Citric acid (BioDeep_00000000304)
Secondary id: BioDeep_00000229672, BioDeep_00000400016, BioDeep_00000400390
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C6H8O7 (192.027)
中文名称: 无水柠檬酸, 柠檬酸
谱图信息:
最多检出来源 Homo sapiens(blood) 23.58%
Last reviewed on 2024-07-01.
Cite this Page
Citric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/citric_acid (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000000304). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C(=O)O)C(CC(=O)O)(C(=O)O)O
InChI: InChI=1S/C6H8O7/c7-3(8)1-6(13,5(11)12)2-4(9)10/h13H,1-2H2,(H,7,8)(H,9,10)(H,11,12)
描述信息
Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction.
Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999)
Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion.
A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative.
Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity.
Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood.
A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability.
See also: Citric Acid Monohydrate (related).
Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− .
A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms.
Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].
Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].
同义名列表
158 个代谢物同义名
Citric acid, Anhydrous, Pharmaceutical Secondary Standard; Certified Reference Material; InChI=1/C6H8O7/c7-3(8)1-6(13,5(11)12)2-4(9)10/h13H,1-2H2,(H,7,8)(H,9,10)(H,11,12; Citric acid, anhydrous, free-flowing, Redi-Dri(TM), ACS reagent, >=99.5\\%; CITRIC ACID (CONSTITUENT OF GARCINIA CAMBOGIA AND GARCINIA INDICA) [DSC]; Citric acid, anhydrous, cell culture tested, plant cell culture tested; Citric acid, anhydrous, European Pharmacopoeia (EP) Reference Standard; CITRIC ACID (CONSTITUENT OF GARCINIA CAMBOGIA AND GARCINIA INDICA); Citric acid, United States Pharmacopeia (USP) Reference Standard; Citric Acid Anhydrous; 2-Hydroxypropane-1,2,3-tricarboxylic acid; CITRIC ACID (CONSTITUENT OF CRANBERRY LIQUID PREPARATION) [DSC]; CITRIC ACID (CONSTITUENT OF CRANBERRY LIQUID PREPARATION); Citric acid, meets USP testing specifications, anhydrous; 1,2,3-PROPANETRICARBOXYLIC ACID,2-HYDROXY (CITRIC ACID); Citric acid, certified reference material, TraceCERT(R); 2-Hydroxy-1,2,3-propanetricarboxylic Acid, Anhydrous; Kyselina 2-hydroxy-1,2,3-propantrikarbonova [Czech]; 1,2,3-Propanetricarboxylic acid, 2-hydroxy- (9CI); Citric acid, BioUltra, anhydrous, >=99.5\\% (T); 4-03-00-01272 (Beilstein Handbook Reference); 2-Hydroxy-1,2,3-propanenetricarboxylic acid; 1,2,3-Propanetricarboxylic acid, 2-hydroxy-; Kyselina 2-hydroxy-1,2,3-propantrikarbonova; 2-Hydroxy-1,2,3-propane tricarboxylic acid; 2-hydroxy-1,2,3-propane-tricarboxylic acid; ANHYDROUS CITRIC ACID COMPONENT OF CLENPIQ; Citric acid, Vetec(TM) reagent grade, 99\\%; 3-Carboxy-3-hydroxypentane-1,5-dioic acid; 2-hydroxypropane-1,2,3-tricarboxylic acid; 1,3-Propanetricarboxylic acid, 2-hydroxy-; 2-hydroxy-1,2,3-propanetricarboxylic acid; 2-hydroxy-1,2,3-propanetricarboxyic acid; 2-hydroxypropane-1,2,3-tricarboxylicacid; Citric Acid, anhydrous granular, A.C.S.; CLENPIQ COMPONENT ANHYDROUS CITRIC ACID; 2-Hydroxy-1,3-propanetricarboxylic acid; Citric acid, SAJ first grade, >=99.5\\%; 2-hydroxy-1,2,3-propanetricarboxylate; ANHYDROUS CITRIC ACID (USP MONOGRAPH); ANHYDROUS CITRIC ACID [USP MONOGRAPH]; CITRIC ACID, ANHYDROUS [USP IMPURITY]; CITRIC ACID, ANHYDROUS (USP IMPURITY); Citric Acid, anhydrous powder, A.C.S.; 3-Carboxy-3-hydroxypentane-1,5-dioate; 8F5D336A-442D-434A-9FB0-E400FF74E343; CITRIC ACID, ANHYDROUS (EP IMPURITY); CITRIC ACID, ANHYDROUS [EP IMPURITY]; Citric acid, LR, anhydrous, >=99\\%; 2-Hydroxypropanetricarboxylic acid; Citric acid, Electrophoresis Grade; Citric acid, ACS reagent, >=99.5\\%; .beta.-Hydroxytricarballylic acid; Citric acid, anhydrous [USP:JAN]; Citric acid, analytical standard; beta-Hydroxytricarballylic acid; CITRIC ACID, ANHYDROUS [WHO-IP]; BETA-HYDROXY-TRICARBOXYLIC ACID; Citric acid, >=99.5\\%, FCC, FG; ACIDUM CITRICUM [WHO-IP LATIN]; ANHYDROUS CITRIC ACID [MART.]; ANHYDROUS CITRIC ACID (MART.); CITRIC ACID,ANHYDROUS [VANDF]; Citric acid, anhydrous (USP); 2-Hydroxytricarballylic acid; Anhydrous citric acid (JP17); Citric acid anhydrous (JAN); ANHYDROUS CITRIC ACID [JAN]; Acidum citricum monohydrate; beta-Hydroxytricarballylate; Citric Acid, anhydrous, USP; ANHYDROUS CITRIC ACID [II]; Kyselina citronova [Czech]; ANHYDROUS CITRIC ACID (II); Citric acid, p.a., 99.5\\%; Citric acid monoglyceride; Monohydrate, citric acid; Acid monohydrate, citric; 2-Hydroxytricarballylate; Citric Acid Monohydrate; CITRICUM ACIDUM [HPUS]; Citric acid [USAN:JAN]; Citric acid, anhydrous; Anhydrous citric acid; Citric acid anhydrous; Citric acid,anhydrous; Citraclean (Salt/Mix); K-Lyte/Cl (Salt/Mix); CITRIC ACID [WHO-DD]; K-Lyte DS (Salt/Mix); Kyselina citronova; CITRIC ACID [FHFI]; CITRIC ACID [HSDB]; Citric acid, 99\\%; K-Lyte (Salt/Mix); Anhydrous citrate; Citrate anhydrous; Citric acid (8CI); HOC(CH2COOH)2COOH; NCIStruc2_000099; CITRIC ACID [MI]; NCIStruc1_000057; Spectrum3_001850; WLN: QV1XQVQ1VQ; Citric Acid,(S); NCIOpen2_004502; Citricum acidum; NCIOpen2_004062; Acidum citricum; Citronensaeure; Oprea1_502996; Citronensaure; CITRATE ANION; acido citrico; Hydrocerol A; KBio3_002740; NCI60_022579; Tox21_113436; Tox21_300124; Tox21_202405; Citric Acid; Uro-trainer; citric-acid; CAS-77-92-9; Citraclean; K-Lyte DS; Aciletten; AI3-06286; Citralite; UBIQUITIN; Citretten; Uralyt U; Chemfill; Citrate; C6H8O7; Citric; Suby G; K-Lyte; H3cit; e 330; Citro; 2fwp; 4to8; 2fw6; 4nrm; e330; 4o61; citr; 1y4a; 1i2s; 1rq2; 1o4l; 2c4v; 4aci; 2bo4; β-Hydroxytricarballylic acid; β-Hydroxytricarballylate; Citric acid; Citrate; Citric acid
数据库引用编号
44 个数据库交叉引用编号
- ChEBI: CHEBI:30769
- KEGG: C00158
- KEGGdrug: D00037
- PubChem: 311
- HMDB: HMDB0000094
- Metlin: METLIN124
- DrugBank: DB04272
- ChEMBL: CHEMBL1261
- Wikipedia: Citric_Acid
- Wikipedia: Citric acid
- MeSH: Citric Acid
- ChemIDplus: 0000077929
- MetaCyc: CIT
- KNApSAcK: C00007619
- foodb: FDB030735
- chemspider: 305
- CAS: 77-92-9
- MoNA: KNA00812
- MoNA: KO000384
- MoNA: KNA00814
- MoNA: PS001007
- MoNA: KNA00552
- MoNA: KNA00550
- MoNA: KNA00813
- MoNA: KO000382
- MoNA: KO000383
- MoNA: PR100481
- MoNA: KNA00551
- MoNA: KO000385
- MoNA: KO000381
- PMhub: MS000000308
- MetaboLights: MTBLC30769
- ChEBI: CHEBI:16947
- PDB-CCD: CIT
- PDB-CCD: FLC
- 3DMET: B00046
- NIKKAJI: J2.824J
- RefMet: Citric acid
- medchemexpress: HY-N1428
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-5
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-748
- PubChem: 3458
- KNApSAcK: 16947
- LOTUS: LTS0213921
分类词条
相关代谢途径
Reactome(17)
- Metabolism
- Metabolism of lipids
- Transport of small molecules
- SLC-mediated transmembrane transport
- Transport of bile salts and organic acids, metal ions and amine compounds
- Fatty acid metabolism
- The tricarboxylic acid cycle
- Glycolysis
- Sodium-coupled sulphate, di- and tri-carboxylate transporters
- Iron uptake and transport
- Carbohydrate metabolism
- Glucose metabolism
- Fatty acyl-CoA biosynthesis
- Carnitine metabolism
- The citric acid (TCA) cycle and respiratory electron transport
- Pyruvate metabolism and Citric Acid (TCA) cycle
- Citric acid cycle (TCA cycle)
PlantCyc(0)
代谢反应
573 个相关的代谢反应过程信息。
