Classification Term: 2110

Phenylpropanoic acids (ontology term: CHEMONTID:0002551)

Compounds with a structure containing a benzene ring conjugated to a propanoic acid." []

found 84 associated metabolites at class metabolite taxonomy ontology rank level.

Ancestor: Phenylpropanoids and polyketides

Child Taxonomies: There is no child term of current ontology term.

3-(3,4-Dihydroxyphenyl)lactic acid

3-(3,4-DIHYDROXYPHENYL)LACTIC ACID DL-.BETA.-(3,4-DIHYDROXYPHENYL)LACTIC ACID

C9H10O5 (198.052821)


3-(3,4-dihydroxyphenyl)lactic acid is a 2-hydroxy monocarboxylic acid and a member of catechols. It is functionally related to a rac-lactic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)lactate. 3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid is a natural product found in Salvia miltiorrhiza, Salvia sonchifolia, and other organisms with data available. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271) [HMDB]. 3-(3,4-Dihydroxyphenyl)lactic acid is found in rosemary. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271).

   

Methyldopa

3-(3,4-Dihydroxyphenyl)-alpha-methyl-L-a lanine

C10H13NO4 (211.0844538)


Methyl dopa appears as colorless or almost colorless crystals or white to yellowish-white fine powder. Almost tasteless. In the sesquihydrate form. pH (saturated aqueous solution) about 5.0. (NTP, 1992) Alpha-methyl-L-dopa is a derivative of L-tyrosine having a methyl group at the alpha-position and an additional hydroxy group at the 3-position on the phenyl ring. It has a role as a hapten, an antihypertensive agent, an alpha-adrenergic agonist, a peripheral nervous system drug and a sympatholytic agent. It is a L-tyrosine derivative and a non-proteinogenic L-alpha-amino acid. Methyldopa, or α-methyldopa, is a centrally acting sympatholytic agent and an antihypertensive agent. It is an analog of DOPA (3,4‐hydroxyphenylanine), and it is a prodrug, meaning that the drug requires biotransformation to an active metabolite for therapeutic effects. Methyldopa works by binding to alpha(α)-2 adrenergic receptors as an agonist, leading to the inhibition of adrenergic neuronal outflow and reduction of vasoconstrictor adrenergic signals. Methyldopa exists in two isomers D-α-methyldopa and L-α-methyldopa, which is the active form. First introduced in 1960 as an antihypertensive agent, methyldopa was considered to be useful in certain patient populations, such as pregnant women and patients with renal insufficiency. Since then, methyldopa was largely replaced by newer, better-tolerated antihypertensive agents; however, it is still used as monotherapy or in combination with [hydrochlorothiazide]. Methyldopa is also available as intravenous injection, which is used to manage hypertension when oral therapy is unfeasible and to treat hypertensive crisis. Methyldopa anhydrous is a Central alpha-2 Adrenergic Agonist. The mechanism of action of methyldopa anhydrous is as an Adrenergic alpha2-Agonist. Methyldopa (alpha-methyldopa or α-methyldopa) is a centrally active sympatholytic agent that has been used for more than 50 years for the treatment of hypertension. Methyldopa has been clearly linked to instances of acute and chronic liver injury that can be severe and even fatal. Methyldopa is a phenylalanine derivative and an aromatic amino acid decarboxylase inhibitor with antihypertensive activity. Methyldopa is a prodrug and is metabolized in the central nervous system. The antihypertensive action of methyldopa seems to be attributable to its conversion into alpha-methylnorepinephrine, which is a potent alpha-2 adrenergic agonist that binds to and stimulates potent central inhibitory alpha-2 adrenergic receptors. This results in a decrease in sympathetic outflow and decreased blood pressure. Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension). Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hy... Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension). Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hypotension and diurnal blood pressure variations rarely occur. Methyldopa, in its active metabolite form, is a central alpha-2 receptor agonist. Using methyldopa leads to alpha-2 receptor-negative feedback to sympathetic nervous system (SNS) (centrally and peripherally), allowing peripheral sympathetic nervous system tone to decrease. Such activity leads to a decrease in total peripheral resistance (TPR) and cardiac output. When introduced it was a mainstay of antihypertensive therapy, but its use has declined, with increased use of other safer classes of agents. One of its important present-day uses is in the management of pregnancy-induced hypertension, as it is relatively safe in pregnancy compared to other antihypertensive drugs (Wikipedia). Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension).; Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hypotension and diurnal blood pressure variations rarely occur.; Methyldopa, in its active metabolite form, is a central alpha-2 receptor agonist. Using methyldopa leads to alpha-2 receptor-negative feedback to sympathetic nervous system (SNS) (centrally and peripherally), allowing peripheral sympathetic nervous system tone to decrease. Such activity leads to a decrease in total peripheral resistance (TPR) and cardiac output.; When introduced it was a mainstay of antihypertensive therapy, but its use has declined, with increased use of other safer classes of agents. One of its important present-day uses is in the management of pregnancy-induced hypertension, as it is relatively safe in pregnancy compared to other antihypertensive drugs. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist Methyldopa (L-(-)-α-Methyldopa), a potent antihyoertensive agent, is an alpha-adrenergic agonist (selective for α2-adrenergic receptors). Methyldopa is a proagent and is metabolized (α-Methylepinephrine) in the central nervous system[1][2].

   

Desaminotyrosine

3-(4-hydroxyphenyl)propanoic acid

C9H10O3 (166.062991)


Desaminotyrosine, also known as 4-hydroxyphenylpropionic acid, is a normal constituent of human urine. It is a product of tyrosine metabolism; its concentration in urine increases in patients with gastrointestinal diseases. Desaminotyrosine is a major phenolic acid breakdown product of proanthocyanidin metabolism (PMID:15315398). Urinary desaminotyrosine is produced by Clostridium sporogenes and C. botulinum (PMID:29168502). Desaminotyrosine is also found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas, and Staphylococcus (PMID:29168502, 28393285, 19961416). Desaminotyrosine is a phenolic acid metabolite formed by the gut microflora detected after the consumption of whole grain. A normal constituent of human urine. A product of tyrosine metabolism; concentration in urine increases in patients with gastrointestinal diseases. (Dictionary of Organic Compounds) May also result from phenolic acid metabolism by colonic bacteria. (PMID 15315398) [HMDB]. Phloretic acid is found in many foods, some of which are arrowroot, olive, avocado, and peanut. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling.

   

L-3-Phenyllactic acid

(2R)-2-hydroxy-3-phenylpropanoic acid

C9H10O3 (166.062991)


L-3-Phenyllactic acid (or PLA) is a chiral aromatic compound involved in phenylalanine metabolism. It is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. [HMDB] L-3-Phenyllactic acid (or PLA) is a chiral aromatic compound involved in phenylalanine metabolism. It is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. (±)-3-Phenyllactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=828-01-3 (retrieved 2024-07-04) (CAS RN: 828-01-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.

