P-Coumaraldehyde (BioDeep_00000004006)

 

Secondary id: BioDeep_00000409287

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(2E)-3-(4-Hydroxyphenyl)acrylaldehyde

化学式: C9H8O2 (148.0524)
中文名称: 4-羟基肉桂醛, 对香豆醛
谱图信息: 最多检出来源 Homo sapiens(plant) 11.19%

Reviewed

Last reviewed on 2024-08-09.

Cite this Page

P-Coumaraldehyde. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/p-coumaraldehyde (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000004006). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(=C\c1ccc(cc1)O)/C=O
InChI: InChI=1S/C9H8O2/c10-7-1-2-8-3-5-9(11)6-4-8/h1-7,11H

描述信息

p-Coumaraldehyde (CAS: 2538-87-6), also known as 4-hydroxycinnamaldehyde or 3-(4-hydroxyphenyl)-2-propenal, belongs to the class of organic compounds known as cinnamaldehydes. These are organic aromatic compounds containing a cinnamlaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. p-Coumaraldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, p-coumaraldehyde has been detected, but not quantified in, several different foods, such as red rice, lindens, peaches, white lupines, and evergreen huckleberries. This could make p-coumaraldehyde a potential biomarker for the consumption of these foods. p-Coumaraldehyde is also a constituent of Alpinia galanga (greater galangal) rhizomes and Cucurbita maxima.
Constituent of Alpinia galanga (greater galangal) rhizomes Cucurbita maxima. (E)-3-(4-Hydroxyphenyl)-2-propenal is found in many foods, some of which are climbing bean, japanese walnut, chicory leaves, and walnut.

同义名列表

21 个代谢物同义名

(2E)-3-(4-Hydroxyphenyl)acrylaldehyde; (E)-3-(4-Hydroxyphenyl)acrylaldehyde; (2E)-3-(4-hydroxyphenyl)prop-2-enal; (2E)-3-(4-Hydroxyphenyl)-2-propenal; (E)-3-(4-hydroxyphenyl)prop-2-enal; (E)-3-(4-Hydroxyphenyl)-2-propenal; 3-(4-Hydroxyphenyl)-2-propenal; 3-(4-hydroxyphenyl)prop-2-enal; trans-p-Hydroxycinnamaldehyde; trans-4-Hydroxycinnamaldehyde; (E)-p-Hydroxycinnamaldehyde; 4-Hydroxycinnamyl aldehyde; p-Hydroxycinnamaldehyde; 4-Hydroxycinnamaldehyde; trans-p-Coumaraldehyde; Hydroxycinnamaldehyde; (e)-4-Coumaraldehyde; p-Coumaroyl aldehyde; p-Coumaraldehyde; 4-Coumaraldehyde; Coumaraldehyde



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(1)

代谢反应

115 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(112)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

