Biological Pathway: BioCyc:META_PWY-5940

streptomycin biosynthesis related metabolites

find 64 related metabolites which is associated with the biological pathway streptomycin biosynthesis

this pathway object is a conserved pathway across multiple organism.

View the spectrum consensus network of the metabolites related with current biological pathway.

Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

1,4-Dithiothreitol

DL-Threo-1,4-dimercapto-2,3-butanediol

C4H10O2S2 (154.0122)


Dithiothreitol (DTT) is the common name for a small-molecule redox reagent known as Clelands reagent. DTTs formula is C4H10O2S2 and the molecular structure of its reduced form is shown at the right; its oxidized form is a disulfide-bonded 6-membered ring (shown below). Its name derives from the four-carbon sugar, threose. DTT has an epimeric (sister) compound, dithioerythritol. A common use of DTT is as a reducing or "deprotecting" agent for thiolated DNA. The terminal sulfur atoms of thiolated DNA have a tendency to form dimers in solution, especially in the presence of oxygen. Dimerization greatly lowers the efficiency of subsequent coupling reactions such as DNA immobilization on gold in biosensors. Typically DTT is mixed with a DNA solution and allowed to react, and then is removed by filtration (for the solid catalyst) or by chromatography (for the liquid form). The DTT removal procedure is often called "desalting.". DTT is frequently used to reduce the disulfide bonds of proteins and, more generally, to prevent intramolecular and intermolecular disulfide bonds from forming between cysteine residues of proteins. However, even DTT cannot reduce buried (solvent-inaccessible) disulfide bonds, so reduction of disulfide bonds is sometimes carried out under denaturing conditions (e.g., at high temperatures, or in the presence of a strong denaturant such as 6 M guanidinium hydrochloride, 8 M urea, or 1\\% sodium dodecylsulfate). Conversely, the solvent exposure of different disulfide bonds can be assayed by their rate of reduction in the presence of DTT. DTT can also be used as an oxidizing agent. Its principal advantage is that effectively no mixed-disulfide species are populated, in contrast to other agents such as glutathione. In very rare cases, a DTT adduct may be formed, i.e., the two sulfur atoms of DTT may form disulfide bonds to different sulfur atoms; in such cases, DTT cannot cyclize since it has no remaining free thiols. Due to air oxidation, DTT is a relatively unstable compound whose useful life can be extended by refrigeration and handling in an inert atmosphere. Since protonated sulfurs have lowered nucleophilicities, DTT becomes less potent as the pH lowers. Tris(2-carboxyethyl)phosphine HCl (TCEP hydrochloride) is an alternative which is more stable and works even at low pH. Dithiothreitol (DTT) is the common name for a small-molecule redox reagent known as Clelands reagent. DTT has an epimeric compound, dithioerythritol. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Glucose 6-phosphate

{[(2R,3S,4S,5R)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxy}phosphonic acid

C6H13O9P (260.0297)


Glucose 6 phosphate (alpha-D-glucose 6 phosphate or G6P) is the alpha-anomer of glucose-6-phosphate. There are two anomers of glucose 6 phosphate, the alpha anomer and the beta anomer. Glucose 6 phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed). Glucose-6-phosphate is a phosphorylated glucose molecule on carbon 6. When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways, glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to Fructose-6-phosphate and then phosphorylated to Fructose-1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (isomerase) can turn the molecule into glucose-1-phosphate. Glucose-1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose-6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase a during times of high stress or low blood glucose levels. -- Wikipedia [HMDB] Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. Glucose 6-phosphate (G6P) has two anomers: the alpha anomer and the beta anomer. Glucose 6-phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose 6-phosphate (Stedman, 26th ed). When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways: glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to fructose 6-phosphate and then phosphorylated to fructose 1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (an isomerase) can turn the molecule into glucose 1-phosphate. Glucose 1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose 6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase during times of high stress or low blood glucose levels. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 237 KEIO_ID G003; [MS2] KO009109 KEIO_ID G003

   