   

Hydrocinnamic acid

3-Phenylpropionic acid, sodium salt

C9H10O2 (150.068076)


Hydrocinnamic acid, also known as 3-phenylpropanoic acid or dihydrocinnamic acid, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid (C6-C3). Phenylpropanoic acid can be prepared from cinnamic acid by hydrogenation. Hydrocinnamic acid is a sweet, balsamic, and cinnamon tasting compound. This compound is used frequently in cosmetic products such as perfumes, bath gels, detergent powders, liquid detergents, fabric softeners, and soaps as it gives off a floral scent. A characteristic reaction of phenylpropanoic acid is its cyclization to indanones. Phenylpropanoic acid is used in the food industry to preserve and maintain the original aroma quality of frozen foods. Phenylpropanoic acid is also added to food for technological purposes in a wide variety including manufacturing, processing, preparation, treatment, packaging, transportation or storage, and food additives. This compound is used as a sweetener as well to sweeten food and can be found in tabletop sweeteners. Hydrocinnamic acid is an analogue of phenylalanine. It is a substrate of the enzyme oxidoreductases [EC 1.14.12.-] in the pathway phenylalanine metabolism (KEGG). 3-Phenylpropanoic acid is found in many foods, some of which are purple laver, quinoa, custard apple, and conch. KEIO_ID P109 Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.

   

Ibuprofen

2-[4-(2-methylpropyl)phenyl]propanoic acid

C13H18O2 (206.1306728)


Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) widely marketed under various trademarks including Act-3, Advil, Brufen, Motrin, Nuprin, and Nurofen. It is used for relief of symptoms of arthritis, primary dysmenorrhoea, and fever; Ibuprofen is an NSAID which is believed to work through inhibition of cyclooxygenase (COX), thus inhibiting prostaglandin synthesis. There are at least 2 variations of cyclooxygenase (COX-1 and COX-2), ibuprofen inhibits both COX-1 and COX-2. It appears that its analgesic, antipyretic, and anti-inflammatory activity are achieved principally through COX-2 inhibition; whereas COX-1 inhibition is responsible for its unwanted effects on platelet aggregation and the GI mucosa. As with other NSAIDs, ibuprofen inhibits platelet aggregation, but is not used therapeutically for this action since it is a minor and reversible effect. -- Wikipedia [HMDB] Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) widely marketed under various trademarks including Act-3, Advil, Brufen, Motrin, Nuprin, and Nurofen. It is used for relief of symptoms of arthritis, primary dysmenorrhoea, and fever; Ibuprofen is an NSAID which is believed to work through inhibition of cyclooxygenase (COX), thus inhibiting prostaglandin synthesis. There are at least 2 variations of cyclooxygenase (COX-1 and COX-2), ibuprofen inhibits both COX-1 and COX-2. It appears that its analgesic, antipyretic, and anti-inflammatory activity are achieved principally through COX-2 inhibition; whereas COX-1 inhibition is responsible for its unwanted effects on platelet aggregation and the GI mucosa. As with other NSAIDs, ibuprofen inhibits platelet aggregation, but is not used therapeutically for this action since it is a minor and reversible effect. -- Wikipedia. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, DrugBank R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor C - Cardiovascular system > C01 - Cardiac therapy D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-(4-hydroxyphenyl)lactate

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H10O4 (182.057906)


Hydroxyphenyllactic acid or 4-hydroxyphenyllactate (the L-form) is a tyrosine metabolite. The level of L-hydroxyphenyllactic acid is elevated in patients with a deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2) (PMID: 4720815). L-hydroxyphenyllactate is present in relatively higher concentrations in the cerebrospinal fluid and urine of patients with phenylketonuria (PKU) and tyrosinemia (PMID: 3126358). However, the D-form of hydroxyphenyllactate is of bacterial origin and is also found in individuals with bacterial overgrowth or unusual gut microflora (PMID: 3126358). Microbial hydroxyphenyllactate is likely derived from phenolic or polyphenolic compounds in the diet. Bifidobacteria and lactobacilli produce considerable amounts of phenyllactic and p-hydroxyphenyllactic acids (PMID: 23061754). It has also been shown that hydroxyphenyllactate decreases ROS (reactive oxygen species) production in both mitochondria and neutrophils and so hydroxyphenyllactate may function as a natural anti-oxidant (PMID: 23061754). Hydroxyphenyllactic acid is a microbial metabolite found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas and Staphylococcus (PMID: 19961416). Acquisition and generation of the data is financially supported in part by CREST/JST. Hydroxyphenyllactic acid is an antifungal metabolite.

   

3-(3-hydroxyphenyl)propionate

dihydro-3-Coumaric acid, monosodium salt

C9H10O3 (166.062991)


3-(3-Hydroxyphenyl)propanoic (hMPP) acid is one of the major metabolites of ingested caffeic acid (PMID: 15479001) and of the phenolic degradation products of proanthocyanidins (the most abundant polyphenol present in chocolate) by the microflora in the colon (PMID: 12663291). mHPP is suspected to have antioxidants properties and is actively absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers (PMID: 15479001, 12663291). hMPP has been found to be a metabolite of Clostridium, Escherichia, and Eubacterium (PMID: 28393285, 19520845). 3-(3-Hydroxyphenyl)propanoic acid is a flavonoid metabolite. 3-(3-Hydroxyphenyl)propanoic acid is a phenolic acid metabolite formed by the gut microflora detected after the consumption of whole grain. 3-(3-Hydroxyphenyl)propanoic (hMPP) acid is one of the major metabolites of ingested caffeic acid (PMID 15479001) and of the phenolic degradation products of proanthocyanidins (the most abundant polyphenol present in chocolate) by the microflora in the colon (PMID 12663291). mHPP is suspected to have antioxidants properties and is actively absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers (PMID 15479001, 12663291). [HMDB] 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1]. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

   

(R)-2-Benzylsuccinate

(R)-2-AMINO-BUT-3-EN-1-OLHYDROCHLORIDE

C11H12O4 (208.0735552)


(R)-2-Benzylsuccinate is an aromatic compounds that is an intermediate in Benzoate degradation via CoA ligation. Biodegradation of aromatic compounds is a common process in anoxic environments. The many natural and synthetic aromatic compounds found in the environment are usually degraded by anaerobic microorganisms into only few central intermediates, prior to ring cleavage. Benzoyl-CoA is the most important of these intermediates since a large number of compounds, including chloro-, nitro-, and aminobenzoates, aromatic hydrocarbons, and phenolic compounds, are initially converted to benzoyl-CoA prior to ring reduction and cleavage. (R)-2-Benzylsuccinate can be generated from toluene via the enzyme benzylsuccinate synthase (EC 4.1.99.11). It is then converted to Benzylsuccinyl-CoA via the enzyme benzylsuccinate CoA-transferase BbsE subunit (EC 2.8.3.15). [HMDB] (R)-2-Benzylsuccinate is an aromatic compounds that is an intermediate in Benzoate degradation via CoA ligation. Biodegradation of aromatic compounds is a common process in anoxic environments. The many natural and synthetic aromatic compounds found in the environment are usually degraded by anaerobic microorganisms into only few central intermediates, prior to ring cleavage. Benzoyl-CoA is the most important of these intermediates since a large number of compounds, including chloro-, nitro-, and aminobenzoates, aromatic hydrocarbons, and phenolic compounds, are initially converted to benzoyl-CoA prior to ring reduction and cleavage. (R)-2-Benzylsuccinate can be generated from toluene via the enzyme benzylsuccinate synthase (EC 4.1.99.11). It is then converted to Benzylsuccinyl-CoA via the enzyme benzylsuccinate CoA-transferase BbsE subunit (EC 2.8.3.15). KEIO_ID B005

   

3-(2-hydroxyphenyl)propionate

3-(O-Hydroxyphenyl)propionic acid, 8ci

C9H10O3 (166.062991)


3-(2-Hydroxyphenyl)propanoic acid is found in bilberry. 3-(2-Hydroxyphenyl)propanoic acid is found in Melilotus alba (whilte melilot). Found in Melilotus alba (whilte melilot) KEIO_ID P072 Melilotic acid is an endogenous metabolite. Melilotic acid is an endogenous metabolite.