69 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AIMP2, BCL2, BCL2L1, CASP3, CASP8, ISG20, MAPK8, MAPK9, PTGS2, RHOA, STAT3, TYR
Peripheral membrane protein 1 PTGS2
Endoplasmic reticulum membrane 4 BCL2, CD4, PTGS2, RHOA
Mitochondrion membrane 1 BCL2L1
Nucleus 11 AIMP2, BCL2, CASP3, CASP8, ISG20, MAPK8, MAPK9, MPO, RHOA, SOX9, STAT3
cytosol 10 AIMP2, AKR1A1, BCL2, BCL2L1, CASP3, CASP8, MAPK8, MAPK9, RHOA, STAT3
centrosome 1 BCL2L1
nucleoplasm 8 CASP3, CASP8, ISG20, MAPK8, MAPK9, MPO, SOX9, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 4 CD4, CD8A, RHOA, TNF
Lipid-anchor 1 RHOA
Cytoplasmic side 2 BCL2L1, RHOA
Cleavage furrow 1 RHOA
lamellipodium 2 CASP8, RHOA
ruffle membrane 1 RHOA
Synapse 3 ACAN, AKR1A1, MAPK8
cell cortex 1 RHOA
cell junction 1 RHOA
cell surface 2 TNF, TNFRSF10B
glutamatergic synapse 3 ACAN, CASP3, RHOA
mitochondrial inner membrane 1 BCL2L1
neuronal cell body 2 CASP3, TNF
postsynapse 1 RHOA
Cytoplasm, cytosol 3 AIMP2, AKR1A1, BCL2L1
Lysosome 2 MPO, TYR
endosome 1 RHOA
plasma membrane 7 CD4, CD8A, MAPK9, RHOA, STAT3, TNF, TNFRSF10B
synaptic vesicle membrane 1 BCL2L1
Membrane 3 AIMP2, BCL2, TNFRSF10B
apical plasma membrane 1 AKR1A1
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 3 AKR1A1, MPO, RHOA
endoplasmic reticulum 3 BCL2, BCL2L1, PTGS2
extracellular space 4 ACAN, AKR1A1, MPO, TNF
lysosomal lumen 1 ACAN
perinuclear region of cytoplasm 1 TYR
Schaffer collateral - CA1 synapse 1 MAPK9
mitochondrion 4 BCL2, BCL2L1, CASP8, MAPK9
protein-containing complex 4 BCL2, CASP8, PTGS2, SOX9
intracellular membrane-bounded organelle 2 MPO, TYR
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 3 CD4, CD8A, TYR
extracellular region 4 ACAN, CD8A, MPO, TNF
cytoplasmic side of plasma membrane 1 RHOA
Mitochondrion outer membrane 2 BCL2, BCL2L1
Single-pass membrane protein 2 BCL2, BCL2L1
mitochondrial outer membrane 3 BCL2, BCL2L1, CASP8
[Isoform 2]: Secreted 1 CD8A
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
transcription regulator complex 2 SOX9, STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 2 BCL2, BCL2L1
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 2 BCL2, BCL2L1
external side of plasma membrane 3 CD4, CD8A, TNF
Secreted, extracellular space, extracellular matrix 1 ACAN
dendritic spine 1 RHOA
nucleolus 1 ISG20
Melanosome membrane 1 TYR
midbody 1 RHOA
Cytoplasm, P-body 1 ISG20
P-body 1 ISG20
Early endosome 1 CD4
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 RHOA
Apical cell membrane 1 AKR1A1
Cell projection, lamellipodium 2 CASP8, RHOA
Membrane raft 2 CD4, TNF
pore complex 1 BCL2
focal adhesion 1 RHOA
GABA-ergic synapse 1 ACAN
basement membrane 1 ACAN
PML body 1 ISG20
collagen-containing extracellular matrix 1 ACAN
secretory granule 1 MPO
nuclear speck 1 MAPK9
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 CD8A
neuron projection 1 PTGS2
chromatin 2 SOX9, STAT3
phagocytic cup 1 TNF
cell periphery 1 RHOA
cytoskeleton 2 CASP8, RHOA
Nucleus, nucleolus 1 ISG20
Cytoplasm, cell cortex 1 RHOA
Cell projection, dendrite 1 RHOA
Melanosome 1 TYR
cell body 1 CASP8
myelin sheath 1 BCL2
azurophil granule 1 MPO