Myo-Inositol

1,2,3,4,5,6-Hexahydroxycyclohexane, i-inositol, meso-Inositol

C6H12O6 (180.0634)


myo-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, of which cis-1,2,3,5-trans-4,6-cyclohexanehexol, or myo-inositol is the most widely occurring form in nature. The other known inositols include scyllo-inositol, muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol and cis-inositol. myo-Inositol is found naturally in many foods (particularly in cereals with high bran content) and can be used as a sweetner as it has half the sweetness of sucrose (table sugar). myo-Inositol was once considered a member of the vitamin B complex and given the name: vitamin B8. However, because it is produced by the human body from glucose, it is not an essential nutrient, and therefore cannot be called a vitamin. myo-Inositol is a precursor molecule for a number of secondary messengers including various inositol phosphates. In addition, inositol/myo-inositol is an important component of the lipids known as phosphatidylinositol (PI) phosphatidylinositol phosphate (PIP). myo-Inositol is synthesized from glucose, via glucose-6-phosphate (G-6-P) in two steps. First, G-6-P is isomerised by an inositol-3-phosphate synthase enzyme to myo-inositol 1-phosphate, which is then dephosphorylated by an inositol monophosphatase enzyme to give free myo-inositol. In humans, myo-inositol is primarily synthesized in the kidneys at a rate of a few grams per day. myo-Inositol can be used in the management of preterm babies who have or are at a risk of infant respiratory distress syndrome. It is also used as a treatment for polycystic ovary syndrome (PCOS). It works by increasing insulin sensitivity, which helps to improve ovarian function and reduce hyperandrogenism. Reduced levels of myo-inositol have been found in the spinal fluid of depressed patients and levels are significantly reduced in brain samples of suicide victims. Of common occurrence in plants and animals . obtained comly. from phytic acid in corn steep liquor. Dietary supplement C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

Water

oxidane

H2O (18.0106)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Pyrophosphate

phosphono dihydrogen phosphate

H4O7P2 (177.9432)


The anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The pyrophosphate anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate is an osteotoxin (arrests bone development) and an arthritogen (promotes arthritis). It is also a metabotoxin (an endogenously produced metabolite that causes adverse health affects at chronically high levels). Chronically high levels of pyrophosphate are associated with hypophosphatasia. Hypophosphatasia (also called deficiency of alkaline phosphatase or phosphoethanolaminuria) is a rare, and sometimes fatal, metabolic bone disease. Hypophosphatasia is associated with a molecular defect in the gene encoding tissue non-specific alkaline phosphatase (TNSALP). TNSALP is an enzyme that is tethered to the outer surface of osteoblasts and chondrocytes. TNSALP hydrolyzes several substances, including inorganic pyrophosphate (PPi) and pyridoxal 5-phosphate (PLP), a major form of vitamin B6. When TSNALP is low, inorganic pyrophosphate (PPi) accumulates outside of cells and inhibits the formation of hydroxyapatite, one of the main components of bone, causing rickets in infants and children and osteomalacia (soft bones) in adults. Vitamin B6 must be dephosphorylated by TNSALP before it can cross the cell membrane. Vitamin B6 deficiency in the brain impairs synthesis of neurotransmitters which can cause seizures. In some cases, a build-up of calcium pyrophosphate dihydrate crystals in the joints can cause pseudogout. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

zinc ion

Zinc cation

Zn+2 (63.9291)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AB - Enzymes D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors C307 - Biological Agent > C29726 - Enzyme Replacement or Supplement Agent D004791 - Enzyme Inhibitors

   

Cobaltous Cation

Cobaltous Cation

Co+2 (58.9332)


   

Magnesium

Magnesium Cation

Mg+2 (23.985)


   

2-Inosose

2,3,4,5,6-Pentahydroxycyclohexanone

C6H10O6 (178.0477)


   

Manganous cation

Manganous cation

Mn+2 (54.938)


   

Hydrogen Ion

Hydrogen cation

H+ (1.0078)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

scyllo-Inositol

(1R,2R,3R,4R,5R,6R)-Cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0634)