   

3,4-Dihydroxyhydrocinnamic acid

3,4-dihydroxyphenylpropionic acid, potassium salt

C9H10O4 (182.057906)


3,4-Dihydroxyhydrocinnamic acid, also known as dihydrocaffeic acid (DHCA), is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID: 15607645) and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract (PMID: 15693705). Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans (PMID: 16038718). Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure conveys the antioxidant effect in plasma and in erythrocytes (PMID: 11768243). 3,4-Dihydroxyhydrocinnamic acid is a microbial metabolite found in Bifidobacterium, Escherichia, Lactobacillus, and Clostridium (PMID: 28393285). 3,4-Dihydroxyhydrocinnamic acid (or Dihydrocaffeic acid, DHCA) is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID 15607645), and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract. (PMID 15693705) Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans. (PMID 16038718) Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure convey the antioxidant effect in plasma and in erythrocytes. (PMID 11768243) [HMDB]. 3-(3,4-Dihydroxyphenyl)propanoic acid is found in red beetroot, common beet, and olive. KEIO_ID D047 Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].

   

4-Hydroxyphenyl-2-propionic acid

4-Hydroxy-α-methylbenzeneacetic acid

C9H10O3 (166.062991)


4-Hydroxyphenyl-2-propionic acid belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. 4-Hydroxyphenyl-2-propionic acid has been detected in multiple biofluids, such as urine and blood (PMID: 20428313). Within the cell, 4-hydroxyphenyl-2-propionic acid is primarily located in the cytoplasm. A polyphenol metabolite detected in biological fluids [PhenolExplorer] KEIO_ID H099

   

3-(3,5-Diiodo-4-hydroxyphenyl)lactate

2-hydroxy-3-(4-hydroxy-3,5-diiodophenyl)propanoic acid

C9H8I2O4 (433.85121080000005)


3-(3,5-diiodo-4-hydroxyphenyl)lactate is part of the Citrate cycle (TCA cycle), Pyruvate metabolism, Glyoxylate and dicarboxylate metabolism, and Proximal tubule bicarbonate reclamation pathways. It is a substrate for: Malate dehydrogenase, cytoplasmic.

   

Metyrosine

(2S)-2-amino-3-(4-hydroxyphenyl)-2-methylpropanoic acid

C10H13NO3 (195.0895388)


Metyrosine is only found in individuals that have used or taken this drug. It is an inhibitor of the enzyme tyrosine 3-monooxygenase, and consequently of the synthesis of catecholamines. It is used to control the symptoms of excessive sympathetic stimulation in patients with pheochromocytoma. (Martindale, The Extra Pharmacopoeia, 30th ed)Metyrosine inhibits tyrosine hydroxylase, which catalyzes the first transformation in catecholamine biosynthesis, i.e., the conversion of tyrosine to dihydroxyphenylalanine (DOPA). Because the first step is also the rate-limiting step, blockade of tyrosine hydroxylase activity results in decreased endogenous levels of catecholamines and their synthesis. This consequently, depletes the levels of the catecholamines dopamine, adrenaline and noradrenaline in the body,usually measured as decreased urinary excretion of catecholamines and their metabolites. One main end result of the catecholamine depletion is a decrease in blood presure. C - Cardiovascular system > C02 - Antihypertensives > C02K - Other antihypertensives > C02KB - Tyrosine hydroxylase inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C2155 - Tyrosine Hydroxylase Inhibitor D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor

   

Iopanoic acid

2-[(3-amino-2,4,6-triiodophenyl)methyl]butanoic acid

C11H12I3NO2 (570.8002302)


CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5478; ORIGINAL_PRECURSOR_SCAN_NO 5476 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5462; ORIGINAL_PRECURSOR_SCAN_NO 5461 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5564; ORIGINAL_PRECURSOR_SCAN_NO 5559 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5494; ORIGINAL_PRECURSOR_SCAN_NO 5489 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5462; ORIGINAL_PRECURSOR_SCAN_NO 5460 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5485; ORIGINAL_PRECURSOR_SCAN_NO 5483 V - Various > V08 - Contrast media > V08A - X-ray contrast media, iodinated > V08AC - Watersoluble, hepatotropic x-ray contrast media

   

alpha-Methyl-m-tyrosine

2-amino-3-(3-hydroxyphenyl)-2-methylpropanoic acid

C10H13NO3 (195.0895388)


   

Carbidopa

3,3,3-trideuterio-2-[dideuterio-(3,4-dihydroxyphenyl)methyl]-2-hydrazinylpropanoic acid

C10H14N2O4 (226.0953524)


Carbidopa (anhydrous) is 3-(3,4-Dihydroxyphenyl)propanoic acid in which the hydrogens alpha- to the carboxyl group are substituted by hydrazinyl and methyl groups (S-configuration). Carbidopa is a dopa decarboxylase inhibitor, so prevents conversion of levodopa to dopamine. It has no antiparkinson activity by itself, but is used (commonly as its hydrate) in the management of Parkinsons disease to reduce peripheral adverse effects of levodopa. It has a role as an EC 4.1.1.28 (aromatic-L-amino-acid decarboxylase) inhibitor, an antiparkinson drug and a dopaminergic agent. It is a member of hydrazines, a monocarboxylic acid and a member of catechols. Carbidopa presents a chemical denomination of N-amino-alpha-methyl-3-hydroxy-L-tyrosine monohydrate. It potently inhibits aromatic amino acid decarboxylase (DDC) and due to its chemical properties, it does not cross the blood-brain barrier. Due to its activity, carbidopa is always administered concomitantly with [levodopa]. An individual formulation containing solely carbidopa was generated to treat nausea in patients where the combination therapy [levodopa]/carbidopa is not efficient reducing nausea. The first approved product by the FDA containing only carbidopa was developed by Amerigens Pharmaceuticals Ltd and approved on 2014. On the other hand, the combination treatment of carbidopa/levodopa was originally developed by Watson Labs but the historical information by the FDA brings back to the approval of this combination therapy developed by Mayne Pharma in 1992. Carbidopa Anhydrous is the anhydrous, levorotatory isomer of a synthetic hydrazine derivative of the neurotransmitter dopamine. Carbidopa, a peripheral dopa decarboxylase inhibitor, is used as an adjunct with levodopa to prevent levodopa degradation to dopamine in extracerebral tissue, thereby decreasing the peripheral side effects of levodopa. Carbidopa does not penetrate the blood brain barrier; therefore, it does not interfere with the central nervous system (CNS) metabolism of levodopa to the active neurotransmitter dopamine which, in high concentrations in the brain, has anti-parkinsonian effects. An inhibitor of DOPA DECARBOXYLASE that prevents conversion of LEVODOPA to dopamine. It is used in PARKINSON DISEASE to reduce peripheral adverse effects of LEVODOPA. It has no anti-parkinson activity by itself. Carbidopa is only found in individuals that have used or taken this drug. It is an inhibitor of DOPA decarboxylase, preventing conversion of levodopa to dopamine. It is used in parkinson disease to reduce peripheral adverse effects of levodopa. It has no antiparkinson actions by itself. [PubChem]When mixed with levodopa, carbidopa inhibits the peripheral conversion of levodopa to dopamine and the decarboxylation of oxitriptan to serotonin by aromatic L-amino acid decarboxylase. This results in increased amount of levodopa and oxitriptan available for transport to the CNS. Carbidopa also inhibits the metabolism of levodopa in the GI tract, thus, increasing the bioavailability of levodopa. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D004791 - Enzyme Inhibitors > D065105 - Aromatic Amino Acid Decarboxylase Inhibitors C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents

   

3-(2,4-Dihydroxyphenyl)propanoic acid

3-(2,4-Dihydroxyphenyl)propionic acid, >=95.0\\% (HPLC)

C9H10O4 (182.057906)


3-(2,4-Dihydroxyphenyl)propanoic acid belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. 3-(2,4-Dihydroxyphenyl)propanoic acid is an extremely weak basic (essentially neutral) compound (based on its pKa). BioTransformer predicts that 3-(2,4-dihydroxyphenyl)propanoic acid is a product of 3-(2,4-dihydroxyphenyl)prop-2-enoic acid metabolism via a reduction-of-alpha-beta-unsaturated-compounds-pattern1 reaction occurring in human gut microbiota and catalyzed by the abkar1 enzyme (PMID: 30612223). 3-(2,4-Dihydroxyphenyl)propanoic acid (DPPacid) is a potent and competitive tyrosinase inhibitor, inhibits L-Tyrosine and DL-DOPA with an IC50 and a Ki of 3.02 μM and 11.5 μM, respectively[1]. 3-(2,4-Dihydroxyphenyl)propanoic acid (DPPacid) is a potent and competitive tyrosinase inhibitor, inhibits L-Tyrosine and DL-DOPA with an IC50 and a Ki of 3.02 μM and 11.5 μM, respectively[1].

   

Dihydroferulate

3-(4-Hydroxy-3-methoxyphenyl)propionic acid, >=96.0\\% (T)

C10H12O4 (196.0735552)


Dihydroferulic acid is a monocarboxylic acid that is propanoic acid in which one of the hydrogens at position 3 has been replaced by a 4-hydroxy-3-methoxyphenyl group. It has a role as a human xenobiotic metabolite, a plant metabolite, a mouse metabolite and an antioxidant. It is a monocarboxylic acid, a phenylpropanoid and a member of guaiacols. It is functionally related to a propionic acid. It is a conjugate acid of a dihydroferulate. 3-(4-Hydroxy-3-methoxyphenyl)propionic acid is a natural product found in Colchicum kotschyi, Bulbophyllum vaginatum, and other organisms with data available. Dihydroferulic acid, also known as 3-(4-hydroxy-3-methoxyphenyl)propionic acid or dihydroconiferylate, is classified as a member of the phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. Dihydroferulic acid is considered to be slightly soluble (in water) and acidic. Dihydroferulic acid is a phenolic acid metabolite and was found to be significantly elevated in serum after whole grain consumption which makes this compound a potential serum biomarker of whole grain intake (PMID: 25646321). A monocarboxylic acid that is propanoic acid in which one of the hydrogens at position 3 has been replaced by a 4-hydroxy-3-methoxyphenyl group. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Dihydroferulic acid (Hydroferulic acid) is one of the main metabolites of curcumin and antioxidant/radical-scavenging properties with an IC50 value of 19.5 μM. Dihydroferulic acid is a metabolite of human gut microflora as well as a precursor of vanillic acid[1][2]. Dihydroferulic acid (Hydroferulic acid) is one of the main metabolites of curcumin and antioxidant/radical-scavenging properties with an IC50 value of 19.5 μM. Dihydroferulic acid is a metabolite of human gut microflora as well as a precursor of vanillic acid[1][2].

   

D-Phenyllactic acid

(R)-alpha-Hydroxy-3-phenylpropionic acid

C9H10O3 (166.062991)


Phenyllactic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. (+)-3-Phenyllactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7326-19-4 (retrieved 2024-07-04) (CAS RN: 7326-19-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.

   

1-Hydroxyibuprofen

2-[4-(1-hydroxy-2-methylpropyl)phenyl]propanoic acid

C13H18O3 (222.1255878)


1-Hydroxyibuprofen is a metabolite of ibuprofen. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) used for relief of symptoms of arthritis, fever, as an analgesic (pain reliever), especially where there is an inflammatory component, and dysmenorrhea. Ibuprofen is known to have an antiplatelet effect, though it is relatively mild and somewhat short-lived when compared with aspirin or other better-known antiplatelet drugs. (Wikipedia)

   

Carboxy-ibuprofen

3-[4-(1-carboxyethyl)phenyl]-2-methylpropanoic acid

C13H16O4 (236.10485359999998)


Carboxy-ibuprofen is a metabolite of ibuprofen. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) used for relief of symptoms of arthritis, fever, as an analgesic (pain reliever), especially where there is an inflammatory component, and dysmenorrhea. Ibuprofen is known to have an antiplatelet effect, though it is relatively mild and somewhat short-lived when compared with aspirin or other better-known antiplatelet drugs. (Wikipedia)

   

Loxoprofen

Sodium 2-(4-(2-oxocyclopentylmethyl)phenyl)propionate dihydrate

C15H18O3 (246.1255878)


As most NSAIDs, loxoprofen is a non-selective cyclooxygenase inhibitor, and works by reducing the synthesis of prostaglandins from arachidonic acid. Loxoprofen (INN) is a non-steroidal anti-inflammatory drug in the propionic acid derivatives group, which also includes ibuprofen and naproxen among others. It is marketed in Brazil, Mexico and Japan by Sankyo as its sodium salt, loxoprofen sodium, under the trade name Loxonin, Argentina as Oxeno and in India as Loxomac. It is available in these countries for oral administration, and a transdermal preparation was approved for sale in Japan on January 2006. Loxoprofen is a prodrug. It is quickly converted to its active trans-alcohol metabolite following oral administration, and reaches its peak plasma concentration within 30 to 50 minutes. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

(2R,3S)-Piscidic acid

2,3-dihydroxy-2-[(4-hydroxyphenyl)methyl]butanedioic acid

C11H12O7 (256.05830019999996)


(2R,3S)-Piscidic acid is found in fruits. (2R,3S)-Piscidic acid is isolated from the famine food Agave americana and from Opuntia ficus-indica (Indian fig

   

2-Phenylpropionate

alpha-Methylbenzeneacetic acid

C9H10O2 (150.06807600000002)


2-Phenylpropionate is an intermediate in alpha-Methylstyrene (2-phenylpropylene) metabolism. It was identified in human liver slices in small amounts. It is. likely that 2-Phenylpropionate derives from 2-phenylpropionaldehyde, formed from a. 1,2-hydride shift during the transfer of active oxygen to the vinyl. group, as has been proposed for the cytochrome P450-mediated oxidation. of styrene to form phenylacetaldehyde. (PMID: 11159807). 2-Phenylpropionate has been found to be a metabolite of Acinetobacter, Bacteroides, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas and Staphylococcus (PMID: 19961416). 2-Phenylpropionate is an intermediate in alpha-Methylstyrene (2-phenylpropylene) metabolism. It was identified in human liver slices in small amounts. It is 2-Phenylpropionic acid is an intermediate in alpha-Methylstyrene metabolism. 2-Phenylpropionic acid is an intermediate in alpha-Methylstyrene metabolism.