Reactome(154)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Fatty acyl-CoA biosynthesis:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Fatty acyl-CoA biosynthesis:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CoA + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Iron uptake and transport:
CIT ⟶ ISCIT
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Iron uptake and transport:
CIT ⟶ ISCIT
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Citric acid cycle (TCA cycle):
CIT ⟶ ISCIT
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
Mal-CoA + PALM-CoA ⟶ 3OOD-CoA + CoA-SH + carbon dioxide
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Transport of small molecules:
CHOL + NPC2 ⟶ NPC2:CHOL
- Iron uptake and transport:
CIT ⟶ ISCIT
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Iron uptake and transport:
CIT ⟶ ISCIT
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- The tricarboxylic acid cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Transport of small molecules:
CHOL + phosphatidylcholines ⟶ 1-acyl LPC + CHEST
- Iron uptake and transport:
CIT ⟶ ISCIT
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Fatty acid metabolism:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Iron uptake and transport:
CIT ⟶ ISCIT
BioCyc(8)
- TCA cycle, aerobic respiration:
H2O + cis-aconitate ⟶ isocitrate
- glyoxylate cycle:
H2O + cis-aconitate ⟶ isocitrate
- TCA cycle variation III (eukaryotic):
H2O + acetyl-CoA + oxaloacetate ⟶ H+ + citrate + coenzyme A
- itaconate biosynthesis:
citrate ⟶ cis-aconitate + H2O
- mixed acid fermentation:
citrate ⟶ cis-aconitate + H2O
- respiration (anaerobic):
citrate ⟶ cis-aconitate + H2O
- TCA cycle variation III (eukaryotic):
citrate ⟶ cis-aconitate + H2O
- glyoxylate cycle:
citrate ⟶ cis-aconitate + H2O
WikiPathways(5)
- Fatty acid biosynthesis:
Citric acid ⟶ Acetyl-CoA
- Metabolism overview:
NH3 ⟶ Glutamic acid
- TCA cycle (Krebs cycle):
citrate ⟶ isocitrate
- TCA cycle (aka Krebs or citric acid cycle):
cis-aconitate ⟶ citrate
- Fluoroacetic acid toxicity:
Citric acid ⟶ Isocitric acid
Plant Reactome(401)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Responses to stimuli: abiotic stimuli and stresses:
Al3+ + CIT ⟶ Al:citrate
- Response to heavy metals:
Al3+ + CIT ⟶ Al:citrate
- Response to Aluminum stress:
Al3+ + CIT ⟶ Al:citrate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
INOH(5)
- Citrate cycle ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Isocitric acid
- ATP + CoA + Citric acid = ADP + Acetyl-CoA + Oxaloacetic acid + Orthophosphate ( Lysine degradation ):
ADP + Acetyl-CoA + Orthophosphate + Oxaloacetic acid ⟶ ATP + Citric acid + CoA
- Citric acid = Isocitric acid ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Isocitric acid
- Citric acid = Isocitric acid ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Citric acid
- Citric acid = cis-Aconitic acid + H2O ( Citrate cycle ):
Citric acid ⟶ H2O + cis-Aconitic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
349 个相关的物种来源信息
- 49188 - Aconitum: LTS0213921
- 1478108 - Aconitum japonicum: 10.1248/YAKUSHI1947.85.5_469
- 1478108 - Aconitum japonicum: LTS0213921
- 112594 - Aconitum variegatum: LTS0213921
- 3624 - Actinidia: LTS0213921
- 64478 - Actinidia arguta: 10.1006/FSTL.1996.0201
- 64478 - Actinidia arguta: LTS0213921
- 3625 - Actinidia chinensis: 10.1006/FSTL.1996.0201
- 3625 - Actinidia chinensis: LTS0213921
- 165707 - Actinidia hemsleyana: 10.1006/FSTL.1996.0201
- 165707 - Actinidia hemsleyana: LTS0213921
- 64480 - Actinidia polygama: 10.1006/FSTL.1996.0201
- 64480 - Actinidia polygama: LTS0213921
- 3623 - Actinidiaceae: LTS0213921
- 4206 - Adoxaceae: LTS0213921
- 43363 - Aesculus: LTS0213921
- 43364 - Aesculus hippocastanum: 10.1002/PRAC.18671020118
- 43364 - Aesculus hippocastanum: LTS0213921
- 155619 - Agaricomycetes: LTS0213921
- 39509 - Agave: LTS0213921
- 39510 - Agave americana: 10.1038/NPLANTS.2016.178
- 39510 - Agave americana: LTS0213921
- 25641 - Aloe: -
- 3563 - Amaranthaceae: LTS0213921
- 247903 - Ammodendron: LTS0213921
- 247904 - Ammodendron bifolium: 10.1007/BF00575055
- 247904 - Ammodendron bifolium: LTS0213921
- 449079 - Ammothamnus: LTS0213921
- 449080 - Ammothamnus lehmannii: 10.1007/BF00575055
- 8292 - Amphibia: LTS0213921
- 4011 - Anacardiaceae: LTS0213921
- 4614 - Ananas: LTS0213921
- 4615 - Ananas comosus: 10.1093/JAOAC/55.1.200
- 4615 - Ananas comosus: LTS0213921
- 13336 - Annona: LTS0213921
- 49314 - Annona cherimola: 10.21273/JASHS.119.3.524
- 49314 - Annona cherimola: LTS0213921
- 22140 - Annonaceae: LTS0213921
- 4294 - Aquifoliaceae: LTS0213921
- 3701 - Arabidopsis: LTS0213921
- 3702 - Arabidopsis thaliana: 10.1073/PNAS.1403248111
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-1-53
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-5-1
- 3702 - Arabidopsis thaliana: 10.3390/IJMS17091565
- 3702 - Arabidopsis thaliana: LTS0213921
- 4050 - Araliaceae: LTS0213921
- 13342 - Arbutus: LTS0213921
- 84005 - Arbutus unedo: 10.1006/JFCA.1999.0868
- 84005 - Arbutus unedo: LTS0213921
- 4890 - Ascomycota: LTS0213921
- 40552 - Asparagaceae: LTS0213921
- 1131492 - Aspergillaceae: LTS0213921
- 5052 - Aspergillus: LTS0213921
- 5061 - Aspergillus niger: LTS0213921
- 4210 - Asteraceae: LTS0213921
- 124943 - Azadirachta indica:
- 2 - Bacteria: LTS0213921
- 5204 - Basidiomycota: LTS0213921
- 3554 - Beta: LTS0213921
- 161934 - Beta vulgaris: 10.1007/978-1-4020-4585-1_2617
- 161934 - Beta vulgaris: LTS0213921
- 3700 - Brassicaceae: LTS0213921
- 4613 - Bromeliaceae: LTS0213921
- 1500519 - Cacalia: LTS0213921
- 1500521 - Cacalia hastata: 10.1023/B:CONC.0000039145.63701.2F
- 3593 - Cactaceae: LTS0213921
- 4441 - Camellia: LTS0213921
- 4442 - Camellia sinensis: 10.1016/S0021-9673(96)00910-7
- 4442 - Camellia sinensis: LTS0213921
- 4381 - Campanulaceae: LTS0213921
- 3481 - Cannabaceae: LTS0213921
- 3482 - Cannabis: LTS0213921
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0213921
- 4200 - Caprifoliaceae: LTS0213921
- 124947 - Cedrela odorata:
- 36622 - Chaenomeles Sinensis (Thouin) Koehne: -
- 1804623 - Chenopodiaceae: LTS0213921
- 7711 - Chordata: LTS0213921
- 1890464 - Chroococcaceae: LTS0213921
- 13442 - Coffea: LTS0213921
- 13443 - Coffea arabica: 10.1007/978-3-540-69934-7_22
- 13443 - Coffea arabica: 10.1038/SCIENTIFICAMERICAN03201858-219
- 13443 - Coffea arabica: LTS0213921
- 4118 - Convolvulaceae: LTS0213921
- 3781 - Crassulaceae: LTS0213921
- 510735 - Crataegus pinnatifida Bge.: -
- 510735 - Crataegus pinnatifida Bge. var.major N.E.Br.: -
- 3028117 - Cyanophyceae: LTS0213921
- 160546 - Diplachne: LTS0213921
- 160547 - Diplachne fusca: LTS0213921
- 2086468 - Diplachne fusca subsp. fusca: LTS0213921
- 4363 - Drosera: LTS0213921
- 463625 - Drosera intermedia: 10.1002/CBER.187901202108
- 463625 - Drosera intermedia: LTS0213921
- 4360 - Droseraceae: LTS0213921
- 543 - Enterobacteriaceae: LTS0213921
- 4345 - Ericaceae: LTS0213921
- 561 - Escherichia: LTS0213921
- 562 - Escherichia coli: LTS0213921
- 33682 - Euglenozoa: LTS0213921
- 2759 - Eukaryota: LTS0213921
- 147545 - Eurotiomycetes: LTS0213921
- 4414 - Euryale ferox Salisb.: -
- 3803 - Fabaceae: LTS0213921
- 1769247 - Fomitopsidaceae: LTS0213921
- 200992 - Fumaria: LTS0213921
- 367484 - Fumaria vaillantii: 10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0
