)


Methyl nonanoate, also known as methyl pelargonate or 1-nonanecarboxylate, belongs to the class of organic compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Methyl nonanoate can be obtained from the formal condensation of methanol and nonanoic acid. It is a colourless, oily liquid with a fruity, tropical or pear-like odour, used in perfumes and flavours. It has a waxy, wine-like, green celery flavour. Methyl nonanoate is a very hydrophobic molecule, with a high boiling point of 213 oC. It is practically insoluble in water with a measured water solubility of just 22.5 mgl/L. Outside the human body, methyl nonanoate is found in a number of foods including apples, bananas, blackberries, butter, blue cheese, grapes, hop oil, pineapples, baked potatoes, star fruit, strawberries, tobacco, vanilla and white wine. Methyl nonanoate exhibits nematicidal activity against root-knot and soybean cyst nematodes and was found to be toxic to nematodes at concentrations as low as 0.2 uL a.i./litre (PMID: 19274268). Flavouring ingredient. Isolated from cloves, hops, hyssop oil, vanilla and some wines. Methyl nonanoate is found in many foods, some of which are cereals and cereal products, fruits, herbs and spices, and alcoholic beverages.

   

2-Acetylfuran

1-(2-Furanyl)-ethanone (2-acetylfuran)

C6H6O2 (110.0367776)


2-Acetylfuran, also known as 2-furylethanone or 2-acetofurone, belongs to the class of organic compounds known as aryl alkyl ketones. These are ketones have the generic structure RC(=O)R, where R = aryl group and R=alkyl group. 2-Acetylfuran is a sweet, almond, and balsamic tasting compound. 2-Acetylfuran is found, on average, in the highest concentration within kohlrabis. 2-Acetylfuran has also been detected, but not quantified, in several different foods, such as green vegetables, alcoholic beverages, cereals and cereal products, white mustards, and green bell peppers. Present in cooked apple, morello cherry, wine grapes, peach, strawberry, plum, rabbiteye blueberry, asparagus, kohlrabi, baked potato, pineapple, bread products, rice, yoghurt, wines, soybean, black tea and calamus (European origin). Contributes to aroma of many foods and beverages. It is used in flavour compositions. 2-Acetylfuran is found in many foods, some of which are orange bell pepper, brassicas, pepper (c. annuum), and fruits. 2-Acetylfuran (2-Furyl methyl ketone), an important flavour compound or intermediate in foods, is isolated from essential oils, sweet corn products, fruits and flowers. 2-Acetylfuran also can be formed from glucose and glycine by Maillard reaction. 2-Acetylfuran can be used to synthesis Cefuroxime[1][2].

   

2-Hexylthiophene

2-N-Hexylthiophene

C10H16S (168.0972656)


2-Hexylthiophene is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") 2-Hexylthiophene is an extremely weak basic heteroaromatic compound. 2-Hexylthiophene can be used to modify and improve the molar absorption coefficient of ruthenium sensitizer[1]

   

2-Propylthiophene

thiophene, 2-propyl-

C7H10S (126.050318)


2-Propylthiophene is found in animal foods. 2-Propylthiophene is present in roast beef aroma. Present in roast beef aroma. 2-Propylthiophene is found in animal foods.

   

(±)-cis-Linalyl oxide

5-ethenyltetrahydro-a,a,5-Trimethyl-(2R,5S)-rel-2-furanmethanol

C10H18O2 (170.1306728)


This is the cis form of furanoid linalool oxide, also called Linalool oxide B or Linalool oxide I; there are 2 possible stereo-isomers. cis-Linalool 3,6-oxide is found in many foods, some of which are tea, sweet basil, common oregano, and coriander. (±)-cis-Linalyl oxide is found in black elderberry. This is the cis form of furanoid linalool oxide, also called Linalool oxide B or Linalool oxide I; there are 2 possible stereo-isomers.

   

alpha-Hederin

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C41H66O12 (750.4554036000001)


alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1]. alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1].

   

Oleanolic acid 3-acetate

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-(acetyloxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C32H50O4 (498.37089000000003)


Oleanolic acid 3-acetate, also known as 3-O-acetyloleanolic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Oleanolic acid 3-acetate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Oleanolic acid 3-acetate can be found in black-eyed pea and rosemary, which makes oleanolic acid 3-acetate a potential biomarker for the consumption of these food products.