   

Vanillactic acid

2-hydroxy-3-(4-hydroxy-3-methoxyphenyl)propanoic acid

C10H12O5 (212.06847019999998)


Vanillactic acid, also known as vanillactate or VLA, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. Vanillactic acid is a potentially toxic compound. Vanillactic acid has been linked to the inborn metabolic disorders including aromatic l-amino acid decarboxylase deficiency. Vanillactic acid is an acidic catecholamine metabolite present in normal human urine (PMID 7524950), in normal human CSF (PMID 7914240), and increased in the CSF of newborns with neonatal epileptic encephalopathy mimicking aromatic L-amino acid decarboxylase deficiency (PMID 12200739). Vanillactic acid is an acidic catecholamine metabolite present in normal human urine (PMID 7524950), in normal human CSF (PMID 7914240), and increased in the CSF of newborns with neonatal epileptic encephalopathy mimicking aromatic L-amino acid decarboxylase deficiency (PMID 12200739) [HMDB]

   

3-(3,4,5-Trimethoxyphenyl)propanoic acid

beta -(3,4,5-Trimethoxy phenyl)propionic acid

C12H16O5 (240.0997686)


3-(3,4,5-Trimethoxyphenyl)propanoic acid is found in herbs and spices. 3-(3,4,5-Trimethoxyphenyl)propanoic acid is a constituent of Piper longum (long pepper) and Piper retrofractum (Javanese long pepper) 3-(3,4,5-Trimethoxyphenyl)propanoic acid is found in herbs and spices. 3-(3,4,5-Trimethoxyphenyl)propanoic acid is a constituent of Piper longum (long pepper) and Piper retrofractum (Javanese long pepper). 3-(3,4,5-Trimethoxyphenyl)propanoic acid is found in herbs and spices. 3-(3,4,5-Trimethoxyphenyl)propanoic acid is a constituent of Piper longum (long pepper) and Piper retrofractum (Javanese long pepper).

   

3-(3,4-Dihydroxyphenyl)-2-methylpropionic acid

3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid

C10H12O4 (196.0735552)


3-(3,4-Dihydroxyphenyl)-2-methylpropionic acid is a metabolite of carbidopa. Carbidopa (Lodosyn) is a drug given to people with Parkinsons disease in order to inhibit peripheral metabolism of levodopa. This property is significant in that it allows a greater proportion of peripheral levodopa to cross the blood brain barrier for central nervous system effect. (Wikipedia)

   

3-(4-Hydroxy-3-methoxyphenyl)-2-methylpropionic acid

3-(4-hydroxy-3-methoxyphenyl)-2-methylpropanoic acid

C11H14O4 (210.0892044)


3-(4-Hydroxy-3-methoxyphenyl)-2-methylpropionic acid is a metabolite of carbidopa. Carbidopa (Lodosyn) is a drug given to people with Parkinsons disease in order to inhibit peripheral metabolism of levodopa. This property is significant in that it allows a greater proportion of peripheral levodopa to cross the blood brain barrier for central nervous system effect. (Wikipedia)

   

3-(4-Hydroxy-3-methoxyphenyl)-2-methyllactic acid

2-hydroxy-3-(4-hydroxy-3-methoxyphenyl)-2-methylpropanoic acid

C11H14O5 (226.08411940000002)


3-(4-Hydroxy-3-methoxyphenyl)-2-methyllactic acid is a metabolite of carbidopa. Carbidopa (Lodosyn) is a drug given to people with Parkinsons disease in order to inhibit peripheral metabolism of levodopa. This property is significant in that it allows a greater proportion of peripheral levodopa to cross the blood brain barrier for central nervous system effect. (Wikipedia)

   

3-Hydroxy-3-phenylpropanoic acid

(betaR)-beta-Hydroxybenzenepropanoic acid

C9H10O3 (166.062991)


3-Hydroxy-3-phenylpropanoic acid (CAS: 3480-87-3) belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. 3-Hydroxy-3-phenylpropanoic acid is an extremely weak basic (essentially neutral) compound (based on its pKa). BioTransformer predicts that 3-hydroxy-3-phenylpropanoic acid is a product of 3-hydroxy-3-(4-hydroxyphenyl)propanoic acid metabolism via a -4p-dehydroxylation-of-substituted-benzene reaction occurring in human gut microbiota and catalyzed by a dehydroxylase enzyme (PMID: 30612223).

   

Ganodermic acid TQ

(2E)-6-[12-(acetyloxy)-2,6,6,11,15-pentamethyl-5-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-1(17),9-dien-14-yl]-2-methylhept-2-enoic acid

C32H46O5 (510.3345066)


Ganodermic acid TQ is found in mushrooms. Ganodermic acid TQ is a metabolite of Ganoderma lucidum (reishi).

   

3'-Methoxyfukiic acid

2,3-dihydroxy-2-[(4-hydroxy-3-methoxyphenyl)methyl]butanedioic acid

C12H14O8 (286.0688644)


3-Methoxyfukiic acid is found in green vegetables. 3-Methoxyfukiic acid is isolated from Petasites japonicus (sweet coltsfoot

   

3,5-Dihydroxyphenylpropionic acid

3-(3,5-Dihydroxyphenyl)-1-propanoic acid

C9H10O4 (182.057906)


3,5-Dihydroxyphenylpropionic acid (3,5-DHPPA) is an alkylresorcinol metabolite. It is a potential urinary biomarker of whole grain intake (PMID: 15282102). BioTransformer predicts that 3,5-DHPPA is a product of 3,5-dihydroxycinnamic acid metabolism via a reduction-of-alpha-beta-unsaturated-compounds-pattern1 reaction occurring in human gut microbiota and catalyzed by the abkar1 enzyme (PMID: 30612223).

   

(±)-2-Hydroxy-3-(2-hydroxyphenyl)propanoic acid

(±)-2-Hydroxy-3-(2-hydroxyphenyl)propanoic acid

C9H10O4 (182.057906)


(S)-2-Hydroxy-3-(2-hydroxyphenyl)propanoic acid is found in herbs and spices. (S)-2-Hydroxy-3-(2-hydroxyphenyl)propanoic acid is a constituent of the pollen of Crocus sativus (saffron). Constituent of the fruit of Prunus cerasus (cherry). (±)-2-Hydroxy-3-(2-hydroxyphenyl)propanoic acid is found in fruits.