- 367484 - Fumaria vaillantii: LTS0213921
- 4751 - Fungi: LTS0213921
- 1236 - Gammaproteobacteria: LTS0213921
- 91201 - Gastrodia elata Bl.: -
- 56852 - Glaucium: LTS0213921
- 56853 - Glaucium flavum: 10.1515/BCHM2.1924.138.3-6.156
- 56853 - Glaucium flavum: LTS0213921
- 3633 - Gossypium: LTS0213921
- 3635 - Gossypium hirsutum: 10.1021/JF00071A036
- 3635 - Gossypium hirsutum: LTS0213921
- 9606 - Homo sapiens: -
- 44985 - Hyacinthaceae: LTS0213921
- 81757 - Hyacinthoides: LTS0213921
- 81762 - Hyacinthoides non-scripta: 10.1038/S41598-019-38940-W
- 81762 - Hyacinthoides non-scripta: LTS0213921
- 8418 - Hylidae: LTS0213921
- 629714 - Hypericaceae: LTS0213921
- 55962 - Hypericum: LTS0213921
- 65561 - Hypericum perforatum: 10.1002/PCA.638
- 65561 - Hypericum perforatum: LTS0213921
- 4295 - Ilex: LTS0213921
- 185542 - Ilex paraguariensis: 10.1002/ARDP.18932310709
- 185542 - Ilex paraguariensis: LTS0213921
- 80369 - Imperata cylindrica Beauv var. major(Nees) C.E.Hubb.: -
- 4119 - Ipomoea: LTS0213921
- 4120 - Ipomoea batatas: 10.1021/JF00064A045
- 4120 - Ipomoea batatas: LTS0213921
- 5653 - Kinetoplastea: LTS0213921
- 2028212 - Laetiporaceae: LTS0213921
- 5629 - Laetiporus: LTS0213921
- 5630 - Laetiporus sulphureus: 10.1007/S10600-009-9180-X
- 5630 - Laetiporus sulphureus: LTS0213921
- 4136 - Lamiaceae: LTS0213921
- 160553 - Leptochloa: LTS0213921
- 4447 - Liliopsida: LTS0213921
- 8370 - Litoria: LTS0213921
- 681275 - Litoria verreauxii: 10.1038/SDATA.2018.33
- 681275 - Litoria verreauxii: LTS0213921
- 49606 - Lonicera: LTS0213921
- 134520 - Lonicera caerulea: 10.1007/BF00598552
- 134520 - Lonicera caerulea: LTS0213921
- 3867 - Lotus: LTS0213921
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0213921
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: LTS0213921
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0213921
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: LTS0213921
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0213921
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: LTS0213921
- 3869 - Lupinus: 10.1002/(SICI)1099-1565(199903/04)10:2<55::AID-PCA437>3.0.CO;2-I
- 3869 - Lupinus: LTS0213921
- 3873 - Lupinus luteus: 10.1002/(SICI)1099-1565(199903/04)10:2<55::AID-PCA437>3.0.CO;2-I
- 3873 - Lupinus luteus: LTS0213921
- 3928 - Lythraceae: LTS0213921
- 3398 - Magnoliopsida: LTS0213921
- 3629 - Malvaceae: LTS0213921
- 23461 - Mangifera: LTS0213921
- 29780 - Mangifera indica: 10.3136/FSTR.6.299
- 29780 - Mangifera indica: LTS0213921
- 50362 - Melanthiaceae: LTS0213921
- 155640 - Melia azedarach:
- 33208 - Metazoa: LTS0213921
- 3487 - Moraceae: LTS0213921
- 43521 - Morinda: LTS0213921
- 659046 - Morinda longiflora: 10.1039/CT9079101907
- 659046 - Morinda longiflora: LTS0213921
- 3497 - Morus: LTS0213921
- 85232 - Morus nigra: 10.1023/B:CONC.0000048249.44206.E2
- 85232 - Morus nigra: LTS0213921
- 2212703 - Mucoromycetes: LTS0213921
- 1913637 - Mucoromycota: LTS0213921
- 3931 - Myrtaceae: LTS0213921
- 106975 - Opuntia: LTS0213921
- 371859 - Opuntia ficus-indica: 10.1002/JSFA.2740350410
- 371859 - Opuntia ficus-indica: 10.3891/ACTA.CHEM.SCAND.20-1431
- 371859 - Opuntia ficus-indica: LTS0213921
- 4053 - Panax: LTS0213921
- 4054 - Panax ginseng: 10.3389/FPLS.2016.00994
- 4054 - Panax ginseng: LTS0213921
- 4054 - Panax ginseng C. A. Mey.: -
- 3465 - Papaveraceae: LTS0213921
- 186961 - Parasenecio: LTS0213921
- 1500521 - Parasenecio hastatus: LTS0213921
- 2126647 - Parasenecio hastatus: 10.1023/B:CONC.0000039145.63701.2F
- 49669 - Paris: LTS0213921
- 83858 - Paris fargesii: 10.1016/J.JPROT.2019.02.003
- 83858 - Paris fargesii: LTS0213921
- 49666 - Paris polyphylla: 10.1016/J.JPROT.2019.02.003
- 49666 - Paris polyphylla: LTS0213921
- 4836 - Phycomyces: LTS0213921
- 4837 - Phycomyces blakesleeanus: LTS0213921
- 1344966 - Phycomycetaceae: LTS0213921
- 15747 - Phyllostachys: LTS0213921
- 38705 - Phyllostachys edulis: 10.1111/J.1365-2621.1983.TB14934.X
- 38705 - Phyllostachys edulis: LTS0213921
- 24663 - Physalis: LTS0213921
- 304149 - Physalis lagascae: 10.1002/PRAC.18520550168
- 304149 - Physalis lagascae: LTS0213921
- 304153 - Physalis minima: 10.1002/PRAC.18520550168
- 304153 - Physalis minima: LTS0213921
- 156152 - Plantaginaceae: LTS0213921
- 26867 - Plantago: LTS0213921
- 29818 - Plantago major: 10.1007/S10600-005-0180-1
- 29818 - Plantago major: LTS0213921
- 94285 - Platycodon: LTS0213921
- 94286 - Platycodon grandiflorus: 10.3390/MOLECULES22081280
- 94286 - Platycodon grandiflorus: LTS0213921
- 420628 - Plinia: LTS0213921
- 375264 - Plinia cauliflora: 10.1111/J.1365-2621.1972.TB03677.X
- 375264 - Plinia cauliflora: LTS0213921
- 4479 - Poaceae: LTS0213921
- 83819 - Polygonum cuspidatum Sieb. et Zucc.: -
- 5317 - Polyporaceae: LTS0213921
- 3689 - Populus: LTS0213921
- 73824 - Populus balsamifera: 10.1007/BF00576226
- 73824 - Populus balsamifera: LTS0213921
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0213921
- 3582 - Portulaca: LTS0213921
- 46147 - Portulaca oleracea: 10.1016/0378-8741(93)90067-F
- 46147 - Portulaca oleracea: LTS0213921
- 46147 - Portulaca oleracea L.: -
- 3581 - Portulacaceae: LTS0213921
- 3754 - Prunus: LTS0213921
- 102107 - Prunus mume: 10.1021/JF980960T
- 102107 - Prunus mume: LTS0213921
- 102107 - Prunus mume: NA
- 356281 - Pseudocedrela kotschyi: 10.1016/J.PHYTOCHEM.2011.12.002
- 135621 - Pseudomonadaceae: LTS0213921
- 286 - Pseudomonas: LTS0213921
- 303 - Pseudomonas putida: LTS0213921
- 22662 - Punica: LTS0213921
- 22663 - Punica granatum: 10.1006/JFCA.2002.1071
- 22663 - Punica granatum: LTS0213921
- 278655 - Pycnandra: LTS0213921
- 280718 - Pycnandra acuminata: 10.1016/J.PHYTOCHEM.2007.07.001
- 280718 - Pycnandra acuminata: 10.1016/S0031-9422(97)00593-1
- 280718 - Pycnandra acuminata: LTS0213921
- 3766 - Pyrus: LTS0213921
- 23211 - Pyrus communis: 10.1016/S0140-6736(49)91289-1
- 23211 - Pyrus communis: LTS0213921
- 3440 - Ranunculaceae: LTS0213921
- 202994 - Rhodiola: LTS0213921
- 203015 - Rhodiola rosea: 10.1007/BF00575035
- 203015 - Rhodiola rosea: LTS0213921
- 58379 - Richardia: LTS0213921
- 60230 - Richardia scabra: 10.1002/PRAC.18520560109
- 60230 - Richardia scabra: LTS0213921
- 3764 - Rosa: LTS0213921
- 74635 - Rosa canina: 10.1007/BF02336094
- 74635 - Rosa canina: 10.1515/ZNC-1985-7-806
- 74635 - Rosa canina: LTS0213921
- 74630 - Rosa spinosissima: 10.1007/BF00713334
- 74630 - Rosa spinosissima: LTS0213921
- 3745 - Rosaceae: LTS0213921
- 25473 - Rubia: LTS0213921
- 29802 - Rubia tinctorum: 10.1002/JLAC.18520820309
- 29802 - Rubia tinctorum: LTS0213921
- 24966 - Rubiaceae: LTS0213921
- 23216 - Rubus: LTS0213921
- 57936 - Rubus chamaemorus: 10.1002/PRAC.18800220135
- 57936 - Rubus chamaemorus: LTS0213921
- 3688 - Salicaceae: LTS0213921
- 590 - Salmonella: LTS0213921
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 28901 - Salmonella enterica: LTS0213921
- 4201 - Sambucus: LTS0213921
- 28503 - Sambucus ebulus: 10.1002/FOOD.19900340716
- 28503 - Sambucus ebulus: LTS0213921
- 4202 - Sambucus nigra: 10.1002/FOOD.19900340716
- 4202 - Sambucus nigra: LTS0213921
- 23672 - Sapindaceae: LTS0213921
- 3737 - Sapotaceae: LTS0213921
- 4139 - Scutellaria: LTS0213921
- 65409 - Scutellaria baicalensis: 10.1007/S10600-008-0023-Y
- 65409 - Scutellaria baicalensis: LTS0213921
- 4070 - Solanaceae: LTS0213921
