Gene Association: NPM1

UniProt Search: NPM1 (PROTEIN_CODING)
Function Description: nucleophosmin 1

found 59 associated metabolites with current gene based on the text mining result from the pubmed database.

Atractydin

2-((1E,7E)-Nona-1,7-dien-3,5-diyn-1-yl)furan-1-yl)furan

C13H10O (182.0732)


Atractylodin is a member of furans. Atractylodin is a natural product found in Atractylodes japonica, Atractylodes macrocephala, and other organisms with data available. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Hordenine

4-[2-(dimethylamino)ethyl]phenol

C10H15NO (165.1154)


Hordenine is a potent phenylethylamine alkaloid with antibacterial and antibiotic properties produced in nature by several varieties of plants in the family Cactacea. The major source of hordenine in humans is beer brewed from barley. Hordenine in urine interferes with tests for morphine, heroin and other opioid drugs. Hordenine is a biomarker for the consumption of beer Hordenine is a phenethylamine alkaloid. It has a role as a human metabolite and a mouse metabolite. Hordenine is a natural product found in Cereus peruvianus, Mus musculus, and other organisms with data available. See also: Selenicereus grandiflorus stem (part of). Alkaloid from Hordeum vulgare (barley) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2289 Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1]. Hordenine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=539-15-1 (retrieved 2024-10-24) (CAS RN: 539-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Valtrats

BUTANOIC ACID, 3-METHYL-, 4-((ACETYLOXY)METHYL)-6,7A-DIHYDROSPIRO(CYCLOPENTA-(C)PYRAN-7(1H),2-OXIRANE)-1,6-DIYL ESTER, (1S-(1-.ALPHA.,6-.ALPHA,,7- .BETA.,7A-.ALPHA.))-

C22H30O8 (422.1941)


Valtratum is a fatty acid ester. Valtrate is a natural product found in Valeriana pulchella, Valeriana alpestris, and other organisms with data available. See also: Viburnum opulus bark (part of). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2]. Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2].

   

dADP

[({[(2R,3S,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O9P2 (411.0345)


Deoxyadenosine diphosphate has been identified in the mononuclear cells of a patient affected with in inherited adenosine deaminase deficiency (OMIM 102700) (PMID 6980023), and in in mononuclear cells of hemodialyzed patients. (PMID 11461945) [HMDB]. dADP is found in many foods, some of which are medlar, oil palm, greenthread tea, and green vegetables. Deoxyadenosine diphosphate has been identified in the mononuclear cells of a patient affected with in inherited adenosine deaminase deficiency (OMIM 102700) (PMID 6980023), and in in mononuclear cells of hemodialyzed patients. (PMID 11461945). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Azacitidine

4-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2-dihydro-1,3,5-triazin-2-one

C8H12N4O5 (244.0808)


Azacitidine is only found in individuals that have used or taken this drug. It is a pyrimidine nucleoside analogue that inhibits DNA methyltransferase, impairing DNA methylation. It is also an antimetabolite of cytidine, incorporated primarily into RNA. Azacytidine has been used as an antineoplastic agent. [PubChem]Azacitidine (5-azacytidine) is a chemical analogue of the cytosine nucleoside used in DNA and RNA. Azacitidine is thought to induce antineoplastic activity via two mechanisms; inhibition of DNA methyltransferase at low doses, causing hypomethylation of DNA, and direct cytotoxicity in abnormal hematopoietic cells in the bone marrow through its incorporation into DNA and RNA at high doses, resulting in cell death. As azacitidine is a ribonucleoside, it incoporates into RNA to a larger extent than into DNA. The incorporation into RNA leads to the dissembly of polyribosomes, defective methylation and acceptor function of transfer RNA, and inhibition of the production of protein. Its incorporation into DNA leads to a covalent binding with DNA methyltransferases, which prevents DNA synthesis and subsequent cytotoxicity. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2083 - DNA Methyltransferase Inhibitor C274 - Antineoplastic Agent > C132686 - Demethylating Agent D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 5-Azacytidine (Azacitidine; 5-AzaC; Ladakamycin) is a nucleoside analogue of cytidine that specifically inhibits DNA methylation. 5-Azacytidine is incorporated into DNA to covalently trap DNA methyltransferases and contributes to reverse epigenetic changes[1][2]. 5-Azacytidine induces cell autophagy[4].