   

oleanonicacid

(4aS,6aR,6aS,6bR,8aR,12aR,14bS)-2,2,6a,6b,9,9,12a-heptamethyl-10-oxo-3,4,5,6,6a,7,8,8a,11,12,13,14b-dodecahydro-1H-picene-4a-carboxylic acid

C30H46O3 (454.34467659999996)


Oleanonic acid is a natural product found in Myrcia guianensis, Lantana montevidensis, and other organisms with data available. Oleanonic acid (3-Oxooleanolic acid) is a triterpenoid, inhibits infection by HIV. Oleanonic acid (3-Oxooleanolic acid) is a triterpenoid, inhibits infection by HIV.

   

Hederagenin

(4AS,6AS,6BR,8AR,9R,10S,12AR,12BR,14BS)-10-HYDROXY-9-(HYDROXYMETHYL)-2,2,6A,6B,9,12A-HEXAMETHYL-1,2,3,4,4A,5,6,6A,6B,7,8,8A,9,10,11,12,12A,12B,13,14B-ICOSAHYDROPICENE-4A-CARBOXYLIC ACID

C30H48O4 (472.3552408)


Hederagenin is a sapogenin that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 3 and 23 (the 3beta stereoisomer). It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a dihydroxy monocarboxylic acid and a sapogenin. It is functionally related to an oleanolic acid. It is a conjugate acid of a hederagenin(1-). It derives from a hydride of an oleanane. Hederagenin is a natural product found in Zygophyllum obliquum, Sapindus emarginatus, and other organisms with data available. See also: Paeonia lactiflora root (part of); Caulophyllum robustum Root (part of); Medicago sativa whole (part of). A sapogenin that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 3 and 23 (the 3beta stereoisomer). Hederagenin is a triterpenoid saponin that can inhibit the expression of iNOS, COX-2, and NF-κB in cells caused by LPS stimulation. Hederagenin is a triterpenoid saponin that can inhibit the expression of iNOS, COX-2, and NF-κB in cells caused by LPS stimulation.

   

Centelase

URS-12-EN-28-OIC ACID, 2,3,23-TRIHYDROXY-, O-6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->4)-O-.BETA.-D-GLUCOPYRANOSYL-(1->6)-.BETA.-D-GLUCOPYRANOSYL ESTER, (2.ALPHA.,3.BETA.,4.ALPHA.)-

C48H78O19 (958.5137038)


Asiaticoside is a triterpenoid saponin. Madecassol is a natural product found in Akebia trifoliata, Heptapleurum heptaphyllum, and other organisms with data available. See also: Centella asiatica flowering top (part of). C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000890 - Anti-Infective Agents Same as: D07576 Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties. Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties.

   

Hederacol

OLEAN-12-EN-28-OIC ACID, 3- ((2-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)- .ALPHA.-L-ARABINOPYRANOSYL)OXY)-23-HYDROXY-, O-6-DEOXY-.ALPHA.-L- MANNOPYRANOSYL-(1-4)-O-.BETA.-D-GLUCOPYRANOSYL-(1-6)-.BETA.-D- GLUCOPYRANOSYL ESTER, (3.BETA.,4.ALPHA.)-

C59H96O26 (1220.6189516)


Kalopanaxsaponin B is a triterpenoid saponin with hederagenin as the aglycone part. It has been isolated from the stem bark of Kalopanax pictus. It has a role as an anti-inflammatory agent and a plant metabolite. It is a pentacyclic triterpenoid, a triterpenoid saponin and a carboxylic ester. It is functionally related to a hederagenin. Hederacoside C is a natural product found in Hedera caucasigena, Akebia trifoliata, and other organisms with data available. See also: Hedera helix leaf (part of). A triterpenoid saponin with hederagenin as the aglycone part. It has been isolated from the stem bark of Kalopanax pictus. Hederacoside C (Kalopanaxsaponin B) is the main bioactive molecular component of ivy leaves. It has expectorant, bronchodilator, antibacterial and other effects and can be used to study respiratory diseases. Hederacoside C (Kalopanaxsaponin B) is the main bioactive molecular component of ivy leaves. It has expectorant, bronchodilator, antibacterial and other effects and can be used to study respiratory diseases.