   

3-(3-hydroxy-4-methoxyphenyl)propanoic acid

3-(3-Hydroxy-4-methoxyphenyl)propanoic acid

C10H12O4 (196.0735552)


3-(3-hydroxy-4-methoxyphenyl)propanoic acid is a predicted metabolite generated by BioTransformer¹ that is produced by the metabolism of 3-(3-hydroxy-4-methoxyphenyl)prop-2-enoic acid. It is generated by abkar1 enzyme via a reduction-of-alpha-beta-unsaturated-compounds-pattern1 reaction. This reduction-of-alpha-beta-unsaturated-compounds-pattern1 occurs in human gut microbiota.

   

2-Methoxy-3-(4-methoxyphenyl)propanoic acid

2-methoxy-3-(4-methoxyphenyl)propanoic acid

C11H14O4 (210.0892044)


2-Methoxy-3-(4-methoxyphenyl)propanoic acid is found in cereals and cereal products. 2-Methoxy-3-(4-methoxyphenyl)propanoic acid is a constituent of barley, rye and wheat grains, in an enantiomeric form. Constituent of barley, rye and wheat grains, prob. in an enantiomeric form. 2,4-Dimethoxyphloretic acid is found in cereals and cereal products.

   

3-(3-Hydroxyphenyl)-2-methylpropionic acid

3-(3-Hydroxyphenyl)-2-methylpropionic acid

C10H12O3 (180.0786402)


3-(3-Hydroxyphenyl)-2-methylpropionic acid is a metabolite of carbidopa. Carbidopa (Lodosyn) is a drug given to people with Parkinsons disease in order to inhibit peripheral metabolism of levodopa. This property is significant in that it allows a greater proportion of peripheral levodopa to cross the blood brain barrier for central nervous system effect. (Wikipedia)

   

Dihydrosinapic acid

3-(4-Hydroxyl-3,5-dimethoxyphenyl)propionic acid

C11H14O5 (226.08411940000002)


Dihydrosinapic acid is a polyphenol metabolite detected in biological fluids (PMID: 20428313). Dihydrosinapic acid is a metabolite formed by the gut microflora detected after the consumption of whole grain. A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

Fukiic acid

(2R,3S)-2-[(3,4-dihydroxyphenyl)methyl]-2,3-dihydroxybutanedioic acid

C11H12O8 (272.0532152)


Fukiic acid is found in green vegetables. Fukiic acid is a hydrolysis produced from Petasites japonicus (sweet coltsfoot

   

2-Hydroxy-3-(4-methoxyphenyl)propanoic acid

BENZENEPROPANOIC ACID, A-HYDROXY-4-METHOXY-

C10H12O4 (196.0735552)


2-Hydroxy-3-(4-methoxyphenyl)propanoic acid is found in cereals and cereal products. 2-Hydroxy-3-(4-methoxyphenyl)propanoic acid is a constituent of wheat, rye (Secale cereale), and barley (Hordeum vulgore). Constituent of wheat, rye (Secale cereale), and barley (Hordeum vulgore). 2-Hydroxy-4-methoxyphloretic acid is found in cereals and cereal products and rye.

   

3-Phenylbutyric acid

beta-Methylbenzenepropanoic acid

C10H12O2 (164.0837252)


3-Phenylbutyric acid, also known as 3-phenylbutyrate or (RS)-3-phenylbutanoate, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. Adverse effects Nearly 1/4 women may experience an adverse effect of amenorrhea or menstrual dysfunction. Sodium phenylbutyrate can act as a chemical chaperone, stabilising the mutant CFTR in the endoplasmic reticulum and allowing it to reach the cell surface. A 5g tablet or powder of sodium phenylbutyrate taken by mouth can be detected in the blood within 15 minutes, and reaches peak concentration in the bloodstream within an hour. Phenylbutyric acid is a metabolite occasionally isolated from biological samples (PMID 11043786; 6511847), and it is speculated that this is due to a pitfall in quantitative urinary organic acid analysis originated in the irreproducible adsorption to glass as a major cause of errors. (PMID 10384390) [HMDB] 3-Phenylbutyric acid is metabolized by initial oxidation of the benzene ring and by initial oxidation of the side chain. 3-Phenylbutyric acid can be used to isolate Rhodococcus rhodochrous PB1 from compost soil[1][2].

   

3-Methoxybenzenepropanoic acid

3-(3’-Methoxyphenyl)propanoic acid

C10H12O3 (180.0786402)


3-Methoxybenzenepropanoic acid, also known as 3-(3-methoxyphenyl)propionate or 3-methoxydihydrocinnamate, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. 3-Methoxybenzenepropanoic acid is a naturally occurring human metabolite, It is an organic acid and excreted in human urine (PMID: 8087979) [HMDB] 3-(3-Methoxyphenyl)propionic acid is an organic acid, naturally occurring human metabolite and excreted in human urine.

   

Phenyllactic acid

3-Phenyllactic acid, monosodium salt

C9H10O3 (166.062991)


Phenyllactic acid a product of phenylalanine catabolism, appearing prominently in the urine in individuals with phenylketonuria. Levels of several phenylalanine metabolites, including phenylacetate (PAA), phenyllactate (PLA), and phenylpyruvate (PPA)) are elevated in Phenylketonuria (PKU) (OMIM 261600). Phenyllactic acid is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. (PMID: 10790306; OMIM: 261600). Phenyllactic acid can be found in Acinetobacter, Bacteroides, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas and Staphylococcus (PMID: 19961416). Phenyllactic acid a product of phenylalanine catabolism, appearing prominently in the urine in individuals with phenylketonuria. Levels of several phenylalanine metabolites, including phenylacetate (PAA), phenyllactate (PLA), and phenylpyruvate (PPA)) are elevated in Phenylketonuria (PKU) (OMIM 261600). Phenyllactic acid is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. PMID: 10790306; OMIM: 261600 [HMDB] DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.