   

Dactinomycin

N1,N9-bis[(6S,9R,10S,13R,18aS)-2,5,9-trimethyl-1,4,7,11,14-pentaoxo-6,13-bis(propan-2-yl)-hexadecahydro-1H-pyrrolo[2,1-i]1-oxa-4,7,10,13-tetraazacyclohexadecan-10-yl]-2-amino-4,6-dimethyl-3-oxo-3H-phenoxazine-1,9-dicarboxamide

C62H86N12O16 (1254.6284)


A compound composed of a two cyclic peptides attached to a phenoxazine that is derived from streptomyces parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DA - Actinomycines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents

   

Megestil

17alpha-hydroxy-6-methylpregna-4,6-diene-3,20-dione acetate

C24H32O4 (384.23)


CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9660; ORIGINAL_PRECURSOR_SCAN_NO 9655 CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9556; ORIGINAL_PRECURSOR_SCAN_NO 9555 CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9613; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9650; ORIGINAL_PRECURSOR_SCAN_NO 9648 CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9684; ORIGINAL_PRECURSOR_SCAN_NO 9681 CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9604; ORIGINAL_PRECURSOR_SCAN_NO 9603 D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone CONFIDENCE standard compound; INTERNAL_ID 2814 CONFIDENCE standard compound; INTERNAL_ID 8750 D000970 - Antineoplastic Agents

   

Legumelin

(1S,14S)-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

C23H22O6 (394.1416)


Legumelin, also known as (-)-cis-deguelin, is a member of the class of compounds known as rotenones. Rotenones are rotenoids with a structure based on a 6a,12a-dihydrochromeno[3,4-b]chromen-12(6H)-one skeleton. Thus, legumelin is considered to be a flavonoid lipid molecule. Legumelin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Legumelin can be found in soy bean, which makes legumelin a potential biomarker for the consumption of this food product. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.

   

Daunorubicin

(8S,10S)-8-acetyl-10-{[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy}-6,8,11-trihydroxy-1-methoxy-5,7,8,9,10,12-hexahydrotetracene-5,12-dione

C27H29NO10 (527.1791)


Daunorubicin is only found in individuals that have used or taken this drug. It is a very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of leukemia and other neoplasms. [PubChem]Daunorubicin has antimitotic and cytotoxic activity through a number of proposed mechanisms of action: Daunorubicin forms complexes with DNA by intercalation between base pairs, and it inhibits topoisomerase II activity by stabilizing the DNA-topoisomerase II complex, preventing the religation portion of the ligation-religation reaction that topoisomerase II catalyzes. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DB - Anthracyclines and related substances C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors KEIO_ID D106

   

Gambogic acid

(2Z)-4-[12-hydroxy-8,21,21-trimethyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4,6(11),9,12,15-pentaen-19-yl]-2-methylbut-2-enoic acid

C38H44O8 (628.3036)


Isolated from Gamboge resin (exudate of Garcinia morella). Gambogic acid is found in herbs and spices and fruits. Gambogic acid is found in fruits. Gambogic acid is isolated from Gamboge resin (exudate of Garcinia morella). Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM. Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM.

   

Isocitric acid

3-carboxy-2,3-dideoxy-1-hydroxypropan-1,2,3-tricarboxylic acid

C6H8O7 (192.027)