scyllo-Inositol or scyllitol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. scyllo-Inositol was first isolated from the kidneys of fish in 1858 by Staedeler and Freierchs. scyllo-Inositol is a naturally occurring plant sugar alcohol found most abundantly in the coconut palm. It appears to accumulate in a number of human tissues and biofluids through dietary consumption. It has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379). Results reported by Viola et al (PMID: 15340856) suggest that high CSF concentrations of scyllo-inositol can be induced by chronic alcoholism. scyllo-Inositol when fed to transgenic mice that exhibit a memory disease very similar to human Alzheimers disease, can block the accumulation of soluble amyloid-beta (Aβ) plaques in the brain. scyllo-Inositol was found to reverse memory deficits in the mice, reduce the amount of Aβ plaque in the brains of the mice, and reversed other symptoms associated with the presence of Aβ in the brain (PMID: 16767098). Scyllitol is an isomer of cyclohexanehexol or inositol. It was first isolated from the kidneys of fish in 1858 by Staedeler and Freierchs. Scyllitol is a naturally occurring plant sugar alcohol found most abundantly in the coconut palm. It appears to accumulate in a number of human tissues and biofluids through dietary consumption. It has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379). Results reported by Viola et al (PMID: 15340856) suggest that high CSF concentrations of scyllo-inositol can be induced by chronic alcoholism. scyllo-Inositol (also called "scyllitol") when fed to transgenic mice that exhibit a memory disease very similar to human Alzheimers disease, can block the accumulation of soluble amyloid-beta (Aβ) plaques in the brain. Scyllitol was found to reverse memory deficits in the mice, reduce the amount of Aβ plaque in the brains of the mice, and reversed other symptoms associated with the presence of Aβ in the brain (PMID: 16767098). [HMDB] C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

muco-Inositol

(1R,2S,3S,4R,5S,6r)-cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0634)


muco-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. While classed as a sugar-alcohol for historical reasons, muco-inositol is more properly described as a sweet-alcohol due its perception as sweet. However, muco-inositol is perceived as both sweet and salty by humans. It is perceived as salty due to its pair of diaxial-trans-hydroxyl pairs. This pair of hydroxyl groups can form a dimer with the diaxial-trans-hydroxyl pair of the hydrated sodium-ion receptor. muco-Inositol is a critically important chemical in the gustatory (taste) process in mammals. It is coupled to a phospholipid of the outer lemma of the sensory neurons associated with the sodium ion sensitive channel (previously known as the "salty" channel) of gustation. muco-Inositol is typically phosphorylated (becoming muco-inositol phosphate) in the process of being attached to a lipid of the outer lemma of the sensory neurons of taste. The final chemical is phosphatidyl muco-inositol (PtdIns). PtdIns occurs in a specialized area of the cilia of the sensory neurons where it exists in a liquid crystalline form. C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

Chiro-inositol

(1R,2R,3S,4S,5S,6s)-cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0634)


Chiro-inositol, also known as (+)-inositol or (1r,2r,3s,4s,5s,6s)-cyclohexane-1,2,3,4,5,6-hexol, is a member of the class of compounds known as cyclohexanols. Cyclohexanols are compounds containing an alcohol group attached to a cyclohexane ring. Chiro-inositol is soluble (in water) and a very weakly acidic compound (based on its pKa). Chiro-inositol can be found in carob and soy bean, which makes chiro-inositol a potential biomarker for the consumption of these food products. Inositol or its phosphates and associated lipids are found in many foods, in particular fruit, especially cantaloupe and oranges. In plants, the hexaphosphate of inositol, phytic acid or its salts, the phytates, serve as phosphate stores in seed, for example in nuts and beans. Phytic acid also occurs in cereals with high bran content. Phytate is, however, not directly bioavailable to humans in the diet, since it is not digestible. Some food preparation techniques partly break down phytates to change this. However, inositol in the form of glycerophospholipids, as found in certain plant-derived substances such as lecithins is well-absorbed and relatively bioavailable . D-chiro-Inositol (also known as 1D-chiro-inositol, abbreviated DCI) is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. myo-Inositol is converted into DCI by an insulin dependent NAD/NADH epimerase enzyme. It is known to be an important secondary messenger in insulin signal transduction. DCI accelerates the dephosphorylation of glycogen synthase and pyruvate dehydrogenase, rate limiting enzymes of non-oxidative and oxidative glucose disposal. DCI may act to bypass defective normal epimerization of myo-inositol to DCI associated with insulin resistance and at least partially restore insulin sensitivity and glucose disposal. C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

Glucose 6-phosphate

D-Glucose 6-phosphate

C6H13O9P (260.0297)


   

H2O

oxidane

H2O (18.0106)


