P-Coumaraldehyde (BioDeep_00000004006)
Secondary id: BioDeep_00000409287
human metabolite PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C9H8O2 (148.0524)
中文名称: 4-羟基肉桂醛, 对香豆醛
谱图信息:
最多检出来源 Homo sapiens(plant) 11.19%
Last reviewed on 2024-08-09.
Cite this Page
P-Coumaraldehyde. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/p-coumaraldehyde (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000004006). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=C\c1ccc(cc1)O)/C=O
InChI: InChI=1S/C9H8O2/c10-7-1-2-8-3-5-9(11)6-4-8/h1-7,11H
描述信息
p-Coumaraldehyde (CAS: 2538-87-6), also known as 4-hydroxycinnamaldehyde or 3-(4-hydroxyphenyl)-2-propenal, belongs to the class of organic compounds known as cinnamaldehydes. These are organic aromatic compounds containing a cinnamlaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. p-Coumaraldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, p-coumaraldehyde has been detected, but not quantified in, several different foods, such as red rice, lindens, peaches, white lupines, and evergreen huckleberries. This could make p-coumaraldehyde a potential biomarker for the consumption of these foods. p-Coumaraldehyde is also a constituent of Alpinia galanga (greater galangal) rhizomes and Cucurbita maxima.
Constituent of Alpinia galanga (greater galangal) rhizomes Cucurbita maxima. (E)-3-(4-Hydroxyphenyl)-2-propenal is found in many foods, some of which are climbing bean, japanese walnut, chicory leaves, and walnut.
同义名列表
21 个代谢物同义名
(2E)-3-(4-Hydroxyphenyl)acrylaldehyde; (E)-3-(4-Hydroxyphenyl)acrylaldehyde; (2E)-3-(4-hydroxyphenyl)prop-2-enal; (2E)-3-(4-Hydroxyphenyl)-2-propenal; (E)-3-(4-hydroxyphenyl)prop-2-enal; (E)-3-(4-Hydroxyphenyl)-2-propenal; 3-(4-Hydroxyphenyl)-2-propenal; 3-(4-hydroxyphenyl)prop-2-enal; trans-p-Hydroxycinnamaldehyde; trans-4-Hydroxycinnamaldehyde; (E)-p-Hydroxycinnamaldehyde; 4-Hydroxycinnamyl aldehyde; p-Hydroxycinnamaldehyde; 4-Hydroxycinnamaldehyde; trans-p-Coumaraldehyde; Hydroxycinnamaldehyde; (e)-4-Coumaraldehyde; p-Coumaroyl aldehyde; p-Coumaraldehyde; 4-Coumaraldehyde; Coumaraldehyde
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:181650
- ChEBI: CHEBI:28353
- KEGG: C05608
- PubChem: 641301
- HMDB: HMDB0040986
- Metlin: METLIN44643
- ChEMBL: CHEMBL431836
- MetaCyc: COUMARALDEHYDE
- KNApSAcK: C00031014
- foodb: FDB020845
- chemspider: 556592
- CAS: 20711-53-9
- PMhub: MS000014128
- 3DMET: B00806
- NIKKAJI: J460.239K
- RefMet: (E)-3-(4-Hydroxyphenyl)-2-propenal
- LOTUS: LTS0221678
分类词条
相关代谢途径
Reactome(0)
代谢反应
115 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- phenylpropanoid biosynthesis:
5-hydroxy-coniferaldehyde + SAM ⟶ H+ + SAH + sinapaldehyde
- phenylpropanoid biosynthesis:
5-hydroxy-coniferaldehyde + SAM ⟶ H+ + SAH + sinapaldehyde
- arabidopyrone biosynthesis:
iso-arabidopaldehyde + H2O + NAD(P)+ ⟶ iso-arabidopate + H+ + NAD(P)H
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(112)
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + sinapyl alcohol ⟶ H+ + NADPH + sinapaldehyde
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
5-hydroxy-coniferaldehyde + SAM ⟶ H+ + SAH + sinapaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
NADP+ + sinapyl alcohol ⟶ H+ + NADPH + sinapaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + sinapyl alcohol ⟶ H+ + NADPH + sinapaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