Isocitric acid, also known as isocitrate belongs to the class of organic compounds known as tricarboxylic acids and derivatives. These are carboxylic acids containing exactly three carboxyl groups. Isocitric acid is a TCA (tricarboxylic acid) cycle intermediate. It is a structural isomer of citric acid and is formed from citrate with the help of the enzyme aconitase. More specifically, Isocitric acid is synthesized from citric acid via the intermediate cis-aconitic acid by the enzyme aconitase (aconitate hydratase). Isocitrate is acted upon by isocitrate dehydrogenase (IDH) to form alpha-ketoglutarate. This is a two-step process, which involves oxidation of isocitrate to oxalosuccinate (a ketone), followed by the decarboxylation of the carboxyl group beta to the ketone, forming alpha-ketoglutarate. In humans, IDH exists in three isoforms: IDH3 catalyzes the third step of the citric acid cycle while converting NAD+ to NADH in the mitochondria. The isoforms IDH1 and IDH2 catalyze the same reaction outside the context of the citric acid cycle and use NADP+ as a cofactor instead of NAD+. They localize to the cytosol as well as the mitochondrion and peroxisome. Isocitric acid exists in all living species, ranging from bacteria to plants to humans. Isocitric acid is a minor organic acid found in most fruit juices, especially in blackberries, youngberries, and boyberries, and in vegetables, especially in carrots. The determination of D-isocitric acid has become of importance in the analysis of fruit juices for the detection of illegal additives (adulteration). Since the quantities of citric and isocitric acids are correlated in fruit juices, a high ratio of citric to isocitric acid can indicate the addition of citric acid as an alduterant. In authentic orange juice, for example, the ratio of citric acid to D-isocitric acid is usually less than 130. Isocitric acid is mostly used in the food industry (food additive) as a food acidulant. The citrate oxidation to isocitrate is catalyzed by the enzyme aconitase. Human prostatic secretion is remarkably rich in citric acid and low aconitase activity will therefore play a significant role in enabling accumulation of high citrate levels (PubMed ID 8115279) [HMDB]. Isocitric acid is found in many foods, some of which are wild carrot, redcurrant, carrot, and soursop. [Spectral] Isocitrate (exact mass = 192.027) and CDP (exact mass = 403.01818) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Isocitric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=320-77-4 (retrieved 2024-07-01) (CAS RN: 320-77-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isocitric acid is an endogenous metabolite present in Saliva and Cellular_Cytoplasm that can be used for the research of Alzheimer's Disease, Lewy Body Dementia and Anoxia[1][2][3]. Isocitric acid is an endogenous metabolite present in Saliva and Cellular_Cytoplasm that can be used for the research of Alzheimer's Disease, Lewy Body Dementia and Anoxia[1][2][3].

   

TMPT

2-Ethyl-2(hydroxymethyl)-1,3-propanediol trimethacrylate

C18H26O6 (338.1729)


   

D-2-Hydroxyglutaric acid

alpha-Hydroxyglutarate, disodium salt

C5H8O5 (148.0372)


In humans, D-2-hydroxyglutaric acid is formed by a hydroxyacid-oxoacid transhydrogenase whereas in bacteria it is formed by a 2-hydroxyglutarate synthase. D-2-Hydroxyglutaric acid is also formed via the normal activity of hydroxyacid-oxoacid transhydrogenase during conversion of 4-hydroxybutyrate to succinate semialdehyde. The compound can be converted to alpha-ketoglutaric acid through the action of a 2-hydroxyglutarate dehydrogenase (EC 1.1.99.2). In humans, there are two such enzymes (D2HGDH and L2HGDH). Both the D and the L stereoisomers of hydroxyglutaric acid are found in body fluids. D-2-Hydroxyglutaric acid is a biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (OMIM: 600721) and the genetic disorder glutaric aciduria II. D-2-Hydroxyglutaric aciduria (caused by loss of D2HGDH or gain of function of IDH) is rare, with symptoms including cancer, macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. An elevated urine level of D-2-hydroxyglutaric acid has been reported in patients with spondyloenchondrodysplasia (OMIM: 271550). D-2-Hydroxyglutaric acid can be converted to alpha-ketoglutaric acid through the action of 2-hydroxyglutarate dehydrogenase (D2HGDH). Additionally, the enzyme D-3-phosphoglycerate dehydrogenase (PHGDH) can catalyze the NADH-dependent reduction of alpha-ketoglutarate (AKG) to D-2-hydroxyglutarate (D-2HG). Nyhan et al. (1995) described 3 female patients, 2 of them sibs, who were found to have excess accumulation of D-2-hydroxyglutaric acid in the urine. The phenotype was quite variable, even among the sibs, but included mental retardation, macrocephaly with cerebral atrophy, hypotonia, seizures, and involuntary movements. One of the patients developed severe intermittent vomiting and was given a pyloromyotomy. The electroencephalogram demonstrated hypsarrhythmia. There was an increased concentration of protein in cerebrospinal fluid, an unusual finding in inborn errors of metabolism. D-2-Hydroxyglutaric acid can also be produced via gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). IDH is part of the TCA cycle and this compound is generated in high abundance when IDH is mutated. Since D-2-hydroxyglutaric acid is sufficiently similar in structure to 2-oxoglutarate (2OG), it is able to inhibit a range of 2OG-dependent dioxygenases, including histone lysine demethylases (KDMs) and members of the ten-eleven translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. This inhibitory effect leads to alterations in the hypoxia-inducible factor (HIF)-mediated hypoxic response and alterations in gene expression through global epigenetic remodeling. The net effect is that D-2-hydroxyglutaric acid causes a cascading effect that leads genetic perturbations and malignant transformation. Depending on the circumstances, D-2-hydroxyglutaric acid can act as an oncometabolite, a neurotoxin, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumour growth and survival. A neurotoxin is compound that is toxic to neurons or nerual tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As an oncometabolite, D-2-hydroxyglutaric acid is a competitive inhibitor of multiple alpha-ketoglutarate-dependent dioxygenases, including histone demethylases and the TET family of 5mC hydroxylases. As a result, high levels of 2-hydroxyglutarate lead to genome-wide histone and DNA methylation alterations, which in turn lead to mutations that ultimately cause cancer (PMID: 29038145). As a neurotoxin, D-2-hydroxyglutaric acid mediates its neurotoxicity through activation of N-methyl-D-aspartate receptors. D-2-Hydroxyglutaric acid is structurally similar to the excitatory amino acid glutamate and stimul... Tissue accumulation of high amounts of D 2 hydroxyglutaric acid is the biochemical hallmark of the inherited neurometabolic disorder D 2 hydroxyglutaric aciduria.