plasma membrane raft 1 CD8A
secretory granule membrane 1 RHOA
Golgi lumen 1 ACAN
endoplasmic reticulum lumen 2 CD4, PTGS2
azurophil granule lumen 1 MPO
perineuronal net 1 ACAN
clathrin-coated endocytic vesicle membrane 1 CD4
phagocytic vesicle lumen 1 MPO
Cajal body 1 ISG20
ficolin-1-rich granule membrane 1 RHOA
basal dendrite 1 MAPK8
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
apical junction complex 1 RHOA
[Isoform 1]: Cell membrane 1 CD8A
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
Nucleus, Cajal body 1 ISG20
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 2 CD4, CD8A
BAD-BCL-2 complex 1 BCL2
perisynaptic extracellular matrix 1 ACAN
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Dyoni M Oliveira, Dechang Cao. Spotlight on overlooked lignin monomers: Hydroxycinnamaldehydes. Plant physiology. 2024 Feb; 194(3):1250-1252. doi: 10.1093/plphys/kiad589. [PMID: 37933704]
  • Koichi Yoshioka, Hoon Kim, Fachuang Lu, Nette De Ridder, Ruben Vanholme, Shinya Kajita, Wout Boerjan, John Ralph. Hydroxycinnamaldehyde-derived benzofuran components in lignins. Plant physiology. 2023 Sep; ?(?):. doi: 10.1093/plphys/kiad514. [PMID: 37773018]
  • Thae Thae San, Yue-Hu Wang, Dong-Bao Hu, Jun Yang, Dong-Dong Zhang, Meng-Yuan Xia, Xue-Fei Yang, Yong-Ping Yang. A new sesquineolignan and four new neolignans isolated from the leaves of Piper betle, a traditional medicinal plant in Myanmar. Bioorganic & medicinal chemistry letters. 2021 01; 31(?):127682. doi: 10.1016/j.bmcl.2020.127682. [PMID: 33207281]
  • Andri Fadillah Martin, Yuki Tobimatsu, Ryosuke Kusumi, Naoyuki Matsumoto, Takuji Miyamoto, Pui Ying Lam, Masaomi Yamamura, Taichi Koshiba, Masahiro Sakamoto, Toshiaki Umezawa. Altered lignocellulose chemical structure and molecular assembly in CINNAMYL ALCOHOL DEHYDROGENASE-deficient rice. Scientific reports. 2019 11; 9(1):17153. doi: 10.1038/s41598-019-53156-8. [PMID: 31748605]
  • Hye Lin Park, Tae Lim Kim, Seong Hee Bhoo, Tae Hoon Lee, Sang-Won Lee, Man-Ho Cho. Biochemical Characterization of the Rice Cinnamyl Alcohol Dehydrogenase Gene Family. Molecules (Basel, Switzerland). 2018 Oct; 23(10):. doi: 10.3390/molecules23102659. [PMID: 30332817]
  • Lianmei Zhao, Ming Ma, Hao Wu, Cong Zhang, Suli Dai, Pei Dong, Bingjie Huo, Baoen Shan. p-Hydroxylcinnamaldehyde slows the progression of 4NQO-induced oesophageal tumourigenesis via the RhoA-MAPK signaling pathway. Molecular carcinogenesis. 2018 10; 57(10):1319-1331. doi: 10.1002/mc.22847. [PMID: 29873419]
  • Ming Ma, Lian-Mei Zhao, Xing-Xiao Yang, Ya-Nan Shan, Wen-Xuan Cui, Liang Chen, Bao-En Shan. p-Hydroxylcinnamaldehyde induces the differentiation of oesophageal carcinoma cells via the cAMP-RhoA-MAPK signalling pathway. Scientific reports. 2016 08; 6(?):31315. doi: 10.1038/srep31315. [PMID: 27501997]
  • Shuxin Liu, Qi Qi, Nan Chao, Jiayin Hou, Guodong Rao, Jin Xie, Hai Lu, Xiangning Jiang, Ying Gai. Overexpression of artificially fused bifunctional enzyme 4CL1-CCR: a method for production of secreted 4-hydroxycinnamaldehydes in Escherichia coli. Microbial cell factories. 2015 Aug; 14(?):118. doi: 10.1186/s12934-015-0309-2. [PMID: 26264710]