   

Oleanonic

(4aS,6aR,6aS,6bR,8aR,12aR,14bS)-2,2,6a,6b,9,9,12a-heptamethyl-10-oxo-3,4,5,6,6a,7,8,8a,11,12,13,14b-dodecahydro-1H-picene-4a-carboxylic acid

C30H46O3 (454.34467659999996)


Oleanonic acid is a natural product found in Myrcia guianensis, Lantana montevidensis, and other organisms with data available. Oleanonic acid (3-Oxooleanolic acid) is a triterpenoid, inhibits infection by HIV. Oleanonic acid (3-Oxooleanolic acid) is a triterpenoid, inhibits infection by HIV.

   

4-Methoxybenzaldehyde

p-Anisaldehyde, United States Pharmacopeia (USP) Reference Standard

C8H8O2 (136.0524268)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Oleanonic acid

Oleanonic acid

C30H46O3 (454.34467659999996)


Oleanonic acid (3-Oxooleanolic acid) is a triterpenoid, inhibits infection by HIV. Oleanonic acid (3-Oxooleanolic acid) is a triterpenoid, inhibits infection by HIV.

   

Maslinic Acid

(4aS,6aS,6bR,8aR,10R,11R,12aR,12bR,14bS)-10,11-Dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O4 (472.3552408)


A pentacyclic triterpenoid that is 3alpha-hydroxy epimer of maslinic acid. Isolated from Prunella vulgaris and Isodon japonicus, it exhibits anti-inflammatory activity. Annotation level-1 Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation. Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation.

   

4-Methoxybenzaldehyde

p-Anisaldehyde, United States Pharmacopeia (USP) Reference Standard

C8H8O2 (136.0524268)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Oleanic acid

NCGC00168812-02_C30H48O3_Olean-12-en-28-oic acid, 3-hydroxy-, (3beta,5xi,9xi,18xi)-

C30H48O3 (456.36032579999994)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.635 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.631 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.630 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.633 Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Asiaticoside

(2S,3R,4S,5S,6R)-6-((((2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)methyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl (1S,2R,4aS,6aS,6bR,9R,10R,11R,12aR)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropic

C48H78O19 (958.5137038)


D000890 - Anti-Infective Agents C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Origin: Plant; SubCategory_DNP: Triterpenoids SubCategory_DNP: Triterpenoids; Origin: Plant Annotation level-1 Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties. Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties.

   

Pentyl acetate

Pentyl acetate

C7H14O2 (130.09937440000002)


An acetate ester of pentanol.

   

METHYL NONANOATE

Pelargonic acid methyl ester

C10H20O2 (172.14632200000003)


A fatty acid methyl ester obtained from the formal condensation of methanol and nonanoic acid; a colourless liquid with a fruity odour, used in perfumes and flavours, and for medical research.

   

2-Hexylthiophene

2-N-Hexylthiophene

C10H16S (168.0972656)


2-Hexylthiophene is an extremely weak basic heteroaromatic compound. 2-Hexylthiophene can be used to modify and improve the molar absorption coefficient of ruthenium sensitizer[1]

   

Acetylfuran

5-17-09-00381 (Beilstein Handbook Reference)

C6H6O2 (110.0367776)


2-Acetylfuran (2-Furyl methyl ketone), an important flavour compound or intermediate in foods, is isolated from essential oils, sweet corn products, fruits and flowers. 2-Acetylfuran also can be formed from glucose and glycine by Maillard reaction. 2-Acetylfuran can be used to synthesis Cefuroxime[1][2].

   

2-Propylthiophene

2-N-PROPYL thiophene

C7H10S (126.050318)


   

D.e.t.

1',2',3',6'-Tetrahydro-4'-methylacetophenone

C9H14O (138.1044594)


   

4-Octanolide

4-Butyl-4-hydroxybutyric acid lactone

C8H14O2 (142.09937440000002)


   

Epi-Oleanolic Acid

(4aS,6aS,6bR,8aR,10R,12aR,12bR,14bS)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


3-Epioleanolic acid is an active component of Verbena officinalis Linn, with anti-inflammatory activity[1]. 3-Epioleanolic acid is an active component of Verbena officinalis Linn, with anti-inflammatory activity[1].