   

Methylpyrrolidone

1-METHYL-2-PYRROLIDINONE

C5H9NO (99.0684)


D009676 - Noxae > D013723 - Teratogens CONFIDENCE standard compound; INTERNAL_ID 2778 CONFIDENCE standard compound; INTERNAL_ID 8697 KEIO_ID M024

   

alpha-Hydroxyisobutyric acid

alpha-Hydroxy-alpha-methylpropanoic acid

C4H8O3 (104.0473)


Alpha-Hydroxyisobutyric acid is a metabolite of methyl tert-butyl ether (MTBE). MTBE may be obtained through environmental exposure. MTBE is rapidly eliminated from the body, mainly through expired air as the unchanged compound. MTBE is to some extent metabolised to t-butyl alcohol (TBA) and formaldehyde and oxidised to 2-methyl-1,2-propanediol and a-hydroxy isobuturic acid. Alpha-Hydroxyisobutyric acid has been used as an arial bactericide. [HMDB] alpha-Hydroxyisobutyric acid is a metabolite of methyl tert-butyl ether (MTBE). MTBE may be obtained through environmental exposure. MTBE is rapidly eliminated from the body, mainly through expired air as the unchanged compound. MTBE is to some extent metabolized to t-butyl alcohol (TBA) and formaldehyde and oxidized to 2-methyl-1,2-propanediol and alpha-hydroxyisobutyric acid. alpha-Hydroxyisobutyric acid has been used as an aerial bactericide. 2-Hydroxyisobutyric acid is an endogenous metabolite.

   

(-)-2-Difluoromethylornithine

Women first brand OF eflornithine hydrochloride

C6H12F2N2O2 (182.0867)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D065108 - Ornithine Decarboxylase Inhibitors C471 - Enzyme Inhibitor > C2088 - Ornithine Decarboxylase Inhibitor D000970 - Antineoplastic Agents D - Dermatologicals KEIO_ID H097

   

2-Hydroxybutyric acid

DL-alpha-Hydroxybutyric acid barium salt

C4H8O3 (104.0473)


2-Hydroxybutyric acid (CAS: 600-15-7), also known as alpha-hydroxybutyrate, is an organic acid derived from alpha-ketobutyrate. alpha-Ketobutyrate is produced by amino acid catabolism (threonine and methionine) and glutathione anabolism (cysteine formation pathway) and is metabolized into propionyl-CoA and carbon dioxide (PMID: 20526369). 2-Hydroxybutyric acid is formed as a byproduct from the formation of alpha-ketobutyrate via a reaction catalyzed by lactate dehydrogenase (LDH) or alpha-hydroxybutyrate dehydrogenase (alphaHBDH). alpha-Hydroxybutyric acid is primarily produced in mammalian hepatic tissues that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification of xenobiotics in the liver can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway (which forms methionine) into the transsulfuration pathway (which forms cystathionine). alpha-Ketobutyrate is released as a byproduct when cystathionine is cleaved into cysteine that is incorporated into glutathione. Chronic shifts in the rate of glutathione synthesis may be reflected by urinary excretion of 2-hydroxybutyrate. 2-Hydroxybutyrate is an early marker for both insulin resistance and impaired glucose regulation that appears to arise due to increased lipid oxidation and oxidative stress (PMID: 20526369). 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g. birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early-stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid-1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydroxybutyric acid (PMID: 168632). 2-Hydroxybutyric acid is an organic acid that is involved in propanoate metabolism. It is produced in mammalian tissues (principaly hepatic) that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification demands can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway forming methionine into the transsulfuration pathway forming cystathionine. 2-Hydroxybutyrate is released as a by-product when cystathionine is cleaved to cysteine that is incorporated into glutathione. 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid 1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydorxybutyric acid (PMID: 168632) [HMDB] 2-Hydroxybutyric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=565-70-8 (retrieved 2024-07-16) (CAS RN: 600-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].

