Aesculetin (BioDeep_00000000120)
Secondary id: BioDeep_00000398645
natural product human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C9H6O4 (178.0266076)
中文名称: 七叶内酯, 秦皮乙素, 七叶亭, 6,7-二羟基香豆素, 七叶苷
谱图信息:
最多检出来源 Viridiplantae(plant) 0.02%
Last reviewed on 2024-09-04.
Cite this Page
Aesculetin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/aesculetin (retrieved
2024-11-08) (BioDeep RN: BioDeep_00000000120). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1(c(cc2c(c1)ccc(=O)o2)O)O
InChI: InChI=1/C9H6O4/c10-6-3-5-1-2-9(12)13-8(5)4-7(6)11/h1-4,10-11H
描述信息
Aesculetin, also known as cichorigenin or cichoriin aglucon, belongs to the class of organic compounds known as 6,7-dihydroxycoumarins. These are coumarins bearing two hydroxyl groups at positions 6 and 7 of the coumarin skeleton, respectively. Aesculetin is found, on average, in the highest concentration within sherries. Aesculetin has also been detected, but not quantified, in several different foods, such as horseradish, carrots, dandelions, grape wines, and highbush blueberries. This could make aesculetin a potential biomarker for the consumption of these foods.
Esculetin is a hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. It has a role as an antioxidant, an ultraviolet filter and a plant metabolite.
Esculetin is a natural product found in Artemisia eriopoda, Euphorbia decipiens, and other organisms with data available.
A hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light.
Metabolite of infected sweet potato. Aesculetin is found in many foods, some of which are root vegetables, wild carrot, sweet basil, and carrot.
D020011 - Protective Agents > D000975 - Antioxidants
Acquisition and generation of the data is financially supported in part by CREST/JST.
[Raw Data] CB031_Aesculetin_pos_20eV_CB000017.txt
[Raw Data] CB031_Aesculetin_pos_10eV_CB000017.txt
[Raw Data] CB031_Aesculetin_pos_40eV_CB000017.txt
[Raw Data] CB031_Aesculetin_pos_50eV_CB000017.txt
[Raw Data] CB031_Aesculetin_pos_30eV_CB000017.txt
[Raw Data] CB031_Aesculetin_neg_10eV_000010.txt
[Raw Data] CB031_Aesculetin_neg_20eV_000010.txt
[Raw Data] CB031_Aesculetin_neg_30eV_000010.txt
CONFIDENCE standard compound; ML_ID 39
Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].
Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].
Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].
同义名列表
65 个代谢物同义名
InChI=1/C9H6O4/c10-6-3-5-1-2-9(12)13-8(5)4-7(6)11/h1-4,10-11; Esculetin, European Pharmacopoeia (EP) Reference Standard; 5-18-03-00202 (Beilstein Handbook Reference); 2H-1-Benzopyran-2-one, 6,7-dihydroxy- (9CI); 2H-1-Benzopyran-2-one, 6,7-dihydroxy-; Esculetin [Matrix for MALDI-TOF/MS]; 6,7-Dihydroxy-2H-1-benzopyran-2-one; 2,6-Dihydroxy-7H-1-benzopyran-7-one; Coumarin, 6,7-dihydroxy- Esculetin; 6,7-Dihydroxy-2H-chromen-2-one #; 6,7-dihydroxy-1-benzopyran-2-one; 6,7-bis(oxidanyl)chromen-2-one; 2,6-Dihydroxy-7H-chromen-7-one; Esculetin, analytical standard; 6,7-Dihydroxy-2H-chromen-2-one; ILEDWLMCKZNDJK-UHFFFAOYSA-N; 6,7-Dihydroxy-2-benzopyrone; 