- 4107 - Solanum: LTS0213921
- 4081 - Solanum lycopersicum: 10.1038/SDATA.2014.29
- 4081 - Solanum lycopersicum: LTS0213921
- 4113 - Solanum tuberosum: 10.1111/J.1365-2621.1984.TB13673.X
- 4113 - Solanum tuberosum: LTS0213921
- 4557 - Sorghum: LTS0213921
- 4558 - Sorghum bicolor: LTS0213921
- 167572 - Stemona tuberosa Lour.: -
- 35493 - Streptophyta: LTS0213921
- 1890426 - Synechococcaceae: LTS0213921
- 1129 - Synechococcus: LTS0213921
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 32046 - Synechococcus elongatus: LTS0213921
- 13707 - Tagetes: LTS0213921
- 13708 - Tagetes erecta: 10.1007/BF02975428
- 13708 - Tagetes erecta: LTS0213921
- 55843 - Tagetes patula: 10.1007/BF02975428
- 55843 - Tagetes patula: LTS0213921
- 27065 - Theaceae: LTS0213921
- 15170 - Tillandsia: LTS0213921
- 49541 - Tillandsia usneoides: 10.1021/NP50122A023
- 49541 - Tillandsia usneoides: LTS0213921
- 443222 - Toona sinensis: 10.1021/JF990443Q
- 58023 - Tracheophyta: LTS0213921
- 28568 - Trichocomaceae: LTS0213921
- 5690 - Trypanosoma: LTS0213921
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0213921
- 5654 - Trypanosomatidae: LTS0213921
- 13749 - Vaccinium: LTS0213921
- 13750 - Vaccinium macrocarpon: 10.1021/JF0205110
- 13750 - Vaccinium macrocarpon: 10.1021/JF0352778
- 13750 - Vaccinium macrocarpon: 10.1093/JAOAC/61.6.1490
- 13750 - Vaccinium macrocarpon: 10.21273/HORTSCI.29.4.313
- 13750 - Vaccinium macrocarpon: LTS0213921
- 180763 - Vaccinium myrtillus: 10.1021/JF0205110
- 180763 - Vaccinium myrtillus: LTS0213921
- 516948 - Vaccinium oxycoccos: 10.1021/JF0205110
- 516948 - Vaccinium oxycoccos: LTS0213921
- 180772 - Vaccinium vitis-idaea: 10.1021/JF0205110
- 180772 - Vaccinium vitis-idaea: LTS0213921
- 4204 - Viburnum: LTS0213921
- 85293 - Viburnum opulus: 10.1007/S10600-007-0161-7
- 85293 - Viburnum opulus: LTS0213921
- 33090 - Viridiplantae: LTS0213921
- 3602 - Vitaceae: LTS0213921
- 3603 - Vitis: LTS0213921
- 29760 - Vitis vinifera: 10.1021/JF9709156
- 29760 - Vitis vinifera: LTS0213921
- 241840 - Xylocarpus:
- 241841 - Xylocarpus granatum:
- 33090 - 枳壳: -
- 33090 - 葡萄: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Guofei Liu, Lingfei Hu, Caixian Tang, Jianming Xu. Changes in the extractability and fractionation of cadmium and copper in a contaminated soil amended with various sugarcane bagasse-based materials.
Ecotoxicology and environmental safety.
2024 Jun; 278(?):116443. doi:
10.1016/j.ecoenv.2024.116443
. [PMID: 38744068] - Donglin Xin, Hong Yin, Ganqiao Ran. Efficient production of High-Purity manno-oligosaccharides from guar gum by citric acid and enzymatic hydrolysis.
Bioresource technology.
2024 Jun; 401(?):130719. doi:
10.1016/j.biortech.2024.130719
. [PMID: 38642662] - Sunita Ranote, Marek Kowalczuk, Natalia Guzenko, Khadar Duale, Paweł Chaber, Marta Musioł, Andrzej Jankowski, Andrzej Marcinkowski, Piotr Kurcok, Ghanshyam S Chauhan, Sandeep Chauhan, Kiran Kumar. Towards scalable and degradable bioplastic films from Moringa oleifera gum/poly(vinyl alcohol) as packaging material.
International journal of biological macromolecules.
2024 Jun; 269(Pt 2):132219. doi:
10.1016/j.ijbiomac.2024.132219
. [PMID: 38729475] - Meng-Yu Liu, Xu-Feng Luo, Jiao-Feng Gu, Xuan-Tao Yi, Hang Zhou, Peng Zeng, Bo-Han Liao. [Cadmium Phytoremediation Effect of Sweet Sorghum Assisted with Citric Acid on Typical Parent Soil in Southern China].
Huan jing ke xue= Huanjing kexue.
2024 May; 45(5):3016-3026. doi:
10.13227/j.hjkx.202306027
. [PMID: 38629562] - Xiaona Wang, Yan Zhou, Xiaofen Chai, Toshi M Foster, Cecilia H Deng, Ting Wu, Xinzhong Zhang, Zhenhai Han, Yi Wang. miR164-MhNAC1 regulates apple root nitrogen uptake under low nitrogen stress.
The New phytologist.
2024 May; 242(3):1218-1237. doi:
10.1111/nph.19663
. [PMID: 38481030] - Hongyu Li, Zheng Li, Pengwang Wang, Zheng Liu, Lingzhuo An, Xuemin Zhang, Zhouyi Xie, Yingping Wang, Xia Li, Wenyuan Gao. Evaluation of citrus pectin extraction methods: Synergistic enhancement of pectin's antioxidant capacity and gel properties through combined use of organic acids, ultrasonication, and microwaves.
International journal of biological macromolecules.
2024 May; 266(Pt 1):131164. doi:
10.1016/j.ijbiomac.2024.131164
. [PMID: 38547940] - Xiaochuan Ma, Ling Sheng, Feifei Li, Tie Zhou, Jing Guo, Yuanyuan Chang, Junfeng Yang, Yan Jin, Yuewen Chen, Xiaopeng Lu. Seasonal drought promotes citrate accumulation in citrus fruit through the CsABF3-activated CsAN1-CsPH8 pathway.
The New phytologist.
2024 May; 242(3):1131-1145. doi:
10.1111/nph.19671
. [PMID: 38482565] - Shan Huang, Guangfeng Sun, Penglong Wu, LinJing Wu, Hongfei Jiang, Xixing Wang, Liyuan Li, Lingling Gao, Fanqi Meng. Safety and Feasibility of Regional Citrate Anticoagulation for Continuous Renal Replacement Therapy With Calcium-Containing Solutions: A Randomized Controlled Trial.
Seminars in dialysis.
2024 May; 37(3):249-258. doi:
10.1111/sdi.13200
. [PMID: 38439685] - Mengying Chen, Shizhong Feng, He Lv, Zewen Wang, Yuhang Zeng, Caihong Shao, Wenxiong Lin, Zhixing Zhang. OsCIPK2 mediated rice root microorganisms and metabolites to improve plant nitrogen uptake.
BMC plant biology.
2024 Apr; 24(1):285. doi:
10.1186/s12870-024-04982-0
. [PMID: 38627617] - Agnieszka Tomczyk-Warunek, Karolina Turżańska, Agnieszka Posturzyńska, Filip Kowal, Tomasz Blicharski, Inés Torné Pano, Anna Winiarska-Mieczan, Anna Nikodem, Sławomir Dresler, Ireneusz Sowa, Magdalena Wójciak, Piotr Dobrowolski. Influence of Various Strontium Formulations (Ranelate, Citrate, and Chloride) on Bone Mineral Density, Morphology, and Microarchitecture: A Comparative Study in an Ovariectomized Female Mouse Model of Osteoporosis.
International journal of molecular sciences.
2024 Apr; 25(7):. doi:
10.3390/ijms25074075
. [PMID: 38612883] - Zhiqi Gao, Xiangchun Quan, Yu Zheng, Ruoyu Yin, Kai Lv. Comparative investigations on the incorporation of biogenic Fe products into anaerobic granular sludge of different sources: Fe loading capacity, physicochemical properties, microbial community and long-term methanogenesis performance.
Journal of environmental management.
2024 Apr; 356(?):120546. doi:
10.1016/j.jenvman.2024.120546
. [PMID: 38471321] - Léa Mounier, Mathieu Pédrot, Martine Bouhnik-Le-Coz, Francisco Cabello-Hurtado. Iron oxide nanoparticles improving multimetal phytoextraction in Helianthus annuus.
Chemosphere.
2024 Apr; 353(?):141534. doi:
10.1016/j.chemosphere.2024.141534
. [PMID: 38403123] - Yu-Lei Jia, Ying Zhang, Lu-Wei Xu, Zi-Xu Zhang, Ying-Shuang Xu, Wang Ma, Yang Gu, Xiao-Man Sun. Enhanced fatty acid storage combined with the multi-factor optimization of fermentation for high-level production of docosahexaenoic acid in Schizochytrium sp.
Bioresource technology.
2024 Apr; 398(?):130532. doi:
10.1016/j.biortech.2024.130532
. [PMID: 38447618] - Maria Gracheva, Zoltán Klencsár, Zoltán Homonnay, Ádám Solti, László Péter, Libor Machala, Petr Novak, Krisztina Kovács. Revealing the nuclearity of iron citrate complexes at biologically relevant conditions.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2024 Apr; 37(2):461-475. doi:
10.1007/s10534-023-00562-1
. [PMID: 38110781] - Ruchi Rani, Laxmikant S Badwaik. Synergistic impact of natural gums and crosslinkers on the properties of oilseed meals based biopolymeric films.