   

Undecylenic acid

Zinc undecylenate (undecylenic acid)

C11H20O2 (184.1463)


Undecylenic acid, also known as 10-undecylenate or omega-undecenoic acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Undecylenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecylenic acid is found in black elderberry. Undecylenic acid is a flavouring ingredient and is a sweet and woody-tasting compound. Undecylenic acid was identified as one of forty plasma metabolites that could be used to predict gut microbiome Shannon diversity (PMID:31477923). Shannon diversity is a metric that summarizes both species abundance and evenness, and it has been suggested as a marker for microbiome health. Undecylenic acid is used in the production of the bioplastic Nylon-11, in the treatment of fungal infections in the skin, and as a precursor in the manufacture of a wide assortment of pharmaceuticals, cosmetics, perfumes, and personal hygiene products. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use Flavouring ingredient. Undecylenic acid is found in black elderberry. C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

L-Homocysteic acid

(2S)-2-Amino-4-sulphobutanoic acid

C4H9NO5S (183.0201)


L-homocysteic acid is a homocysteic acid with L-configuration. It has a role as a NMDA receptor agonist. It is an enantiomer of a D-homocysteic acid. L-Homocysteic acid is a sulfur-containing glutamic acid analog and a potent NMDA receptor agonist. It is related to homocysteine, a by-product of methionine metabolism. It belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Short-term incubation of lymphocytes with homocysteine or its oxidation product homocysteinic acid increased the formation of reactive oxygen species and cell necrosis [HMDB]

   

Bufogein

5-[(1R,2S,4R,6R,7R,10S,11S,14S,16R)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0(2),?.0(2),?.0(1)(1),(1)?]octadecan-6-yl]-2H-pyran-2-one

C24H32O4 (384.23)


Bufogenin is a steroid lactone of Chan su (toad venom), a Chinese medicine obtained from the skin venom gland of toads. A specific Na/K-ATPase protein inhibitor, it is used as a cardiotonic and central nervous system (CNS) respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a steroid lactone and an epoxy steroid. It is functionally related to a bufanolide. Resibufogenin is a natural product found in Sclerophrys mauritanica, Bufo gargarizans, and other organisms with data available. Bufogenin is a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans; it is also one of the glycosides in the traditional Chinese medicine ChanSu, with potential cardiotonic activity. Although the mechanism of action of bufogenin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and has been shown to reduce blood pressure in a rat model of preeclampsia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents C471 - Enzyme Inhibitor Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.

   

3-Nitrophenol

1-Hydroxy-3-nitrobenzene

C6H5NO3 (139.0269)


   

Amanitin

Alpha-Amanitine

C39H54N10O14S (918.3542)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins

   

Goyazensolide

[(1R,3S,7R,8R,9Z)-10-(Hydroxymethyl)-1-methyl-6-methylidene-5,13-dioxo-4,14-dioxatricyclo[9.2.1.03,7]tetradeca-9,11-dien-8-yl] 2-methylprop-2-enoate

C19H20O7 (360.1209)


   

Heliangin

(9Z)-8-Hydroxy-4,9-dimethyl-14-methylidene-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradec-9-en-2-yl (2E)-2-methylbut-2-enoic acid

C20H26O6 (362.1729)


Heliangin is found in jerusalem artichoke. Heliangin is isolated from Helianthus tuberosus (Jerusalem artichoke).