NADP+ + sinapyl alcohol ⟶ H+ + NADPH + sinapaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
5-hydroxy-coniferaldehyde + SAM ⟶ H+ + SAH + sinapaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
NADP+ + sinapyl alcohol ⟶ H+ + NADPH + sinapaldehyde
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- arabidopyrone biosynthesis:
4-coumaraldehyde + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + caffealdehyde
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
69 个相关的物种来源信息
- 94326 - Alpinia: LTS0221678
- 94327 - Alpinia galanga:
- 94327 - Alpinia galanga: 10.1016/J.PHYTOCHEM.2008.11.010
- 94327 - Alpinia galanga: 10.1016/S0014-2999(03)01785-0
- 94327 - Alpinia galanga: 10.1016/S0031-9422(00)81779-3
- 94327 - Alpinia galanga: 10.1016/S0960-894X(03)00710-8
- 94327 - Alpinia galanga: 10.1248/CPB.53.625
- 94327 - Alpinia galanga: LTS0221678
- 13340 - Aralia: LTS0221678
- 137934 - Aralia bipinnata:
- 137934 - Aralia bipinnata: 10.1016/0031-9422(94)00943-N
- 137934 - Aralia bipinnata: 10.1016/0031-9422(95)00072-F
- 137934 - Aralia bipinnata: LTS0221678
- 4050 - Araliaceae: LTS0221678
- 6656 - Arthropoda: LTS0221678
- 25673 - Balanophoraceae: LTS0221678
- 6658 - Branchiopoda: LTS0221678
- 66379 - Broussonetia: LTS0221678
- 172644 - Broussonetia papyrifera: 10.1080/10286020.2010.481260
- 172644 - Broussonetia papyrifera: LTS0221678
- 4014 - Burseraceae: LTS0221678
- 43690 - Canarium: LTS0221678
- 533031 - Canarium schweinfurthii: 10.4314/BCSE.V14I2.71972
- 533031 - Canarium schweinfurthii: LTS0221678
- 13402 - Carya: LTS0221678
- 139927 - Carya cathayensis: 10.1016/J.BMCL.2012.01.062
- 139927 - Carya cathayensis: LTS0221678
- 13414 - Chamaecyparis: LTS0221678
- 187461 - Chamaecyparis formosensis: 10.1016/S0031-9422(99)00074-6
- 187461 - Chamaecyparis formosensis: LTS0221678
- 3660 - Cucurbita: LTS0221678
- 3661 - Cucurbita maxima: 10.1016/S0031-9422(99)00111-9
- 3661 - Cucurbita maxima: LTS0221678
- 3650 - Cucurbitaceae: LTS0221678
- 3367 - Cupressaceae: LTS0221678
- 6668 - Daphnia: LTS0221678
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0221678
- 77658 - Daphniidae: LTS0221678
- 2759 - Eukaryota: LTS0221678
- 3310 - Ginkgo: LTS0221678
- 3311 - Ginkgo biloba: 10.3389/FPLS.2019.00983
- 3311 - Ginkgo biloba: LTS0221678
- 3309 - Ginkgoaceae: LTS0221678
- 29811 - Ginkgoopsida: LTS0221678
- 9606 - Homo sapiens: -
- 16714 - Juglandaceae: LTS0221678
- 4447 - Liliopsida: LTS0221678
- 3398 - Magnoliopsida: LTS0221678
- 33208 - Metazoa: LTS0221678
- 3487 - Moraceae: LTS0221678
- 59871 - Pelargonium reniforme: 10.1016/J.PHYMED.2006.11.021
- 58019 - Pinopsida: LTS0221678
- 3745 - Rosaceae: LTS0221678
- 23513 - Rutaceae: LTS0221678
- 1003262 - Sarcophyte: LTS0221678
- 1618143 - Sarcophyte sanguinea: 10.1016/S0031-9422(00)97556-3
- 1618143 - Sarcophyte sanguinea: LTS0221678
- 23224 - Spiraea: LTS0221678
- 409510 - Spiraea formosana: 10.1248/CPB.52.1227
- 409510 - Spiraea formosana: LTS0221678
- 35493 - Streptophyta: LTS0221678
- 58023 - Tracheophyta: LTS0221678
- 33090 - Viridiplantae: LTS0221678
- 67937 - Zanthoxylum: LTS0221678
- 159071 - Zanthoxylum ailanthoides: 10.1021/NP800689B
- 159071 - Zanthoxylum ailanthoides: LTS0221678
- 4642 - Zingiberaceae: LTS0221678
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Dyoni M Oliveira, Dechang Cao. Spotlight on overlooked lignin monomers: Hydroxycinnamaldehydes.