International journal of biological macromolecules.
2024 Apr; 265(Pt 1):130809. doi:
10.1016/j.ijbiomac.2024.130809
. [PMID: 38493819] - Chunhou Li, Xican Li, Jingyuan Zeng, Rongxin Cai, Shaoman Chen, Ban Chen, Xiaojun Zhao. Detection of Adulterated Naodesheng Tablet (Naodesheng Pian) via In-Depth Chemical Analysis and Subsequent Reconstruction of Its Pharmacopoeia Q-Markers.
Molecules (Basel, Switzerland).
2024 Mar; 29(6):. doi:
10.3390/molecules29061392
. [PMID: 38543029] - Wei-Lin Ren, Cheng-Zhi Li, Abid Ullah, Xiao-Zhang Yu. Boron deficiency decreased the root activity of Ga-exposed rice seedlings by reducing iron accumulation and increasing Ga in iron plaque.
Ecotoxicology (London, England).
2024 Mar; 33(2):142-150. doi:
10.1007/s10646-024-02731-5
. [PMID: 38282122] - Patpitcha Deecharoenchaiyakul, Napa Tangtreamjitmun. Reverse Flow Injection Spectrophotometric Determination of Total Acidity in Beverages Using Butterfly Pea Flower Extract.
Journal of AOAC International.
2024 Mar; 107(2):260-266. doi:
10.1093/jaoacint/qsad126
. [PMID: 37952203] - Xiaoqian Yang, Jiapeng Li, Zhonghua Yang, Mengxin Chen, Lei Zhang. Plant growth promoting bacteria and citric acid promote growth and cadmium phytoremediation in ryegrass.
International journal of phytoremediation.
2024 Feb; 26(3):382-392. doi:
10.1080/15226514.2023.2243631
. [PMID: 37578385] - Fengjuan Liu, Xupeng Shao, Yingying Fan, Binxin Jia, Weizhong He, Yan Wang, Fengzhong Wang, Cheng Wang. Time-Series Transcriptome of Cucumis melo Reveals Extensive Transcriptomic Differences with Different Maturity.
Genes.
2024 Jan; 15(2):. doi:
10.3390/genes15020149
. [PMID: 38397139] - Fei Sun, Xiang-Qin Wu, Qiong He, Yu-Hua Cao, Jian-Gang Wang, Sheng-Wang Liang, Shu-Mei Wang. [Screening of bioactive components endowing hawthorn with turbidity-eliminating and lipid-lowering functions and development of quality control method of hawthorn].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2024 Jan; 49(1):100-109. doi:
10.19540/j.cnki.cjcmm.20231102.301
. [PMID: 38403343] - Jiawen Tao, Ping Deng, Min Lin, Chunhai Chen, Qinlong Ma, Lingling Yang, Wenjuan Zhang, Yan Luo, Siyu Chen, Huifeng Pi, Zhou Zhou, Zhengping Yu. Long-term exposure to polystyrene microplastics induces hepatotoxicity by altering lipid signatures in C57BL/6J mice.
Chemosphere.
2024 Jan; 347(?):140716. doi:
10.1016/j.chemosphere.2023.140716
. [PMID: 37979802] - Maria Manzoor, Muhammad Shafiq, Iram Gul, Usman Rauf Kamboh, Dong-Xing Guan, Abdulrahman Ali Alazba, Sven Tomforde, Muhammad Arshad. Enhanced lead phytoextraction and soil health restoration through exogenous supply of organic ligands: Geochemical modeling".
Journal of environmental management.
2023 Dec; 348(?):119435. doi:
10.1016/j.jenvman.2023.119435
. [PMID: 37890401] - Kai Wang, Li Wang, Yi-Kun Wang, Meng You, Ting Liang, Rong Zou, Hong-Li Fan. [Remediation of Soil Cadmium Contamination by Solanum nigrum L. Enhanced by the Combination of Exogenous Bacteria and Citric Acid].
Huan jing ke xue= Huanjing kexue.
2023 Dec; 44(12):7024-7035. doi:
10.13227/j.hjkx.202212010
. [PMID: 38098425] - Mingxi Liu, Shuhan Dai, Lijun Yin, Zhijie Huang, Xin Jia. Wheat Gluten Deamidation: Structure, Allergenicity and Its Application in Hypoallergenic Noodles.
Journal of the science of food and agriculture.
2023 Nov; ?(?):. doi:
10.1002/jsfa.13133
. [PMID: 37968892] - Pan Pan, Huizhan Liu, Ang Liu, Xinchun Zhang, Qingmian Chen, Guihua Wang, Beibei Liu, Qinfen Li, Mei Lei. Rhizosphere environmental factors regulated the cadmium adsorption by vermicompost: Influence of pH and low-molecular-weight organic acids.
Ecotoxicology and environmental safety.
2023 Nov; 266(?):115593. doi:
10.1016/j.ecoenv.2023.115593
. [PMID: 37856985] - Peng Wang, Hongrui Cao, Shuxuan Quan, Yong Wang, Mu Li, Ping Wei, Meng Zhang, Hui Wang, Hongyu Ma, Xiaofeng Li, Zhong-Bao Yang. Nitrate improves aluminium resistance through SLAH-mediated citrate exudation from roots.
Plant, cell & environment.
2023 Nov; 46(11):3518-3541. doi:
10.1111/pce.14688
. [PMID: 37574955] - Philippe Icard, Luca Simula, Grit Zahn, Marco Alifano, Maria E Mycielska. The dual role of citrate in cancer.
Biochimica et biophysica acta. Reviews on cancer.
2023 11; 1878(6):188987. doi:
10.1016/j.bbcan.2023.188987
. [PMID: 37717858] - Yue Huang, Jiaxian He, Yuantao Xu, Weikang Zheng, Shaohua Wang, Peng Chen, Bin Zeng, Shuizhi Yang, Xiaolin Jiang, Zishuang Liu, Lun Wang, Xia Wang, Shengjun Liu, Zhihao Lu, Ziang Liu, Huiwen Yu, Jianqiang Yue, Junyan Gao, Xianyan Zhou, Chunrui Long, Xiuli Zeng, Yong-Jie Guo, Wen-Fu Zhang, Zongzhou Xie, Chunlong Li, Zhaocheng Ma, Wenbiao Jiao, Fei Zhang, Robert M Larkin, Robert R Krueger, Malcolm W Smith, Ray Ming, Xiuxin Deng, Qiang Xu. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits.
Nature genetics.
2023 Nov; 55(11):1964-1975. doi:
10.1038/s41588-023-01516-6
. [PMID: 37783780] - Probir Kumar Mittra, Swapan Kumar Roy, Md Atikur Rahman, Mollah Naimuzzaman, Soo-Jeong Kwon, Sung Ho Yun, Kun Cho, Tomoyuki Katsube-Tanaka, Tatsuhiko Shiraiwa, Sun-Hee Woo. Proteome insights of citric acid-mediated cadmium toxicity tolerance in Brassica napus L.
Environmental science and pollution research international.
2023 Oct; ?(?):. doi:
10.1007/s11356-023-30442-7
. [PMID: 37882925] - Shereen Akhter, Muhammad Zubair, Majid Mahmood, Syed Murtaza Hassan Andrabi, Nasir Hameed, Ejaz Ahmad, Muhammad Kashif Saleemi. Effects of vitamins C and E in tris citric acid glucose extender on chilled semen quality of Kail ram during different storage times.
Scientific reports.
2023 10; 13(1):18123. doi:
10.1038/s41598-023-43831-2
. [PMID: 37872354] - Dalene de Beer, Chantelle Human, Marieta van der Rijst, Elizabeth Joubert. Reaction kinetics of aspalathin degradation and flavanone isomer formation in aqueous model solutions: Effect of temperature, pH and metal chelators.
Food research international (Ottawa, Ont.).
2023 10; 172(?):113188. doi:
10.1016/j.foodres.2023.113188
. [PMID: 37689940] - Jiang Wenjing, Jiang Huaying, Yuan Lihua, S A Yuanhong, Xiao Jimei, Sun Hongqi, Song Jingyan, Sun Zhengao. Xiaoyi Yusi decoction improves fertilization and embryo transfer outcomes in patients with endometriosis.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2023 10; 43(5):1026-1033. doi:
10.19852/j.cnki.jtcm.2023.05.006
. [PMID: 37679991] - Biying Dong, Dong Meng, Zhihua Song, Hongyan Cao, Tingting Du, Meng Qi, Shengjie Wang, Jingyi Xue, Qing Yang, Yujie Fu. CcNFYB3-CcMATE35 and LncRNA CcLTCS-CcCS modules jointly regulate the efflux and synthesis of citrate to enhance aluminium tolerance in pigeon pea.
Plant biotechnology journal.
2023 Sep; ?(?):. doi:
10.1111/pbi.14179
. [PMID: 37776153] - Ednardo Rodrigues Freitas, Cleane Pinho da Silva, Thalles Ribeiro Gomes, Rafael Carlos Nepomuceno, Edibergue Oliveira Dos Santos, Valquíria Sousa Silva, Luana Ledz Costa Vasconcelos Rocha, Maria Teresa Salles Trevisan. Calcium anacardate and its association with citric acid in diets for meat-type breeding quails.
Tropical animal health and production.