   

Ginkgoic acid

2-hydroxy-6-[(8E)-pentadec-8-en-1-yl]benzoic acid

C22H34O3 (346.2508)


Constituent of Ginkgo biloba (ginkgo) and minor constituent of cashew nut shell. Ginkgoic acid is found in many foods, some of which are ginkgo nuts, nuts, cashew nut, and fats and oils. Ginkgoic acid is found in cashew nut. Ginkgoic acid is a constituent of Ginkgo biloba (ginkgo) and minor constituent of cashew nut shell. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay. Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay.

   

C-1027

C-1027 Chromophore; C-1027

C43H42ClN3O13 (843.2406)


An enediyne antibiotic that has formula C43H42ClN3O13. It is a natural product found in Streptomyces globisporus and exhibits antimicrobial and antineoplastic properties. A natural product found in Streptomyces globisporus and Streptomyces globisporus. D000970 - Antineoplastic Agents

   

Thiostrepton

N-[3-[(3-amino-3-oxoprop-1-en-2-yl)amino]-3-oxoprop-1-en-2-yl]-2-[(1R,8S,11Z,15S,18S,25S,26R,35R,37S,40S,46S,53R,59S)-37-butan-2-yl-18-[(2R,3R)-2,3-dihydroxybutan-2-yl]-11-ethylidene-59-hydroxy-8-[(1R)-1-hydroxyethyl]-31-[(1S)-1-hydroxyethyl]-26,40,46-trimethyl-43-methylidene-6,9,16,23,28,38,41,44,47-nonaoxo-27-oxa-3,13,20,56-tetrathia-7,10,17,24,36,39,42,45,48,52,58,61,62,63,64-pentadecazanonacyclo[23.23.9.329,35.12,5.112,15.119,22.154,57.01,53.032,60]tetrahexaconta-2(64),4,12(63),19(62),21,29(61),30,32(60),33,51,54,57-dodecaen-51-yl]-1,3-thiazole-4-carboxamide

C72H85N19O18S5 (1663.4923)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents A heterodetic cyclic peptide, in which the cyclisation step involves a formal lactonisation between the carboxy group of a quinaldic acid-based residue and a secondary alcohol. An antibiotic that inhibits bacterial protein synthesis. Also acts as an antitumor agent. C274 - Antineoplastic Agent > C177298 - Mitochondrial Targeting Antineoplastic Agent C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D06111 Thiostrepton is a thiazole antibiotic which selectively inhibits FOXM1. FOXM1 binds to YAP/TEAD complex. YAP/TEAD/FOXM1 complex binding at regulatory regions of genes governing cell cycle may impact cell proliferation[1]. Thiostrepton is a thiazole antibiotic which selectively inhibits FOXM1. FOXM1 binds to YAP/TEAD complex. YAP/TEAD/FOXM1 complex binding at regulatory regions of genes governing cell cycle may impact cell proliferation[1].

   

Mercury chloride

Mercury(II) chloride

HgCl2 (271.9083)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AK - Mercurial products D000890 - Anti-Infective Agents D004202 - Disinfectants Same as: D01905

   

FA 11:1

((1S,2R)-2-Hexylcycloprop-1-yl)acetic acid

C11H20O2 (184.1463)


An undecenoic acid having its double bond in the 10-position. It is derived from castor oil and is used for the treatment of skin problems. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

2-Hydroxyglutarate

alpha-Hydroxyglutarate, disodium salt

C5H8O5 (148.0372)