   

3-(3-Hydroxyphenyl)-3-hydroxypropanoic acid

3-Hydroxy-3-(3-hydroxyphenyl)propanoic acid

C9H10O4 (182.057906)


3-(3-Hydroxyphenyl)-3-hydroxypropanoic acid (HPHPA) is an organic acid detected in human urine. It is relatively abundant in adult human urine and it is normally relatively benign. It is thought that the presence of this acid is from nutritional sources (i.e. dietary phenylalanine or polyphenols). However, there has been a considerable degree of ambiguity in the origin and/or significance of this compound (PMID:11978597). Recently, it has been reported that HPHPA is actually an abnormal phenylalanine metabolite arising from bacterial metabolism in the gastrointestinal tract. Specifically, HPHPA appears to arise from the action of the anaerobic bacteria Clostridia sp. (PMID:20423563; PMID:24063620). Elevated levels of HPHPA have been reported in the urine of children with autism as well as in adult patients with schizophrenia. It has been proposed that HPHPA may be a bacterial metabolite of m-tyrosine, a tyrosine analog that causes symptoms of autism in experimental animals. Under certain conditions, HPHPA can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of HPHPA are associated with autism and schizophrenia. The mechanism by which HPHPA exerts its toxic effects is not clear. It may function as a catecholamine analog and disrupt catecholamine signalling, especially in younger individuals. Alternately, HPHPA may function as an amino acid analog to tyrosine and phenylalanine. High plasma concentrations of phenylalanine (and possibly HPHPA) are known to influence the blood-brain barrier transport of large neutral amino acids. This altered transport is believed to interfere with the function of different cerebral enzyme systems in the developing brain. Studies have shown that higher levels of HPHPA are associated with overgrowth of Clostridia in the gut, including Clostridium difficile, Clostridium sporogenes, Clostridium botulinum, Clostridium calortolerans, Clostridium mangenoyi, Clostridium ghoni, Clostridium bifermentans, Clostridium sordelli. (PMID:20423563; PMID:24063620) (3-Hydroxyphenyl)hydracrylate (HPHPA) is an organic acid detected in human urine. It is thought that the presence of this acid is from nutritional sources (i.e. dietary phenylalanine). However, there has been a considerable degree of ambiguity in the origin and/or significance of this compound (PMID:11978597). Recently it has been reported that HPHPA is actually an abnormal phenylalanine metabolite arising from bacterial metabolism in the gastrointestinal tract. Specifically HPHPA appears to arise from the action of the anaerobic bacteria Clostrida species (PMID:20423563). Elevated levels of HPHPA have been reported in the urine of children with autism as well as in adult patients with schizophrenia. It has been proposed that HPHPA may be a bacterial metabolite of m-tyrosine, a tyrosine analog that causes symptoms of autism in experimental animals. [HMDB]

   

Mitiglinide

Calcium 2-benzyl-3-(cis-hexahydro-2-isoindolinylcarbonyl)propionate dihydrate

C19H25NO3 (315.18343400000003)


Mitiglinide is only found in individuals that have used or taken this drug. It is a drug for the treatment of type 2 diabetes.Mitiglinide is thought to stimulate insulin secretion by binding to and blocking ATP-sensitive K(+) (K(ATP)) channels (Kir6.2/SUR1 complex, KATP channels) in pancreatic beta-cells. Closure of potassium channels causes depolarization which stimulates calcium influx through voltage-gated calcium channels. High intracellular calcium subsequently triggers the exocytosis of insulin granules.

   

alpha-Methylphenylalanine

alpha-Methylphenylalanine, hydrochloride, (DL-phe)-isomer

C10H13NO2 (179.09462380000002)


Alpha-methylphenylalanine is a tyrosine hydroxylase inhibitor. It reduces the responses of heart to sympathomimetic amines and to adrenergic nerve stimulation.

   

3-Hydroxyphenyllactate

2,3-dihydroxy-3-phenylpropanoic acid

C9H10O4 (182.057906)


3-hydroxyphenyllactate is a compound produced by gut (fecal fermentation) of tea or wine

   

3-(3,4-Dihydroxyphenyl)-2-methoxypropionic acid

3-(3,4-Dihydroxyphenyl)-2-methoxypropionic acid

C10H12O5 (212.06847019999998)


3-(3,4-Dihydroxyphenyl)-2-methoxypropionic acid is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

3-Hydroxy-4-methoxyphenyllactic acid

2-hydroxy-3-(3-hydroxy-4-methoxyphenyl)propanoic acid

C10H12O5 (212.06847019999998)


3-Hydroxy-4-methoxyphenyllactic acid is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

20-Dihydrodydrogesterone

2,15-dimethyl-5-methylidene-14-(propan-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-6,8-diene

C23H34 (310.2660364)


20-Dihydrodydrogesterone is a metabolite of dydrogesterone. Dydrogesterone is a progestogen hormone. The brand name is Duphaston and manufactured by Abbott. Dydrogesterone was first introduced to the market in 1961, and is currently approved in over 100 countries worldwide. It has an estimated cumulative exposure of more than 28 million patients. Dydrogesterone is a potent, orally active progestogen indicated in a wide variety of gynaecological conditions. Although similar in molecular structure and pharmacological effects to endogenous progesterone. (Wikipedia)

   

3-(3-Hydroxyphenyl)-2-methyllactic acid

2-hydroxy-3-(3-hydroxyphenyl)-2-methylpropanoic acid

C10H12O4 (196.0735552)


3-(3-Hydroxyphenyl)-2-methyllactic acid is a metabolite of carbidopa. Carbidopa (Lodosyn) is a drug given to people with Parkinsons disease in order to inhibit peripheral metabolism of levodopa. This property is significant in that it allows a greater proportion of peripheral levodopa to cross the blood brain barrier for central nervous system effect. (Wikipedia)

   

2-Hydroxyibuprofen

2-[4-(2-hydroxy-2-methylpropyl)phenyl]propanoic acid

C13H18O3 (222.1255878)


2-Hydroxyibuprofen is a metabolite of ibuprofen. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) used for relief of symptoms of arthritis, fever, as an analgesic (pain reliever), especially where there is an inflammatory component, and dysmenorrhea. Ibuprofen is known to have an antiplatelet effect, though it is relatively mild and somewhat short-lived when compared with aspirin or other better-known antiplatelet drugs. (Wikipedia)

   

3-Hydroxyibuprofen

2-[4-(3-hydroxy-2-methylpropyl)phenyl]propanoic acid

C13H18O3 (222.1255878)


3-Hydroxyibuprofen is a metabolite of ibuprofen. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) used for relief of symptoms of arthritis, fever, as an analgesic (pain reliever), especially where there is an inflammatory component, and dysmenorrhea. Ibuprofen is known to have an antiplatelet effect, though it is relatively mild and somewhat short-lived when compared with aspirin or other better-known antiplatelet drugs. (Wikipedia)

   

Suprofen S-oxide

2-[4-(1-oxo-1λ⁴-thiophene-2-carbonyl)phenyl]propanoic acid

C14H12O4S (276.0456272)


Suprofen S-oxide is a metabolite of suprofen. Suprofen is a non-steroidal anti-inflammatory drug (NSAID) developed by Janssen Pharmaceutica that was marketed as 1\\% eye drops under the trade name Profenal. (Wikipedia)

   

Thiophene-4,5-epoxide

2-(4-{6-oxa-2-thiabicyclo[3.1.0]hex-3-ene-3-carbonyl}phenyl)propanoic acid

C14H12O4S (276.0456272)


Thiophene-4,5-epoxide is a metabolite of suprofen. Suprofen is a non-steroidal anti-inflammatory drug (NSAID) developed by Janssen Pharmaceutica that was marketed as 1\\% eye drops under the trade name Profenal. (Wikipedia)

   

2-Ethoxy-3-[4-[2-(4-methylsulfonyloxyphenyl)ethoxy]phenyl]propanoic acid

2-Ethoxy-3-(4-{2-[4-(methanesulphonyloxy)phenyl]ethoxy}phenyl)propanoic acid

C20H24O7S (408.1242674)


   