2023 Sep; 55(5):305. doi:
10.1007/s11250-023-03727-9
. [PMID: 37731138] - Poonam Panchal, Chitra Bhatia, Yi Chen, Meenakshi Sharma, Jyoti Bhadouria, Lokesh Verma, Kanika Maurya, Anthony J Miller, Jitender Giri. A citrate efflux transporter important for manganese distribution and phosphorus uptake in rice.
The Plant journal : for cell and molecular biology.
2023 Sep; ?(?):. doi:
10.1111/tpj.16463
. [PMID: 37715733] - Elza Fonseca, María Vázquez, Laura Rodriguez-Lorenzo, Natalia Mallo, Ivone Pinheiro, Maria Lígia Sousa, Santiago Cabaleiro, Monica Quarato, Miguel Spuch-Calvar, Miguel A Correa-Duarte, Juan José López-Mayán, Mick Mackey, Antonio Moreda, Vítor Vasconcelos, Begoña Espiña, Alexandre Campos, Mário Jorge Araújo. Getting fat and stressed: Effects of dietary intake of titanium dioxide nanoparticles in the liver of turbot Scophthalmus maximus.
Journal of hazardous materials.
2023 09; 458(?):131915. doi:
10.1016/j.jhazmat.2023.131915
. [PMID: 37413800] - Qiushuang Sun, Yating Guo, Wenjun Hu, Mengdi Zhang, Shijiao Wang, Yuanyuan Lei, Haitao Meng, Ning Li, Pengfei Xu, Zhiyu Li, Haishu Lin, Fang Huang, Zhixia Qiu. Bempedoic acid unveils therapeutic potential in non-alcoholic fatty liver disease: suppression of the hepatic PXR-SLC13A5/ACLY signaling axis.
Drug metabolism and disposition: the biological fate of chemicals.
2023 Sep; ?(?):. doi:
10.1124/dmd.123.001449
. [PMID: 37684055] - Rahul Kumar, Lisa Methven, Maria Jose Oruna-Concha. A Comparative Study of Ethanol and Citric Acid Solutions for Extracting Betalains and Total Phenolic Content from Freeze-Dried Beetroot Powder.
Molecules (Basel, Switzerland).
2023 Sep; 28(17):. doi:
10.3390/molecules28176405
. [PMID: 37687234] - Valentino Casolo, Marco Zancani, Elisa Pellegrini, Antonio Filippi, Sara Gargiulo, Dennis Konnerup, Piero Morandini, Ole Pedersen. Restricted O2 consumption in pea roots induced by hexanoic acid is linked to depletion of Krebs cycle substrates.
Physiologia plantarum.
2023 Sep; 175(5):e14024. doi:
10.1111/ppl.14024
. [PMID: 37882315] - Alejandra Bermúdez-Oria, Africa Fernández-Prior, María Luisa Castejón, Guillermo Rodríguez-Gutiérrez, Juan Fernández-Bolaños. Extraction of polyphenols associated with pectin from olive waste (alperujo) with choline chloride.
Food chemistry.
2023 Sep; 419(?):136073. doi:
10.1016/j.foodchem.2023.136073
. [PMID: 37030208] - Chunyin Li, Defa Hou, Hong Lei, Xuedong Xi, Guanben Du, Hong Zhang, Ming Cao, Gianluca Tondi. Effective and eco-friendly safe self-antimildew strategy to simultaneously improve the water resistance and bonding strength of starch-based adhesive.
International journal of biological macromolecules.
2023 Sep; 248(?):125889. doi:
10.1016/j.ijbiomac.2023.125889
. [PMID: 37479199] - Bei Liu, Zixin Han, Yu Pan, Xun Liu, Meng Zhang, Aling Wan, Zhongying Wang. Synergistic Effects of Organic Ligands and Visible Light on the Reductive Dissolution of CeO2 Nanoparticles: Mechanisms and Implications for the Transformation in Plant Surroundings.
Environmental science & technology.
2023 08; 57(32):11999-12009. doi:
10.1021/acs.est.3c03216
. [PMID: 37535498] - Ehab A Ibrahim. Effect of citric acid on phytoextraction potential of Cucurbita pepo, Lagenaria siceraria, and Raphanus sativus plants exposed to multi-metal stress.
Scientific reports.
2023 08; 13(1):13070. doi:
10.1038/s41598-023-40233-2
. [PMID: 37567950] - Kenneth B Johnson, Todd N Temple, Achala N Kc. Acidifying spray suspensions of oxytetracycline and kasugamycin enhances their effectiveness for fire blight control in apple and pear.
Phytopathology.
2023 Aug; ?(?):. doi:
10.1094/phyto-04-23-0122-r
. [PMID: 37530490] - Cengiz Kaya, Muhammad Ashraf, Mohammed Nasser Alyemeni, Jörg Rinklebe, Parvaiz Ahmad. Citric acid and hydrogen sulfide cooperate to mitigate chromium stress in tomato plants by modulating the ascorbate-glutathione cycle, chromium sequestration, and subcellular allocation of chromium.
Environmental pollution (Barking, Essex : 1987).
2023 Aug; 335(?):122292. doi:
10.1016/j.envpol.2023.122292
. [PMID: 37536477] - Li'ao Zhang, Wenjun Hu, Zhixia Qiu, Zhiyu Li, Jinlei Bian. Opportunities and Challenges for Inhibitors Targeting Citrate Transport and Metabolism in Drug Discovery.
Journal of medicinal chemistry.
2023 07; 66(14):9229-9250. doi:
10.1021/acs.jmedchem.3c00179
. [PMID: 37428122] - Ghulam Mustafa Afridi, Naseem Ullah, Sami Ullah, Muhammad Nafees, Abid Khan, Raheem Shahzad, Rashid Jawad, Muhammad Adnan, Ke Liu, Matthew Tom Harrison, Shah Saud, Shah Hassan, Muhammad Hamzah Saleem, Durri Shahwar, Taufiq Nawaz, Khaled El-Kahtany, Shah Fahad. Modulation of salt stress through application of citrate capped silver nanoparticles and indole acetic acid in maize.
Plant physiology and biochemistry : PPB.
2023 Jul; 201(?):107914. doi:
10.1016/j.plaphy.2023.107914
. [PMID: 37515893] - Mónica Yorlady Alzate Zuluaga, André Luiz Martinez de Oliveira, Fabio Valentinuzzi, Nádia Souza Jayme, Sonia Monterisi, Roberto Fattorini, Stefano Cesco, Youry Pii. An insight into the role of the organic acids produced by Enterobacter sp. strain 15S in solubilizing tricalcium phosphate: in situ study on cucumber.
BMC microbiology.
2023 Jul; 23(1):184. doi:
10.1186/s12866-023-02918-6
. [PMID: 37438698] - Sivagnanam Silambarasan, Peter Logeswari, Alisa S Vangnai, Rodrigo Pérez, Balu Kamaraj, Pablo Cornejo. Co-application of citric acid and Nocardiopsis sp. strain RA07 enhances phytoremediation potentiality of Sorghum bicolor L.
Environmental science and pollution research international.
2023 Jul; ?(?):. doi:
10.1007/s11356-023-28375-2
. [PMID: 37402921] - Eleonora Coppa, Gianpiero Vigani, Rasha Aref, Daniel Savatin, Valentina Bigini, Ruediger Hell, Stefania Astolfi. Differential modulation of Target of Rapamycin activity under single and combined iron and sulfur deficiency in tomato plants.
The Plant journal : for cell and molecular biology.
2023 Jul; 115(1):127-138. doi:
10.1111/tpj.16213
. [PMID: 36976541] - Yan Jin, Manyu Liao, Na Li, Xiaoqian Ma, Huimin Zhang, Jian Han, Dazhi Li, Junfeng Yang, Xiaopeng Lu, Guiyou Long, Ziniu Deng, Ling Sheng. Weighted gene coexpression correlation network analysis reveals the potential molecular regulatory mechanism of citrate and anthocyanin accumulation between postharvest 'Bingtangcheng' and 'Tarocco' blood orange fruit.
BMC plant biology.
2023 Jun; 23(1):296. doi:
10.1186/s12870-023-04309-5
. [PMID: 37268922] - Jianhao Yang, Xiaoxiao Liu, Caiyun Fei, Hongjuan Lu, Youhua Ma, Zhongwen Ma, Wenling Ye. Chemical-microbial effects of acetic acid, oxalic acid and citric acid on arsenic transformation and migration in the rhizosphere of paddy soil.
Ecotoxicology and environmental safety.
2023 May; 259(?):115046. doi:
10.1016/j.ecoenv.2023.115046
. [PMID: 37235901] - Raghav Poudel, Nipu Dutta, Niranjan Karak. A mechanically robust biodegradable bioplastic of citric acid modified plasticized yam starch with anthocyanin as a fish spoilage auto-detecting smart film.
International journal of biological macromolecules.
2023 May; 242(Pt 2):125020. doi:
10.1016/j.ijbiomac.2023.125020
. [PMID: 37217054] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Yazmín Stefani Perea-Vélez, Rogelio Carrillo-González, Ma Del Carmen A González-Chávez, Jaco Vangronsveld, Iván Ortiz Monasterio, Daniel Tapia Maruri. Citrate-coated cobalt ferrite nanoparticles for the nano-enabled biofortification of wheat.
Food & function.
2023 May; 14(9):4017-4035. doi:
10.1039/d2fo03835h
. [PMID: 37067010] - Bei-Ling Fu, Wen-Qiu Wang, Xiang Li, Tong-Hui Qi, Qiu-Fang Shen, Kun-Feng Li, Xiao-Fen Liu, Shao-Jia Li, Andrew C Allan, Xue-Ren Yin. A dramatic decline in fruit citrate induced by mutagenesis of a NAC transcription factor, AcNAC1.