  • Nickolas A Anderson, Yuki Tobimatsu, Peter N Ciesielski, Eduardo Ximenes, John Ralph, Bryon S Donohoe, Michael Ladisch, Clint Chapple. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure. The Plant cell. 2015 Aug; 27(8):2195-209. doi: 10.1105/tpc.15.00373. [PMID: 26265762]
  • Min Ai Lee, Hyen Joo Park, Hwa-Jin Chung, Won Kyung Kim, Sang Kook Lee. Antitumor activity of 2-hydroxycinnamaldehyde for human colon cancer cells through suppression of β-catenin signaling. Journal of natural products. 2013 Jul; 76(7):1278-84. doi: 10.1021/np400216m. [PMID: 23855266]
  • Ahmad Nazif Aziz, Halijah Ibrahim, Devi Rosmy Syamsir, Mastura Mohtar, Jaya Vejayan, Khalijah Awang. Antimicrobial compounds from Alpinia conchigera. Journal of ethnopharmacology. 2013 Feb; 145(3):798-802. doi: 10.1016/j.jep.2012.12.024. [PMID: 23266278]
  • Somendu K Roy, Sonika Pahwa, Hemraj Nandanwar, Sanjay M Jachak. Phenylpropanoids of Alpinia galanga as efflux pump inhibitors in Mycobacterium smegmatis mc² 155. Fitoterapia. 2012 Oct; 83(7):1248-55. doi: 10.1016/j.fitote.2012.06.008. [PMID: 22735598]
  • Bishwo N Adhikari, Elizabeth A Savory, Brieanne Vaillancourt, Kevin L Childs, John P Hamilton, Brad Day, C Robin Buell. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PloS one. 2012; 7(4):e34954. doi: 10.1371/journal.pone.0034954. [PMID: 22545095]
  • Marina Varbanova, Katie Porter, Fachuang Lu, John Ralph, Ray Hammerschmidt, A Daniel Jones, Brad Day. Molecular and biochemical basis for stress-induced accumulation of free and bound p-coumaraldehyde in cucumber. Plant physiology. 2011 Nov; 157(3):1056-66. doi: 10.1104/pp.111.184358. [PMID: 21940999]
  • Takao Koeduka, Bunta Watanabe, Shiro Suzuki, Jun Hiratake, Jun'ichi Mano, Kazufumi Yazaki. Characterization of raspberry ketone/zingerone synthase, catalyzing the alpha, beta-hydrogenation of phenylbutenones in raspberry fruits. Biochemical and biophysical research communications. 2011 Aug; 412(1):104-8. doi: 10.1016/j.bbrc.2011.07.052. [PMID: 21802408]
  • Prabin Bajgain, Bryce A Richardson, Jared C Price, Richard C Cronn, Joshua A Udall. Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata). BMC genomics. 2011 Jul; 12(?):370. doi: 10.1186/1471-2164-12-370. [PMID: 21767398]
  • Heehong Hwang, Hyejin Jeon, Jiyeon Ock, Su Hyung Hong, Young-Min Han, Byoung-Mog Kwon, Won-Ha Lee, Myung-Shik Lee, Kyoungho Suk. 2'-Hydroxycinnamaldehyde targets low-density lipoprotein receptor-related protein-1 to inhibit lipopolysaccharide-induced microglial activation. Journal of neuroimmunology. 2011 Jan; 230(1-2):52-64. doi: 10.1016/j.jneuroim.2010.08.021. [PMID: 20933287]
  • Amandeep Kaur, Ranvir Singh, Chinmoy Sankar Dey, Shyam Sundar Sharma, Kamlesh K Bhutani, Inder Pal Singh. Antileishmanial phenylpropanoids from Alpinia galanga (Linn.) Willd. Indian journal of experimental biology. 2010 Mar; 48(3):314-7. doi: . [PMID: 21046987]
  • Haiming Shi, Huandi Wang, Mengyue Wang, Xiaobo Li. Antioxidant activity and chemical composition of Torreya grandis cv. Merrillii seed. Natural product communications. 2009 Nov; 4(11):1565-70. doi: . [PMID: 19967992]