   

Bisacumol

2-methyl-6-(4-methylphenyl)hept-2-en-4-ol

C15H22O (218.1670562)


   

2-PENTYLTHIOPHENE

1-Methylbutylthiophene

C9H14S (154.0816164)


   

Linalool oxide B

5-ethenyltetrahydro-a,a,5-Trimethyl-(2R,5S)-rel-2-furanmethanol

C10H18O2 (170.1306728)


   

FOH 7:0

(3S,4S)-4-Methylhexan-3-ol

C7H16O (116.12010860000001)


   

Heptenal

3-01-00-03002 (Beilstein Handbook Reference)

C7H12O (112.0888102)


   

SFE 7:0

Methyl 4-methylpentanoate

C7H14O2 (130.09937440000002)


   

SFE 10:0

n-Caproic acid n-butyl ester

C10H20O2 (172.14632200000003)


A fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1]. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1].

   

Caryophyllin

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Hederagenol

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-10-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


Hederagenin is a triterpenoid saponin that can inhibit the expression of iNOS, COX-2, and NF-κB in cells caused by LPS stimulation. Hederagenin is a triterpenoid saponin that can inhibit the expression of iNOS, COX-2, and NF-κB in cells caused by LPS stimulation.

   

LS-2530

3-06-00-04981 (Beilstein Handbook Reference)

C9H10O2 (150.06807600000002)


2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].

   

Cauloside A

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[[(2S,3R,4S,5S)-3,4,5-trihydroxy-2-tetrahydropyranyl]oxy]-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C35H56O8 (604.3974976000001)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2]. Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2].

   

Helixin

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-10-[[(2S,3R,4S,5S)-4,5-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetra

C41H66O12 (750.4554036000001)


alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1]. alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1].

   

AIDS-070322

(4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-acetyloxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C32H50O4 (498.37089000000003)


   

Obepin

InChI=1\C8H8O2\c1-10-8-4-2-7(6-9)3-5-8\h2-6H,1H

C8H8O2 (136.0524268)


4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Gentanol

4-01-00-01731 (Beilstein Handbook Reference)

C7H16O (116.12010860000001)


   

AI3-28570

InChI=1\C10H20O2\c1-3-4-5-6-7-8-9-10(11)12-2\h3-9H2,1-2H

C10H20O2 (172.14632200000003)


   

linalool oxide B (cis-THF)

2-[(2R,5S)-5-methyl-5-vinyl-tetrahydrofuran-2-yl]propan-2-ol

C10H18O2 (170.1306728)


   

Pear oil

InChI=1\C7H14O2\c1-3-4-5-6-9-7(2)8\h3-6H2,1-2H

C7H14O2 (130.09937440000002)


   

Trilinolein

glycerol trilinoleate

C57H98O6 (878.7363008)


Constituent of seed oils rich in linoleic acid, e.g., sunflower oil. Glycerol trilinoleate is found in fats and oils. Trilinolein is an endogenous metabolite. Trilinolein is an endogenous metabolite.

   

Cyanidin 3-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

C21H21O11+ (449.10838160000003)


Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-​glucoside is a product of cyanidin 3-​sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Found in many plants and fruits, e.g. cherries, olives and grapes

   
   

GAMMA-OCTALACTONE

5-Butyldihydro-2(3H)-furanone

C8H14O2 (142.09937440000002)


A gamma-lactone that is oxolan-2-one substituted by a butyl group at position 5. It is a volatile compound found in peaches, mangoes, beef and ham.

   

2-Acetylfuran

1-(Furan-2-yl)ethanone

C6H6O2 (110.0367776)


2-Acetylfuran (2-Furyl methyl ketone), an important flavour compound or intermediate in foods, is isolated from essential oils, sweet corn products, fruits and flowers. 2-Acetylfuran also can be formed from glucose and glycine by Maillard reaction. 2-Acetylfuran can be used to synthesis Cefuroxime[1][2].

   

4-Acetyl-1-methylcyclohexene

4-Acetyl-1-methyl-1-cyclohexene

C9H14O (138.1044594)


   

(Z)-Linalool oxide (furanoid)

2-[(2R,5S)-5-ethenyl-5-methyloxolan-2-yl]propan-2-ol

C10H18O2 (170.1306728)