Plant biotechnology journal.
2023 May; ?(?):. doi:
10.1111/pbi.14070
. [PMID: 37161940] - Sławomir Dresler, Maciej Strzemski, Izabela Baczewska, Mateusz Koselski, Mohammad Bagher Hassanpouraghdam, Dariusz Szczepanek, Ireneusz Sowa, Magdalena Wójciak, Agnieszka Hanaka. Extraction of Isoflavones, Alpha-Hydroxy Acids, and Allantoin from Soybean Leaves-Optimization by a Mixture Design of the Experimental Method.
Molecules (Basel, Switzerland).
2023 May; 28(9):. doi:
10.3390/molecules28093963
. [PMID: 37175385] - Leticia Soriano-Baguet, Melanie Grusdat, Henry Kurniawan, Mohaned Benzarti, Carole Binsfeld, Anouk Ewen, Joseph Longworth, Lynn Bonetti, Luana Guerra, Davide G Franchina, Takumi Kobayashi, Veronika Horkova, Charlène Verschueren, Sergio Helgueta, Deborah Gérard, Tushar H More, Antonia Henne, Catherine Dostert, Sophie Farinelle, Antoine Lesur, Jean-Jacques Gérardy, Christian Jäger, Michel Mittelbronn, Lasse Sinkkonen, Karsten Hiller, Johannes Meiser, Dirk Brenner. Pyruvate dehydrogenase fuels a critical citrate pool that is essential for Th17 cell effector functions.
Cell reports.
2023 03; 42(3):112153. doi:
10.1016/j.celrep.2023.112153
. [PMID: 36848289] - Weijie Xue, Xin Zhang, Changbo Zhang, Changrong Wang, Yongchun Huang, Zhongqi Liu. Mitigating the toxicity of reactive oxygen species induced by cadmium via restoring citrate valve and improving the stability of enzyme structure in rice.
Chemosphere.
2023 Mar; 327(?):138511. doi:
10.1016/j.chemosphere.2023.138511
. [PMID: 36972869] - Wei Li, Jiangyan Huo, Entezar Berik, Wenyong Wu, Jinjun Hou, Huali Long, Min Lei, Zhaoxia Li, Zijia Zhang, Wanying Wu. Determination of the intermediates in glycolysis and tricarboxylic acid cycle with an improved derivatization strategy using gas chromatography-mass spectrometry in complex samples.
Journal of chromatography. A.
2023 Mar; 1692(?):463856. doi:
10.1016/j.chroma.2023.463856
. [PMID: 36803770] - Paleerath Peerapen, Visith Thongboonkerd. Kidney Stone Prevention.
Advances in nutrition (Bethesda, Md.).
2023 Mar; ?(?):. doi:
10.1016/j.advnut.2023.03.002
. [PMID: 36906146] - Min-Ni Chen, Xiao-Qi Nie, Xing-Feng Zhang, Chuan-Qian He, Bo Gao. [Effects of Earthworm, Straw, and Citric Acid on the Remediation of Zn, Pb, and Cd Contaminated Soil by Solanum photeinocarpum and Pterocypsela indica].
Huan jing ke xue= Huanjing kexue.
2023 Mar; 44(3):1714-1726. doi:
10.13227/j.hjkx.202204198
. [PMID: 36922232] - Lijuan Liu, Yayun Wu, Ya Zhao, Chuanjian Lu, Ruizhi Zhao. Citric Acid Enhances the Activities of Astilbin on Psoriasis via Down-Regulation of P-Glycoprotein.
Molecular pharmaceutics.
2023 Mar; ?(?):. doi:
10.1021/acs.molpharmaceut.2c00889
. [PMID: 36862757] - Arooj Fatima, Mujahid Farid, Zaki Ul Zaman Asam, Muhammad Zubair, Sheharyaar Farid, Mohsin Abbas, Muhammad Rizwan, Shafaqat Ali. Efficacy of marigold (Tagetes erecta L.) for the treatment of tannery and surgical industry wastewater under citric acid amendment: a lab scale study.
Environmental science and pollution research international.
2023 Mar; 30(15):43403-43418. doi:
10.1007/s11356-023-25299-9
. [PMID: 36658313] - Feili Li, Xiaoling Chen, Jianru Feng, Zheng Liang, Xinyang Xu, Tianzheng Ding. Ryegrass extraction of heavy metals from municipal sewage sludge compost-amended soils assisted with citric acid.
Environmental science and pollution research international.
2023 Mar; 30(12):33598-33608. doi:
10.1007/s11356-022-24611-3
. [PMID: 36484942] - Zhixin Niu, Xiaojun Li, Mohammad Mahamood. Accumulation Potential Cadmium and Lead by Sunflower (Helianthus annuus L.) under Citric and Glutaric Acid-Assisted Phytoextraction.
International journal of environmental research and public health.
2023 Feb; 20(5):. doi:
10.3390/ijerph20054107
. [PMID: 36901118] - Karoline Rehm, Vera Vollenweider, Shaohua Gu, Ville-Petri Friman, Rolf Kümmerli, Zhong Wei, Laurent Bigler. Chryseochelins - structural characterization of novel citrate-based siderophores produced by plant protecting Chryseobacterium spp.
Metallomics : integrated biometal science.
2023 Feb; ?(?):. doi:
10.1093/mtomcs/mfad008
. [PMID: 36792066] - Seydahmet Cay. Assessment of tea saponin and citric acid-assisted phytoextraction of Pb-contaminated soil by Salvia virgata Jacq.
Environmental science and pollution research international.
2023 Feb; ?(?):. doi:
10.1007/s11356-023-25809-9
. [PMID: 36787065] - Dongchen Yang, Jingqian Huo, Zhe Zhang, Zexiu An, Haijiao Dong, Yanen Wang, Weidi Duan, Lai Chen, Maoxia He, Shutao Gao, Jinlin Zhang. Citric acid modified ultrasmall copper peroxide nanozyme for in situ remediation of environmental sulfonylurea herbicide contamination.
Journal of hazardous materials.
2023 02; 443(Pt B):130265. doi:
10.1016/j.jhazmat.2022.130265
. [PMID: 36327847] - Haiwen Chen, Jintao Cheng, Yuan Huang, Qiusheng Kong, Zhilong Bie. Comparative analysis of sugar, acid, and volatile compounds in CPPU-treated and honeybee-pollinated melon fruits during different developmental stages.
Food chemistry.
2023 Feb; 401(?):134072. doi:
10.1016/j.foodchem.2022.134072
. [PMID: 36108381] - M A Sundaramahalingam, C Amrutha, J Rajeshbanu, K Thirukumaran, S Manibalan, Muthupandian Ashokkumar, P Sivashanmugam. In silico approach for enhancing innate lipid content of Yarrowia lipolytica, by blocking the acyl-CoA oxidase-1 enzyme, using various analogous compounds of lipids.
Journal of biomolecular structure & dynamics.
2023 02; 41(2):511-524. doi:
10.1080/07391102.2021.2008498
. [PMID: 34825634] - Yingyuan Wei, Sandile Fakudze, Shilong Yang, Yu Zhang, Tianjiao Xue, Jiangang Han, Jianqiang Chen. Synergistic citric acid-surfactant catalyzed hydrothermal liquefaction of pomelo peel for production of hydrocarbon-rich bio-oil.
The Science of the total environment.
2023 Jan; 857(Pt 1):159235. doi:
10.1016/j.scitotenv.2022.159235
. [PMID: 36208756] - Kalyan Vaid, Jasmeen Dhiman, Suresh Kumar, Vanish Kumar. Citrate and glutathione capped gold nanoparticles for electrochemical immunosensing of atrazine: Effect of conjugation chemistry.
Environmental research.
2023 01; 217(?):114855. doi:
10.1016/j.envres.2022.114855
. [PMID: 36427637] - Yu Wang, Weidong Duan, Chao Lv, Zhuangzhuang Wei, Yanping Zhu, Qi Yang, Ying Liu, Zhenguo Shen, Yan Xia, Kun Duan, Lingtong Quan. Citric Acid and Poly-glutamic Acid Promote the Phytoextraction of Cadmium and Lead in Solanum nigrum L. Grown in Compound Cd-Pb Contaminated Soils.
Bulletin of environmental contamination and toxicology.
2023 Jan; 110(1):37. doi:
10.1007/s00128-022-03682-5
. [PMID: 36607448] - Eric Tindanzor, Zhaohui Guo, Tianshuang Li, Rui Xu, Xiyuan Xiao, Chi Peng. Leaching and characterization studies of heavy metals in contaminated soil using sequenced reagents of oxalic acid, citric acid, and a copolymer of maleic and acrylic acid instead of ethylenediaminetetraacetic acid.
Environmental science and pollution research international.
2023 Jan; 30(3):6919-6934. doi:
10.1007/s11356-022-22634-4
. [PMID: 36018405] - Jie Qian, Ying-Hua Li, Fei Su, Ji-Guo Wu, Jia-Ru Sun, Tian-Ci Huang. Citric acid-based deep eutectic solvent (CA-DES) as a new soil detergent for the removal of cadmium from coking sites.
Environmental science and pollution research international.
2023 Jan; 30(1):2118-2127. doi:
10.1007/s11356-022-22287-3
. [PMID: 35930153] - Huiwen Jiao, Weihui Xu, Yunlong Hu, Renmao Tian, Zhigang Wang. Citric Acid in Rice Root Exudates Enhanced the Colonization and Plant Growth-Promoting Ability of Bacillus altitudinis LZP02.
Microbiology spectrum.