Plant physiology.
2024 Feb; 194(3):1250-1252. doi:
10.1093/plphys/kiad589
. [PMID: 37933704] - Koichi Yoshioka, Hoon Kim, Fachuang Lu, Nette De Ridder, Ruben Vanholme, Shinya Kajita, Wout Boerjan, John Ralph. Hydroxycinnamaldehyde-derived benzofuran components in lignins.
Plant physiology.
2023 Sep; ?(?):. doi:
10.1093/plphys/kiad514
. [PMID: 37773018] - Thae Thae San, Yue-Hu Wang, Dong-Bao Hu, Jun Yang, Dong-Dong Zhang, Meng-Yuan Xia, Xue-Fei Yang, Yong-Ping Yang. A new sesquineolignan and four new neolignans isolated from the leaves of Piper betle, a traditional medicinal plant in Myanmar.
Bioorganic & medicinal chemistry letters.
2021 01; 31(?):127682. doi:
10.1016/j.bmcl.2020.127682
. [PMID: 33207281] - Andri Fadillah Martin, Yuki Tobimatsu, Ryosuke Kusumi, Naoyuki Matsumoto, Takuji Miyamoto, Pui Ying Lam, Masaomi Yamamura, Taichi Koshiba, Masahiro Sakamoto, Toshiaki Umezawa. Altered lignocellulose chemical structure and molecular assembly in CINNAMYL ALCOHOL DEHYDROGENASE-deficient rice.
Scientific reports.
2019 11; 9(1):17153. doi:
10.1038/s41598-019-53156-8
. [PMID: 31748605] - Hye Lin Park, Tae Lim Kim, Seong Hee Bhoo, Tae Hoon Lee, Sang-Won Lee, Man-Ho Cho. Biochemical Characterization of the Rice Cinnamyl Alcohol Dehydrogenase Gene Family.
Molecules (Basel, Switzerland).
2018 Oct; 23(10):. doi:
10.3390/molecules23102659
. [PMID: 30332817] - Lianmei Zhao, Ming Ma, Hao Wu, Cong Zhang, Suli Dai, Pei Dong, Bingjie Huo, Baoen Shan. p-Hydroxylcinnamaldehyde slows the progression of 4NQO-induced oesophageal tumourigenesis via the RhoA-MAPK signaling pathway.
Molecular carcinogenesis.
2018 10; 57(10):1319-1331. doi:
10.1002/mc.22847
. [PMID: 29873419] - Ming Ma, Lian-Mei Zhao, Xing-Xiao Yang, Ya-Nan Shan, Wen-Xuan Cui, Liang Chen, Bao-En Shan. p-Hydroxylcinnamaldehyde induces the differentiation of oesophageal carcinoma cells via the cAMP-RhoA-MAPK signalling pathway.
Scientific reports.
2016 08; 6(?):31315. doi:
10.1038/srep31315
. [PMID: 27501997] - Shuxin Liu, Qi Qi, Nan Chao, Jiayin Hou, Guodong Rao, Jin Xie, Hai Lu, Xiangning Jiang, Ying Gai. Overexpression of artificially fused bifunctional enzyme 4CL1-CCR: a method for production of secreted 4-hydroxycinnamaldehydes in Escherichia coli.
Microbial cell factories.