2-Hydroxy-3-[(2-carboxyethyl)thio]-3-[2-(8-phenyloctyl)phenyl]propanoic acid

3-[(2-Carboxyethyl)sulphanyl]-2-hydroxy-3-[2-(8-phenyloctyl)phenyl]propanoic acid

C26H34O5S (458.21268340000006)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists

   

3-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionic acid

beta-(4-Hydroxy-3,5-di-tert-butyl)phenylpropionic acid, potassium salt

C17H26O3 (278.1881846)


D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D020011 - Protective Agents > D000975 - Antioxidants

   

3-Iodo-alpha-methyl-l-tyrosine

2-amino-3-(4-hydroxy-3-iodophenyl)-2-methylpropanoic acid

C10H12INO3 (320.9861912)


   

DL-Carbidopa

3-(3,4-dihydroxyphenyl)-2-hydrazinyl-2-methylpropanoic acid

C10H14N2O4 (226.0953524)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D004791 - Enzyme Inhibitors > D065105 - Aromatic Amino Acid Decarboxylase Inhibitors D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents

   

Racemetirosine

2-amino-3-(4-hydroxyphenyl)-2-methylpropanoic acid

C10H13NO3 (195.0895388)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor

   

3-[2-[[(1S,2R,3S)-3-[4-(Pentylcarbamoyl)-1,3-oxazol-2-yl]-7-oxabicyclo[2.2.1]heptan-2-yl]methyl]phenyl]propanoic acid

3-[2-[[(1S,2R,3S)-3-[4-(Pentylcarbamoyl)-1,3-oxazol-2-yl]-7-oxabicyclo[2.2.1]heptan-2-yl]methyl]phenyl]propanoic acid

C25H32N2O5 (440.2311102)


   

Alminoprofen

alpha-Methyl-4-[(2-methyl-2-propenyl)amino]benzeneacetic acid

C13H17NO2 (219.12592220000002)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Alminoprofen (EB-382) is a nonsteroidal anti-inflammatory agent (NSAID) of the phenylpropionic acid class. Alminoprofen possesses a dual anti-inflammatory action, by inhibiting both secretory phospholipase A2 (sPLA2) and COX-2[1].

   

2-(Fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine

2-amino-2-[(3,4-dihydroxyphenyl)methyl]-3-fluoropropanoic acid

C10H12FNO4 (229.0750324)


   

2-[2-(4-Methylphenyl)ethylsulfanyl]-3-[4-[2-(4-methylsulfonyloxyphenoxy)ethyl]phenyl]propanoic acid

3-(4-{2-[4-(methanesulfonyloxy)phenoxy]ethyl}phenyl)-2-{[2-(4-methylphenyl)ethyl]sulfanyl}propanoic acid

C27H30O6S2 (514.148372)


   

Cetraxate

4-(2-Carboxyethyl)phenyl-trans-4-aminomethylcyclohexane carboxylate hydrochloride

C17H23NO4 (305.1626998)


   

3-{4-[2-Hydroxy-3-(propan-2-ylamino)propoxy]phenyl}propanoic acid

3-(4-{2-hydroxy-3-[(propan-2-yl)amino]propoxy}phenyl)propanoic acid

C15H23NO4 (281.1626998)


   

2,2-Dihydroxy-3-phenylpropanoic acid

2,2-Dihydroxy-3-phenylpropanoic acid

C9H10O4 (182.057906)


   

3-Hydroxy-alpha-methyl-DL-tyrosine

2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid

C10H13NO4 (211.0844538)


C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Cedpht

3-[4-(6-phenylhexa-1,3,5-trien-1-yl)phenyl]propanoic acid

C21H20O2 (304.146322)


   

Hapten

3-(3-chloro-4-{14-cyclopropanecarbonyl-3,7-dimethyl-17-thia-2,4,5,8,14-pentaazatetracyclo[8.7.0.0^{2,6}.0^{11,16}]heptadeca-1(10),3,5,8,11(16)-pentaen-9-yl}phenyl)propanoic acid

C26H26ClN5O3S (523.1444796000001)


   

indoprofen

2-[4-(1-oxo-2,3-dihydro-1H-isoindol-2-yl)phenyl]propanoic acid

C17H15NO3 (281.105188)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Iophenoxic acid

2-[(3-hydroxy-2,4,6-triiodophenyl)methyl]butanoic acid

C11H11I3O3 (571.7842466)


   

Ipodate

3-(3-{[(dimethylamino)methylidene]amino}-2,4,6-triiodophenyl)propanoic acid

C12H13I3N2O2 (597.8111288000001)


   

2-Ethoxy-3-[4-[2-[4-(trifluoromethylsulfonyloxy)phenyl]ethoxy]phenyl]propanoic acid

2-Ethoxy-3-[4-[2-[4-(trifluoromethylsulphonyloxy)phenyl]ethoxy]phenyl]propanoic acid

C20H21F3O7S (462.09600320000004)


   

Pelubiprofen

2-{4-[(2-oxocyclohexylidene)methyl]phenyl}propanoic acid

C16H18O3 (258.1255878)


   

Ronacaleret

3-[3-(3-{[1-(2,3-dihydro-1H-inden-2-yl)-2-methylpropan-2-yl]amino}-2-hydroxypropoxy)-4,5-difluorophenyl]propanoic acid

C25H31F2NO4 (447.22210300000006)


   

2-[4-(2-Carboxy-2-methylpropyl)phenyl]propionic acid

3-[4-(1-carboxyethyl)phenyl]-2,2-dimethylpropanoic acid

C14H18O4 (250.1205028)


   

3-(2-Carboxyethylthio)-3-(2-(8-phenyloctyl)phenyl)propanoic acid

3-[(2-Carboxyethyl)sulphanyl]-3-[3-(8-phenyloctyl)phenyl]propanoic acid

C26H34O4S (442.21776840000007)


   

Tyropanoic acid

2-[(3-butanamido-2,4,6-triiodophenyl)methyl]butanoic acid

C15H18I3NO3 (640.8420927999999)


   

Benzenepropanoic acid, beta-((2-carboxyethyl)thio)-2-(8-phenyloctyl)-, (betaS)-

Benzenepropanoic acid, beta-((2-carboxyethyl)thio)-2-(8-phenyloctyl)-, (betaS)-

C26H34O4S (442.21776840000007)


   

Ximoprofen

4-(3-(Hydroxyimino)cyclohexyl)-alpha-methylbenzeneacetic acid

C15H19NO3 (261.13648639999997)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic

   

(R+)-3-(4-hydroxyphenyl)lactate

(2R)-2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H9O4 (181.0500814)


(r+)-3-(4-hydroxyphenyl)lactate, also known as (2r)-2-hydroxy-3-(4-hydroxyphenyl)propanoate or P-hydroxyphenyllactic acid, is a member of the class of compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid (r+)-3-(4-hydroxyphenyl)lactate is soluble (in water) and a weakly acidic compound (based on its pKa). (r+)-3-(4-hydroxyphenyl)lactate can be found in a number of food items such as muskmelon, coconut, lemon grass, and kohlrabi, which makes (r+)-3-(4-hydroxyphenyl)lactate a potential biomarker for the consumption of these food products.