Classification Term: 168175
Lactones [FA0704] (ontology term: 67f9d744292bf54320756cbd5527fcce)
Lactones [FA0704]
found 132 associated metabolites at sub_class
metabolite taxonomy ontology rank level.
Ancestor: Fatty esters [FA07]
Child Taxonomies: There is no child term of current ontology term.
FA 18:1
trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
FA 11:1
An undecenoic acid having its double bond in the 10-position. It is derived from castor oil and is used for the treatment of skin problems. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.
Gamma-Caprolactone
Gamma-Caprolactone, also known as 4-ethyl-4-butanolide or 4-hexanolide, belongs to the class of organic compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Thus, Gamma-caprolactone is considered to be a fatty ester lipid molecule. Gamma-Caprolactone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Gamma-Caprolactone exists in all eukaryotes, ranging from yeast to humans. Outside of the human body, Gamma-caprolactone has been detected, but not quantified in several different foods, such as potato, cereals and cereal products, pomes, alcoholic beverages, and fruits. It is occasionally found as a volatile component of human urine. In some cases differences up to an order of magnitude are observed. It has been also found in the polar fraction of human blood. Gamma-caprolactone is a gamma-lactone that is oxolan-2-one substituted by an ethyl group at position 5. It has a role as a human blood serum metabolite. gamma-Caprolactone is a natural product found in Psidium guajava, Polygala senega, and other organisms with data available. 4-Hexanolide is a metabolite found in or produced by Saccharomyces cerevisiae. A gamma-lactone that is oxolan-2-one substituted by an ethyl group at position 5. γ-Hexalactone is a gamma-lactone found in ripe fruits. γ-Hexalactone induces DNA damage and acts a substrate of paraoxonase 1 (PON1)[1][2][3]. γ-Hexalactone is a gamma-lactone found in ripe fruits. γ-Hexalactone induces DNA damage and acts a substrate of paraoxonase 1 (PON1)[1][2][3].
delta-Decalactone
delta-Decalactone, also known as 5-decanolide or δ-amylvalerolactone, belongs to the class of organic compounds known as delta valerolactones. These are cyclic organic compounds containing an oxan-2- one moiety. Thus, delta-decalactone is considered to be a fatty ester lipid molecule. delta-Decalactone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. delta-Decalactone is a sweet, apricot, and butter tasting compound. delta-Decalactone has been detected, but not quantified, in several different foods, such as coconuts, evergreen blackberries, bilberries, milk and milk products, and fats and oils. This could make delta-decalactone a potential biomarker for the consumption of these foods. A delta-lactone that is 5-valerolactone substituted by a pentyl group at position 6. 6-pentyloxan-2-one is a delta-lactone that is 5-valerolactone substituted by a pentyl group at position 6. It has a role as a metabolite. It is functionally related to a 5-valerolactone. delta-Decalactone is a natural product found in Curio articulatus, Mangifera indica, and Fusarium poae with data available. 1,5-Decanolide is a metabolite found in or produced by Saccharomyces cerevisiae. Present in coconut oil, butter oil, apricots, peaches, cheese, cane sugar, pork fat, margarine, lavender oil, and other substances. Fragrance raw material and flavouring agent. 5-Pentyl-delta-valerolactone is found in many foods, some of which are bilberry, fruits, animal foods, and milk and milk products. A delta-lactone that is 5-valerolactone substituted by a pentyl group at position 6. δ-Decalactone is a lactone compound found in nonfat dry milks and fruit. δ-Decalactone has a sweet taste[1][2]. δ-Decalactone is a lactone compound found in nonfat dry milks and fruit. δ-Decalactone has a sweet taste[1][2].
Macrolactin C
Macrolactin R
Agardhilactone
Macrolactin P
Lipstatin
C29H49NO5 (491.36105440000006)
FA 10:2
(2E,4E)-deca-2,4-dienoic acid is a polyunsaturated fatty acid that is decanoic acid (capric acid) which has been dehydrogenated to introduce double bonds with E configuration at positions 2-3 and 4-5. It is a medium-chain fatty acid and a polyunsaturated fatty acid. A polyunsaturated fatty acid that is capric acid which has been dehydrogenated to introduce double bonds with E configuration at positions 2-3 and 4-5.
FA 18:3
CONFIDENCE standard compound; INTERNAL_ID 143 COVID info from WikiPathways D - Dermatologicals Same as: D07213 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
FA 5:1
FA 8:1
D009676 - Noxae > D013723 - Teratogens (E)-Oct-2-enoic acid is an endogenous metabolite. (E)-Oct-2-enoic acid is an endogenous metabolite.
FA 10:1
A monounsaturated fatty acid that is oct-6-enoic acid carrying methyl groups at positions 3 and 7.
FA 22:1
13(E)-Docosenoic acid (Brassidic acid), a trans-acid, is a 22-carbon monounsaturated fatty acid[1].
FA 18:2
Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].
FA 6:1;O
DL-Mevalonolactone ((±)-Mevalonolactone;Mevalolactone) is the δ-lactone form of mevalonic acid, a precursor in the mevalonate pathway. DL-Mevalonolactone (Mevalonolactone) decreases mitochondrial membrane potential (?Ψm), NAD(P)H content and the capacity to retain Ca2+ in the brain, besides inducing mitochondrial swelling[1][2].
FA 20:1
Paullinic acid is a long-chain fatty acid that has been detected in multiple biofluids, such as blood and urine.
FA 4:1
NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.
FA 20:5;O
A 17(18)-EpETE in which the epoxy group has (17R,18S)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
FA 20:6;O
D007155 - Immunologic Factors
Macrolactin O
Macrolactin B
Macrolactin Q
Ieodomycin B
A natural product found in Bacillus species.