2015 Aug; 14(?):118. doi:
10.1186/s12934-015-0309-2
. [PMID: 26264710] - Nickolas A Anderson, Yuki Tobimatsu, Peter N Ciesielski, Eduardo Ximenes, John Ralph, Bryon S Donohoe, Michael Ladisch, Clint Chapple. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure.
The Plant cell.
2015 Aug; 27(8):2195-209. doi:
10.1105/tpc.15.00373
. [PMID: 26265762] - Min Ai Lee, Hyen Joo Park, Hwa-Jin Chung, Won Kyung Kim, Sang Kook Lee. Antitumor activity of 2-hydroxycinnamaldehyde for human colon cancer cells through suppression of β-catenin signaling.
Journal of natural products.
2013 Jul; 76(7):1278-84. doi:
10.1021/np400216m
. [PMID: 23855266] - Ahmad Nazif Aziz, Halijah Ibrahim, Devi Rosmy Syamsir, Mastura Mohtar, Jaya Vejayan, Khalijah Awang. Antimicrobial compounds from Alpinia conchigera.
Journal of ethnopharmacology.
2013 Feb; 145(3):798-802. doi:
10.1016/j.jep.2012.12.024
. [PMID: 23266278] - Somendu K Roy, Sonika Pahwa, Hemraj Nandanwar, Sanjay M Jachak. Phenylpropanoids of Alpinia galanga as efflux pump inhibitors in Mycobacterium smegmatis mc² 155.
Fitoterapia.
2012 Oct; 83(7):1248-55. doi:
10.1016/j.fitote.2012.06.008
. [PMID: 22735598] - Bishwo N Adhikari, Elizabeth A Savory, Brieanne Vaillancourt, Kevin L Childs, John P Hamilton, Brad Day, C Robin Buell. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis.
PloS one.
2012; 7(4):e34954. doi:
10.1371/journal.pone.0034954
. [PMID: 22545095] - Marina Varbanova, Katie Porter, Fachuang Lu, John Ralph, Ray Hammerschmidt, A Daniel Jones, Brad Day. Molecular and biochemical basis for stress-induced accumulation of free and bound p-coumaraldehyde in cucumber.
Plant physiology.
2011 Nov; 157(3):1056-66. doi:
10.1104/pp.111.184358
. [PMID: 21940999] - Takao Koeduka, Bunta Watanabe, Shiro Suzuki, Jun Hiratake, Jun'ichi Mano, Kazufumi Yazaki. Characterization of raspberry ketone/zingerone synthase, catalyzing the alpha, beta-hydrogenation of phenylbutenones in raspberry fruits.
Biochemical and biophysical research communications.
2011 Aug; 412(1):104-8. doi:
10.1016/j.bbrc.2011.07.052
. [PMID: 21802408] - Prabin Bajgain, Bryce A Richardson, Jared C Price, Richard C Cronn, Joshua A Udall. Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata).
BMC genomics.
2011 Jul; 12(?):370. doi:
10.1186/1471-2164-12-370
. [PMID: 21767398] - Heehong Hwang, Hyejin Jeon, Jiyeon Ock, Su Hyung Hong, Young-Min Han, Byoung-Mog Kwon, Won-Ha Lee, Myung-Shik Lee, Kyoungho Suk. 2'-Hydroxycinnamaldehyde targets low-density lipoprotein receptor-related protein-1 to inhibit lipopolysaccharide-induced microglial activation.
Journal of neuroimmunology.
2011 Jan; 230(1-2):52-64. doi:
10.1016/j.jneuroim.2010.08.021
. [PMID: 20933287] - Amandeep Kaur, Ranvir Singh, Chinmoy Sankar Dey, Shyam Sundar Sharma, Kamlesh K Bhutani, Inder Pal Singh. Antileishmanial phenylpropanoids from Alpinia galanga (Linn.) Willd.
Indian journal of experimental biology.
2010 Mar; 48(3):314-7. doi:
. [PMID: 21046987]
- Haiming Shi, Huandi Wang, Mengyue Wang, Xiaobo Li. Antioxidant activity and chemical composition of Torreya grandis cv. Merrillii seed.