  • Thanyaluck Phitak, Kanyamas Choocheep, Peraphan Pothacharoen, Wilart Pompimon, Bhusana Premanode, Prachya Kongtawelert. The effects of p-hydroxycinnamaldehyde from Alpinia galanga extracts on human chondrocytes. Phytochemistry. 2009 Jan; 70(2):237-43. doi: 10.1016/j.phytochem.2008.11.010. [PMID: 19118849]
  • Jiazheng Yuan, Mengxia Zhu, David A Lightfoot, M Javed Iqbal, Jack Y Yang, Khalid Meksem. In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme. BMC genomics. 2008 Sep; 9 Suppl 2(?):S6. doi: 10.1186/1471-2164-9-s2-s6. [PMID: 18831797]
  • Michaël Jourdes, Claudia L Cardenas, Dhrubojyoti D Laskar, Syed G A Moinuddin, Laurence B Davin, Norman G Lewis. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications. Phytochemistry. 2007 Jul; 68(14):1932-56. doi: 10.1016/j.phytochem.2007.03.044. [PMID: 17559892]
  • Buhyun Youn, Sung-Jin Kim, Syed G A Moinuddin, Choonseok Lee, Diana L Bedgar, Athena R Harper, Laurence B Davin, Norman G Lewis, Chulhee Kang. Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970. The Journal of biological chemistry. 2006 Dec; 281(52):40076-88. doi: 10.1074/jbc.m605900200. [PMID: 17028190]
  • Yong Jiang, Peng-Fei Tu. Tenuifoliose Q, a new oligosaccharide ester from the root of Polygala tenuifolia Willd. Journal of Asian natural products research. 2003 Dec; 5(4):279-83. doi: 10.1080/1028602031000111987. [PMID: 14604237]
  • Hisashi Matsuda, Toshio Morikawa, Hiromi Managi, Masayuki Yoshikawa. Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-alpha and IL-4 in RBL-2H3 cells. Bioorganic & medicinal chemistry letters. 2003 Oct; 13(19):3197-202. doi: 10.1016/s0960-894x(03)00710-8. [PMID: 12951092]
  • Dianjing Guo, Fang Chen, Richard A Dixon. Monolignol biosynthesis in microsomal preparations from lignifying stems of alfalfa (Medicago sativa L.). Phytochemistry. 2002 Nov; 61(6):657-67. doi: 10.1016/s0031-9422(02)00375-8. [PMID: 12423886]
  • F Pomar, F Merino, A Ros Barceló. O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma. 2002 Oct; 220(1-2):17-28. doi: 10.1007/s00709-002-0030-y. [PMID: 12417933]
  • T Sonoda, T Ona, H Yokoi, Y Ishida, H Ohtani, S Tsuge. Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples. Analytical chemistry. 2001 Nov; 73(22):5429-35. doi: 10.1021/ac010557c. [PMID: 11816569]
  • G Schoch, S Goepfert, M Morant, A Hehn, D Meyer, P Ullmann, D Werck-Reichhart. CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. The Journal of biological chemistry. 2001 Sep; 276(39):36566-74. doi: 10.1074/jbc.m104047200. [PMID: 11429408]
  • R R Stange, J Ralph, J Peng, J J Sims, S L Midland, R E McDonald. Acidolysis and hot water extraction provide new insights into the composition of the induced "lignin-like" material from squash fruit. Phytochemistry. 2001 Jul; 57(6):1005-11. doi: 10.1016/s0031-9422(01)00096-6. [PMID: 11423147]
  • W R Russell, G J Provan, M J Burkitt, A Chesson. Extent of incorporation of hydroxycinnamaldehydes into lignin in cinnamyl alcohol dehydrogenase-downregulated plants. Journal of biotechnology. 2000 Apr; 79(1):73-85. doi: 10.1016/s0168-1656(00)00212-1. [PMID: 10817343]