An oxygen hydride consisting of an oxygen atom that is covalently bonded to two hydrogen atoms. Water. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7732-18-5 (retrieved 2024-10-17) (CAS RN: 7732-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Adenosine

(2R,3R,4S,5R)-2-(6-aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C - Cardiovascular system > C01 - Cardiac therapy Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C10H13N5O4; Bottle Name:Adenosine; PRIME Parent Name:Adenosine; PRIME in-house No.:0040 R0018, Purines MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OIRDTQYFTABQOQ_STSL_0143_Adenosine_0500fmol_180430_S2_LC02_MS02_33; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.113 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.109 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.097 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.096 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2621; CONFIDENCE confident structure Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

inositol

1,2,3,4,5,6-Cyclohexanehexol

C6H12O6 (180.0634)


C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

DL-Dithiothreitol

(2S,3S)-1,4-Dimercaptobutane-2,3-diol

C4H10O2S2 (154.0122)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Silver cation

Silver cation

Ag+ (106.9051)


   

Cupric cation

Cupric cation

Cu+2 (62.9296)


   

Nicotinamide adenine dinucleotide

[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl] [(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate

C21H26N7O14P2- (662.1013)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pyruvate

Pyruvate

C3H3O3- (87.0082)


A 2-oxo monocarboxylic acid anion that is the conjugate base of pyruvic acid, arising from deprotonation of the carboxy group.

   

Hydrogen phosphate

Hydrogen phosphate

HO4P-2 (95.9612)


   

CDP trianion

CDP trianion

C9H12N3O11P2-3 (399.9947)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pyridoxal 5-phosphate(2-)

Pyridoxal 5-phosphate(2-)

C8H8NO6P-2 (245.0089)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

alpha-D-Glucopyranose 1-phosphate

[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate

C6H11O9P-2 (258.0141)


   

Ferrous cation

Ferrous cation

Fe+2 (55.9349)


   

L-argininium(1+)

[amino({[(4S)-4-amino-4-carboxybutyl]amino})methylidene]azanium

C6H15N4O2+ (175.1195)


L-argininium(1+), also known as L-Arginine or DL Arginine acetate, monohydrate, is classified as a member of the L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-argininium(1+) is considered to be soluble (in water) and acidic COVID info from WikiPathways, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(2S)-2-azaniumylpropanoate

(2S)-2-azaniumylpropanoate

C3H7NO2 (89.0477)


   

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

C10H12N5O13P3-4 (502.9644)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

beta-NADH

beta-NADH

C21H27N7O14P2-2 (663.1091)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-diphosphate

Adenosine-diphosphate

C10H12N5O10P2-3 (424.0059)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Thymidine-diphosphate

Thymidine-diphosphate

C10H13N2O11P2-3 (398.9995)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-5-monophosphate(2-)

Adenosine-5-monophosphate(2-)

C10H12N5O7P-2 (345.0474)


   

Thymidine 5-triphosphate(4-)

Thymidine 5-triphosphate(4-)

C10H13N2O14P3-4 (477.958)


   

2-Oxoglutaramate

2-Oxoglutaramate

C5H6NO4- (144.0297)


   
   

2,2,2,2-(Ethane-1,2-diyldiammonio)tetraacetate

2,2,2,2-(Ethane-1,2-diyldiammonio)tetraacetate

C10H14N2O8-2 (290.075)


   
   

Streptomycin 6-phosphate(1+)

Streptomycin 6-phosphate(1+)

C21H41N7O15P+ (662.2398)


Conjugate acid of streptomycin 6-phosphate arising from deprotonation of the phosphate OH groups and protonation of the secondary amino and both guanidino groups; major species at pH 7.3.

   

1-Ammonio-1-deoxy-scyllo-inositol

1-Ammonio-1-deoxy-scyllo-inositol

C6H14NO5+ (180.0872)


   

Scyllo-inosamine-4-phosphate

Scyllo-inosamine-4-phosphate

C6H13NO8P- (258.0379)


   

(2S)-5-amino-2-ammonio-5-oxopentanoate

(2S)-5-amino-2-ammonio-5-oxopentanoate

C5H10N2O3 (146.0691)


   

Dihydrostreptomycin 6-phosphate(1+)

Dihydrostreptomycin 6-phosphate(1+)

C21H43N7O15P+ (664.2555)


Conjugate acid of dihydrostreptomycin 6-phosphate arising from deprotonation of the phosphate OH groups and protonation of the secondary amino and both guanidino groups; major species at pH 7.3.