2-Hydroxyglutarate exists in 2 isomers: L-2-hydroxyglutarate acid and D-2-hydroxyglutarate. Both the D and the L stereoisomers of hydroxyglutaric acid (EC 1.1.99.2) are found in body fluids. In humans it is part of butanoate metabolic pathway and can be produced by phosphoglycerate dehydrogenase (PHGDH). More specifically, the enzyme PHGDH catalyzes the NADH-dependent reduction of ?-ketoglutarate (AKG) to D-2-hydroxyglutarate (D-2HG). 2-hydroxyglutarate is also the product of gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). Additionally, 2-hydroxyglutarate can be converted to ?-ketoglutaric acid through the action of 2-hydroxyglutarate dehydrogenase (HGDH). Humans have to variants of this enzyme: D-2-hydroxyglutarate dehydrogenase (D2HGDH) and L-2-hydroxyglutarate dehydrogenase (L2HGDH). A deficiency in either of these two enzymes can lead to a disease known as 2-hydroxyglutaric aciduria. L-2-hydroxyglutaric aciduria (caused by loss of L2HGDH) is chronic, with early symptoms such as hypotonia, tremors, and epilepsy declining into spongiform leukoencephalopathy, muscular choreodystonia, mental retardation, and psychomotor regression. D-2-hydroxyglutaric aciduria (caused by loss of D2HGDH or gain of function of IDH) is rare, with symptoms including cancer, macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. 2-hydroxyglutarate was the first oncometabolite (or cancer-causing metabolite) to be formally named or identified. In cancer it is either produced by overexpression of phosphoglycerate dehydrogenase (PHGDH) or is produced in excess by gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). IDH is part of TCA cycle and is generated in high abundance when IDH is mutated. 2-hydroxyglutarate is sufficiently similar in structure to 2-oxogluratate (2OG) that it is able to inhibit a range of 2OG-dependent dioxygenases, including histone lysine demethylases (KDMs) and members of the ten-eleven translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. This inhibitory effect leads to alterations in the hypoxia induced factor (HIF)-mediated hypoxic response and alterations in gene expression through global epigenetic remodeling. The net effect is that 2-hydroxyglutarate causes a cascading effect that leads genetic perturbations and malignant transformation. Furthermore, 2-hydroxyglutarate is found to be associated with glutaric aciduria II, which is also an inborn error of metabolism. 2-Hydroxyglutarate has also been found to be a metabolite in Aspergillus (PMID: 6057807).

   

actinomycin D

2-amino-4,6-dimethyl-3-oxo-N1,N9-bis[2,5,9-trimethyl-1,4,7,11,14-pentaoxo-6,13-bis(propan-2-yl)-hexadecahydro-1H-pyrrolo[2,1-i]1-oxa-4,7,10,13-tetraazacyclohexadecan-10-yl]-3H-phenoxazine-1,9-dicarboxamide

C62H86N12O16 (1254.6284)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents

   

alpha-amanitin

2-[34-(Butan-2-yl)-13-(3,4-dihydroxybutan-2-yl)-2,8,11,14,22,30,33,36,39-nonahydroxy-5,27-dioxo-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0,.0,.0,]nonatriaconta-2,11,14,18(26),19(24),20,22,29,32,35,38-undecaen-4-yl]ethanimidate

C39H54N10O14S (918.3542)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins

   

2-Hydroxybutyric acid

DL-alpha-Hydroxybutyric acid

C4H8O3 (104.0473)


(S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].

   

Ana B

Benzoic acid, 2-hydroxy-6-(8-pentadecenyl)-, (Z)-

C22H34O3 (346.2508)


Ginkgoic acid is a hydroxybenzoic acid. It is functionally related to a salicylic acid. Ginkgolic acid is a natural product found in Amphipterygium adstringens, Anacardium occidentale, and other organisms with data available. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay. Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay.

   

Deguelin

(1S,14S)-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.03,12.04,9.015,20]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

C23H22O6 (394.1416)


Deguelin is a rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite, an angiogenesis inhibitor, an antiviral agent, a mitochondrial NADH:ubiquinone reductase inhibitor, an anti-inflammatory agent and an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor. It is a member of rotenones, an aromatic ether, an organic heteropentacyclic compound and a diether. Deguelin is a natural product found in Tephrosia vogelii, Derris montana, and other organisms with data available. A rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.

   

2-hydroxyglutaric acid

alpha-Hydroxyglutaric acid

C5H8O5 (148.0372)


A 2-hydroxydicarboxylic acid that is glutaric acid in which one hydrogen alpha- to a carboxylic acid group is substituted by a hydroxy group.

   

undecenoic acid

10c-Undecenoic acid

C11H20O2 (184.1463)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

alpha-Hydroxyisobutyric acid

alpha-Hydroxyisobutyric acid

C4H8O3 (104.0473)


A 2-hydroxy monocarboxylic acid that is isobutyric acid bearing a hydroxy substituent at position 2. It is a metabolite of methyl tertiary-butyl ether. Acquisition and generation of the data is financially supported in part by CREST/JST. 2-Hydroxyisobutyric acid is an endogenous metabolite.

   

Daunorubicin

Daunorubicin

C27H29NO10 (527.1791)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DB - Anthracyclines and related substances C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent A natural product found in Actinomadura roseola. D004791 - Enzyme Inhibitors

   

Resibufogenin

Resibufogenin

C24H32O4 (384.23)


Annotation level-1 Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.