2022 12; 10(6):e0100222. doi:
10.1128/spectrum.01002-22
. [PMID: 36264248] - Y Wang, H M Zhang, X R Deng, W W Liu, L Chen, N Zhao, X H Zhang, Z B Song, Y Geng, L L Ji, Y Wang, Z L Zhang. [Diagnostic values of urinary citrate for kidney stones in patients with primary gout].
Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences.
2022 Dec; 54(6):1134-1140. doi:
"
. [PMID: 36533345] - Zhongzheng Yan, Huijie Meng, Qiqiong Zhang, Yuxin Bi, Xiaoqing Gao, Ying Lei. Effects of cadmium and flooding on the formation of iron plaques, the rhizosphere bacterial community structure, and root exudates in Kandelia obovata seedlings.
The Science of the total environment.
2022 Dec; 851(Pt 1):158190. doi:
10.1016/j.scitotenv.2022.158190
. [PMID: 35995174] - Zhong-Rui Xu, Mei-Ling Cai, Ying Yang, Ting-Ting You, Jian Feng Ma, Peng Wang, Fang-Jie Zhao. The ferroxidases LPR1 and LPR2 control iron translocation in the xylem of Arabidopsis plants.
Molecular plant.
2022 12; 15(12):1962-1975. doi:
10.1016/j.molp.2022.11.003
. [PMID: 36348623] - Songtao Li, George Cai, Songze Wu, Aniket Raut, William Borges, Priyanka R Sharma, Sunil K Sharma, Benjamin S Hsiao, Miriam Rafailovich. Sustainable Plant-Based Biopolymer Membranes for PEM Fuel Cells.
International journal of molecular sciences.
2022 Dec; 23(23):. doi:
10.3390/ijms232315245
. [PMID: 36499574] - Agnieszka I Piotrowicz-Cieślak, Maciej Maciejczyk, Małgorzata Margas, Dariusz Rydzyński, Hanna Grajek, Dariusz J Michalczyk, Janusz Wasilewski, Bogdan Smyk. Studies on the Efficiency of Iron Release from Fe(III)-EDTA and Fe(III)-Cit and the Suitability of These Compounds for Tetracycline Degradation.
Molecules (Basel, Switzerland).
2022 Dec; 27(23):. doi:
10.3390/molecules27238498
. [PMID: 36500591] - Jinlong Dong, Emmanuel Delhaize, James Hunt, Roger Armstrong, Caixian Tang. Elevated CO2 improves phosphorus nutrition and growth of citrate-secreting wheat when grown under adequate phosphorus supply on an Al3+ -toxic soil.
Journal of the science of food and agriculture.
2022 Dec; 102(15):7397-7404. doi:
10.1002/jsfa.12108
. [PMID: 35789487] - Huan-Huan Chen, Xu-Feng Chen, Zhi-Chao Zheng, Wei-Lin Huang, Jiuxin Guo, Lin-Tong Yang, Li-Song Chen. Characterization of copper-induced-release of exudates by Citrus sinensis roots and their possible roles in copper-tolerance.
Chemosphere.
2022 Dec; 308(Pt 2):136348. doi:
10.1016/j.chemosphere.2022.136348
. [PMID: 36087738] - Qing Yang, Junting Xie, Huijun Liu, Zhiguo Fang. The addition of exogenous low-molecular-weight organic acids improved phytoremediation by Bidens pilosa L. in Cd-contaminated soil.
Environmental science and pollution research international.
2022 Nov; 29(51):76766-76781. doi:
10.1007/s11356-022-20686-0
. [PMID: 35670943] - Diyang Qiu, Congyi Zhu, Ruiyi Fan, Genlin Mao, Pingzhi Wu, Jiwu Zeng. Arsenic inhibits citric acid accumulation via downregulating vacuolar proton pump gene expression in citrus fruits.
Ecotoxicology and environmental safety.
2022 Nov; 246(?):114153. doi:
10.1016/j.ecoenv.2022.114153
. [PMID: 36252515] - Muhammad Hammad Fayyaz, Syed Murtaza Hassan Andrabi, Muhammad Shafiq Haider, Mubashir Ali Khalique, Syed Aftab Hussain Shah. Kisspeptin-10 in cryodiluent improves the post-thaw quality of Nili-Ravi buffalo (Bubalus bubalis) bull spermatozoa.
Andrologia.
2022 Nov; 54(10):e14564. doi:
10.1111/and.14564
. [PMID: 36054451] - Jessica Ristow Branco, Amanda Moreira Esteves, Ricardo Imbroisi Filho, Thainá M Demaria, Patricia C Lisboa, Bruna Pereira Lopes, Egberto G Moura, Patricia Zancan, Mauro Sola-Penna. Citrate enrichment in a Western diet reduces weight gain via browning of adipose tissues without resolving diet-induced insulin resistance in mice.
Food & function.
2022 Oct; 13(21):10947-10955. doi:
10.1039/d2fo02011d
. [PMID: 36222418] - Wei Li, Xinlong Wu, Mengfan Wu, Jiaxin Yin, Hui Ding, Tong Wu, Songtao Bie, Fangyi Li, Yongzhi He, Lifeng Han, Wenzhi Yang, Xinbo Song, Heshui Yu, Zheng Li. Ultrahigh-performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry profiling and unveiling the transformation of ginsenosides by the dual conditions of citric acid and high-pressure steaming.
Rapid communications in mass spectrometry : RCM.
2022 Oct; 36(20):e9363. doi:
10.1002/rcm.9363
. [PMID: 35902380] - Fatemeh Sadat Mousavizadeh, Nahid Sarlak, Mansour Ghorbanpour, Reza Ghafarzadegan. Rapid Detection and Determination of Scopolamine in the Leaf Extract of Black Henbane (Hyoscyamus niger L.) Plants Using a Novel Nanosensor.
Journal of AOAC International.
2022 Oct; 105(6):1730-1740. doi:
10.1093/jaoacint/qsac061
. [PMID: 35951765] - Rashad Kariuki, Rowan Penman, Saffron J Bryant, Rebecca Orrell-Trigg, Nastaran Meftahi, Russell J Crawford, Chris F McConville, Gary Bryant, Kislon Voïtchovsky, Charlotte E Conn, Andrew J Christofferson, Aaron Elbourne. Behavior of Citrate-Capped Ultrasmall Gold Nanoparticles on a Supported Lipid Bilayer Interface at Atomic Resolution.
ACS nano.
2022 10; 16(10):17179-17196. doi:
10.1021/acsnano.2c07751
. [PMID: 36121776] - Padma Sharma, Sonia Rathee, Mustaqeem Ahmad, Riya Raina, Daizy R Batish, Harminder P Singh. Comparison of synthetic and organic biodegradable chelants in augmenting cadmium phytoextraction in Solanum nigrum.
International journal of phytoremediation.
2022 Oct; ?(?):1-10. doi:
10.1080/15226514.2022.2133081
. [PMID: 36264021] - Suyun Xiao, Liyun Wang, Wei Han, Liyun Gu, Xiuming Cui, Chengxiao Wang. Novel Deep Eutectic Solvent-Hydrogel Systems for Synergistic Transdermal Delivery of Chinese Herb Medicine and Local Treatments for Rheumatoid Arthritis.
Pharmaceutical research.
2022 Oct; 39(10):2431-2446. doi:
10.1007/s11095-022-03239-5
. [PMID: 35359240] - Pedro Modesto Nascimento Menezes, Emanuella Chiara Valença Pereira, Kátia Simoni Bezerra Lima, Bismarques Augusto Oliveira da Silva, Mariana Coelho Brito, Tarcísio Cícero de Lima Araújo, Janaine Almeida Neto, Luciano Augusto de Araujo Ribeiro, Fabrício Souza Silva, Larissa Araújo Rolim. Chemical Analysis by LC-MS of Cannabis sativa Root Samples from Northeast Brazil and Evaluation of Antitussive and Expectorant Activities.
Planta medica.
2022 Oct; 88(13):1223-1232. doi:
10.1055/a-1628-2299
. [PMID: 34715694] - Fengtang Jing, Lei Wang, Min Yang, Chao Wu, Jian Li, Lei Shi, Shuai Feng, Feng Li. Visualizing the spatial distribution of functional metabolites in Forsythia suspensa at different harvest stages by MALDI mass spectrometry imaging.
Fitoterapia.
2022 Oct; 162(?):105285. doi:
10.1016/j.fitote.2022.105285
. [PMID: 36041592] - Yaxin Liu, Lin Zhu, Mingjun Yang, Xingbin Xie, Peipei Sun, Congbing Fang, Jing Zhao. R2R3-MYB transcription factor FaMYB5 is involved in citric acid metabolism in strawberry fruits.
Journal of plant physiology.
2022 Oct; 277(?):153789. doi:
10.1016/j.jplph.2022.153789
. [PMID: 35995002] - Kashif Tanwir, Muhammad Shahid, Saghir Abbas, Qasim Ali, Muhammad Sohail Akram, Hassan Javed Chaudhary, Muhammad Tariq Javed. Deciphering distinct root exudation, ionomics, and physio-biochemical attributes of Serratia marcescens CP-13 inoculated differentially Cd tolerant Zea mays cultivars.
Environmental science and pollution research international.
2022 Oct; 29(47):71632-71649. doi:
10.1007/s11356-022-20945-0
. [PMID: 35599287] - Sahil Desai, Poorva Sharma, Piyush Kashyap, Bharti Choudhary, Jasleen Kaur. Bioactive compounds, bio-functional properties, and food applications of Garcinia indica: A review.
Journal of food biochemistry.
2022 10; 46(10):e14344. doi:
10.1111/jfbc.14344
. [PMID: 35933691]