Natural product communications.
2009 Nov; 4(11):1565-70. doi:
. [PMID: 19967992]
- Thanyaluck Phitak, Kanyamas Choocheep, Peraphan Pothacharoen, Wilart Pompimon, Bhusana Premanode, Prachya Kongtawelert. The effects of p-hydroxycinnamaldehyde from Alpinia galanga extracts on human chondrocytes.
Phytochemistry.
2009 Jan; 70(2):237-43. doi:
10.1016/j.phytochem.2008.11.010
. [PMID: 19118849] - Jiazheng Yuan, Mengxia Zhu, David A Lightfoot, M Javed Iqbal, Jack Y Yang, Khalid Meksem. In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme.
BMC genomics.
2008 Sep; 9 Suppl 2(?):S6. doi:
10.1186/1471-2164-9-s2-s6
. [PMID: 18831797] - Michaël Jourdes, Claudia L Cardenas, Dhrubojyoti D Laskar, Syed G A Moinuddin, Laurence B Davin, Norman G Lewis. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications.
Phytochemistry.
2007 Jul; 68(14):1932-56. doi:
10.1016/j.phytochem.2007.03.044
. [PMID: 17559892] - Buhyun Youn, Sung-Jin Kim, Syed G A Moinuddin, Choonseok Lee, Diana L Bedgar, Athena R Harper, Laurence B Davin, Norman G Lewis, Chulhee Kang. Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970.
The Journal of biological chemistry.
2006 Dec; 281(52):40076-88. doi:
10.1074/jbc.m605900200
. [PMID: 17028190] - Yong Jiang, Peng-Fei Tu. Tenuifoliose Q, a new oligosaccharide ester from the root of Polygala tenuifolia Willd.
Journal of Asian natural products research.
2003 Dec; 5(4):279-83. doi:
10.1080/1028602031000111987
. [PMID: 14604237] - Hisashi Matsuda, Toshio Morikawa, Hiromi Managi, Masayuki Yoshikawa. Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-alpha and IL-4 in RBL-2H3 cells.
Bioorganic & medicinal chemistry letters.
2003 Oct; 13(19):3197-202. doi:
10.1016/s0960-894x(03)00710-8
. [PMID: 12951092] - Dianjing Guo, Fang Chen, Richard A Dixon. Monolignol biosynthesis in microsomal preparations from lignifying stems of alfalfa (Medicago sativa L.).
Phytochemistry.
2002 Nov; 61(6):657-67. doi:
10.1016/s0031-9422(02)00375-8
. [PMID: 12423886] - F Pomar, F Merino, A Ros Barceló. O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction.
Protoplasma.
2002 Oct; 220(1-2):17-28. doi:
10.1007/s00709-002-0030-y
. [PMID: 12417933] - T Sonoda, T Ona, H Yokoi, Y Ishida, H Ohtani, S Tsuge. Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples.
Analytical chemistry.
2001 Nov; 73(22):5429-35. doi:
10.1021/ac010557c
. [PMID: 11816569] - G Schoch, S Goepfert, M Morant, A Hehn, D Meyer, P Ullmann, D Werck-Reichhart. CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway.
The Journal of biological chemistry.
2001 Sep; 276(39):36566-74. doi:
10.1074/jbc.m104047200
. [PMID: 11429408] - R R Stange, J Ralph, J Peng, J J Sims, S L Midland, R E McDonald. Acidolysis and hot water extraction provide new insights into the composition of the induced "lignin-like" material from squash fruit.
Phytochemistry.
2001 Jul; 57(6):1005-11. doi:
10.1016/s0031-9422(01)00096-6
. [PMID: 11423147] - W R Russell, G J Provan, M J Burkitt, A Chesson. Extent of incorporation of hydroxycinnamaldehydes into lignin in cinnamyl alcohol dehydrogenase-downregulated plants.
Journal of biotechnology.
2000 Apr; 79(1):73-85. doi:
10.1016/s0168-1656(00)00212-1
. [PMID: 10817343]