   

1D-3-ammmonio-1-guanidiniumyl-1,3-dideoxy-scyllo-inositol(2+)

1D-3-ammmonio-1-guanidiniumyl-1,3-dideoxy-scyllo-inositol(2+)

C7H18N4O4+2 (222.1328)


   

O-1,4-alpha-L-Dihydrostreptosyl-streptidine 6-phosphate

O-1,4-alpha-L-Dihydrostreptosyl-streptidine 6-phosphate

C14H29N6O11P (488.1632)


   

(1S,2R,3S,4S,5R,6S)-2,4-bis{[amino(iminio)methyl]amino}-3,5,6-trihydroxycyclohexyl phosphate

(1S,2R,3S,4S,5R,6S)-2,4-bis{[amino(iminio)methyl]amino}-3,5,6-trihydroxycyclohexyl phosphate

C8H19N6O7P (342.1053)


   
   

dTDP-6-deoxy-beta-L-mannose(2-)

dTDP-6-deoxy-beta-L-mannose(2-)

C16H24N2O15P2-2 (546.0652)


   

1-Guanidiniumyl-1-deoxy-scyllo-inositol(1+)

1-Guanidiniumyl-1-deoxy-scyllo-inositol(1+)

C7H16N3O5+ (222.109)


   

(2R,3S,5R,6S)-4-{[amino(iminio)methyl]amino}-2,3,5,6-tetrahydroxycyclohexyl phosphate

(2R,3S,5R,6S)-4-{[amino(iminio)methyl]amino}-2,3,5,6-tetrahydroxycyclohexyl phosphate

C7H15N3O8P- (300.0597)


   

(4-Carboxyphenyl)-chloro-mercury

(4-Carboxyphenyl)-chloro-mercury

C7H4ClHgO2- (356.9606)


   

(1S,2R,3S,4S,5R,6S)-4-azaniumyl-2-{[azaniumyl(imino)methyl]amino}-3,5,6-trihydroxycyclohexyl phosphate

(1S,2R,3S,4S,5R,6S)-4-azaniumyl-2-{[azaniumyl(imino)methyl]amino}-3,5,6-trihydroxycyclohexyl phosphate

C7H17N4O7P (300.0835)


   

CDP-N-methyl-L-glucosamine

CDP-N-methyl-L-glucosamine

C16H27N4O15P2- (577.0948)


   

D-1-guanidino-1-deoxy-3-dehydro-scyllo-inositol

D-1-guanidino-1-deoxy-3-dehydro-scyllo-inositol

C7H14N3O5+ (220.0933)


   

1-[2-[[[[3,4-dihydroxy-3-(hydroxymethyl)-2-methyl-tetrahydrofuran-5-yl]oxy-hydroxy-phosphinoyl]oxy-hydroxy-phosphinoyl]oxymethyl]-3-hydroxy-tetrahydrofuran-5-yl]-5-methyl-1H-pyrimidine-2,4-dione

1-[2-[[[[3,4-dihydroxy-3-(hydroxymethyl)-2-methyl-tetrahydrofuran-5-yl]oxy-hydroxy-phosphinoyl]oxy-hydroxy-phosphinoyl]oxymethyl]-3-hydroxy-tetrahydrofuran-5-yl]-5-methyl-1H-pyrimidine-2,4-dione

C16H24N2O15P2-2 (546.0652)


   

Diphosphoric acid

Pyrophosphoric acid

H4O7P2 (177.9432)


An acyclic phosphorus acid anhydride obtained by condensation of two molecules of phosphoric acid. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Magnesium Cation

Magnesium Cation

Mg+2 (23.985)


   

Zinc cation

Zinc cation

Zn+2 (63.9291)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AB - Enzymes D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors C307 - Biological Agent > C29726 - Enzyme Replacement or Supplement Agent D004791 - Enzyme Inhibitors

   

Hydrogen cation

Hydrogen cation

H+ (1.0078)


   

2,4,6/3,5-Pentahydroxycyclohexanone

2,4,6/3,5-Pentahydroxycyclohexanone

C6H10O6 (178.0477)