   

Megestrol acetate

Megestrol acetate

C24H32O4 (384.23)


D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D000970 - Antineoplastic Agents

   

isocitric acid

3-carboxy-2,3-dideoxy-1-hydroxypropan-1,2,3-tricarboxylic acid

C6H8O7 (192.027)


A tricarboxylic acid that is propan-1-ol with a hydrogen at each of the 3 carbon positions replaced by a carboxy group. Isocitric acid is an endogenous metabolite present in Saliva and Cellular_Cytoplasm that can be used for the research of Alzheimer's Disease, Lewy Body Dementia and Anoxia[1][2][3]. Isocitric acid is an endogenous metabolite present in Saliva and Cellular_Cytoplasm that can be used for the research of Alzheimer's Disease, Lewy Body Dementia and Anoxia[1][2][3].

   

L-Homocysteic acid

L-Homocysteic acid

C4H9NO5S (183.0201)


   

Hordenine

N,N-Dimethyl-2-(4-hydroxyphenyl)ethylamine

C10H15NO (165.1154)


Annotation level-1 Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1]. Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1].

   

Dactinomycin

actinomycin D

C62H86N12O16 (1254.6284)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DA - Actinomycines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents

   

Anhalin

Hordenine

C10H15NO (165.1154)


Origin: Plant; Formula(Parent): C10H15NO; Bottle Name:Hordenine sulfate; PRIME Parent Name:Hordenine; PRIME in-house No.:V0301; SubCategory_DNP: Alkaloids derived wholly or in part from phenylalanine or tyrosine, Cactus alkaloids Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1]. Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1].

   

FA 5:1;O3

2-Dehydro-3-deoxy-D-arabinonate;2-Dehydro-3-deoxy-D-pentonate;2-Dehydro-3-deoxy-D-xylonate

C5H8O5 (148.0372)


   

Cosmegen

actinomycin D

C62H86N12O16 (1254.6284)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents

   

Mercury chloride

Mercuric Chloride

Cl2Hg (271.9083)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AK - Mercurial products D000890 - Anti-Infective Agents D004202 - Disinfectants

   

Azacitidine

Azacitidine

C8H12N4O5 (244.0808)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2083 - DNA Methyltransferase Inhibitor C274 - Antineoplastic Agent > C132686 - Demethylating Agent D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 5-Azacytidine (Azacitidine; 5-AzaC; Ladakamycin) is a nucleoside analogue of cytidine that specifically inhibits DNA methylation. 5-Azacytidine is incorporated into DNA to covalently trap DNA methyltransferases and contributes to reverse epigenetic changes[1][2]. 5-Azacytidine induces cell autophagy[4].

   

Atractylodin

Furan, 2-(1,7-nonadiene-3,5-diynyl)-, (E,E)-

C13H10O (182.0732)


Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Cruex

InChI=1\C11H20O2\c1-2-3-4-5-6-7-8-9-10-11(12)13\h2H,1,3-10H2,(H,12,13

C11H20O2 (184.1463)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

Ginkgoic acid

2-hydroxy-6-[(Z)-pentadec-8-enyl]benzoic acid

C22H34O3 (346.2508)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay. Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay.

   

EFLORNITHINE

2-(Difluoromethyl)-DL-ornithine

C6H12F2N2O2 (182.0867)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D065108 - Ornithine Decarboxylase Inhibitors C471 - Enzyme Inhibitor > C2088 - Ornithine Decarboxylase Inhibitor D000970 - Antineoplastic Agents D - Dermatologicals

   

(S)-2-Hydroxybutyric acid

(S)-2-Hydroxybutyric acid

C4H8O3 (104.0473)


An optically active form of 2-hydroxybutyric acid having (S)-configuration. (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].

   

(2R)-2-hydroxypentanedioic acid

(2R)-2-hydroxypentanedioic acid

C5H8O5 (148.0372)


   

alpha-Amatoxin

alpha-Amatoxin

C39H54N10O14S (918.3542)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins

   

2-Deoxyadenosine-5-diphosphate

2-Deoxyadenosine-5-diphosphate

C10H15N5O9P2 (411.0345)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-Nitrophenol

m-Hydroxynitrobenzene

C6H5NO3 (139.0269)