6,7-Dihydroxycoumarin, 98\\%; 6,7-dihydroxychromen-2-one; 6,7-Dihydroxy-2-chromenone; 6,7-Dihydroxycoumarin, 8CI; Coumarin, 6,7-dihydroxy-; Aesculetin (cichorigenin; Cichorigenin|Aesculetin; 6,7-Dihydroxycounmarin; 6,7-dihydroxy-coumarin; 6,7-dihydroxycoumarin; Cichoriin aglucon; Prestwick1_000940; Prestwick3_000940; Cichoriin aglycon; Prestwick2_000940; Prestwick0_000940; ESCULETIN [INCI]; Spectrum4_001886; Spectrum3_000752; Spectrum2_000586; Spectrum5_000512; UNII-SM2XD6V944; Aesculetin ,(S); Esculin aglycon; Esculin aglucon; ESCULETIN [MI]; BPBio1_000968; Oprea1_719746; DivK1c_006430; KSC-11-243-1; KBio2_004214; KBio2_001646; KBio3_001584; KBio2_006782; KBio1_001374; Cichorigenin; NCI60_002119; SMP2_000093; Esculetol); SM2XD6V944; Asculetine; esculetine; aesculetin; Esculetin; 1ST157072; Esculetol; Esculatin; HFC
数据库引用编号
41 个数据库交叉引用编号
- ChEBI: CHEBI:490095
- KEGG: C09263
- PubChem: 5281416
- HMDB: HMDB0030819
- Metlin: METLIN43936
- ChEMBL: CHEMBL244743
- Wikipedia: Aesculetin
- MeSH: esculetin
- ChemIDplus: 0000305011
- MetaCyc: CPD-8097
- KNApSAcK: C00002471
- foodb: FDB002775
- chemspider: 4444764
- CAS: 91753-33-2
- CAS: 305-01-1
- MoNA: FIO00077
- MoNA: ML003951
- MoNA: FIO00083
- MoNA: PR100938
- MoNA: PS125007
- MoNA: FIO00078
- MoNA: PS125001
- MoNA: PR100474
- MoNA: FIO00080
- MoNA: FIO00084
- MoNA: FIO00081
- MoNA: PS125009
- MoNA: FIO00079
- MoNA: PS125008
- MoNA: FIO00082
- MoNA: PS125002
- MoNA: ML003901
- MoNA: PR100939
- MoNA: PS125003
- medchemexpress: HY-N0284
- PMhub: MS000002761
- MetaboLights: MTBLC490095
- PDB-CCD: HFC
- 3DMET: B02810
- NIKKAJI: J5.493C
- RefMet: Aesculetin
分类词条
相关代谢途径
Reactome(0)
BioCyc(5)
PlantCyc(5)
代谢反应
134 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(9)
- esculetin modification:
SAM + esculetin ⟶ H+ + SAH + scopoletin
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- superpathway of scopolin and esculin biosynthesis:
SAM + esculetin ⟶ H+ + SAH + scopoletin
- simple coumarins biosynthesis:
scopoletin ⟶ a demethylated methyl donor + scoparone
- cichoriin interconversion:
UDP-α-D-glucose + esculetin ⟶ H+ + UDP + cichoriin
- esculetin biosynthesis:
2,4,6-trihydroxycinnamoyl-CoA ⟶ coenzyme A + esculetin
- coumarins biosynthesis (engineered):
6'-hydroxyferuloyl-CoA ⟶ coenzyme A + scopoletin
- esculetin biosynthesis:
2,4,6-trihydroxycinnamoyl-CoA ⟶ coenzyme A + esculetin
- coumarins biosynthesis (engineered):
6'-hydroxyferuloyl-CoA ⟶ coenzyme A + scopoletin
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(125)
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- simple coumarins biosynthesis:
scopoletin ⟶ a demethylated methyl donor + scoparone
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- esculetin modification:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- simplecoumarins biosynthesis:
5-O-caffeoylshikimate ⟶ caffeate
- esculetin modification:
SAM + esculetin ⟶ H+ + SAH + scopoletin
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- esculetin modification:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- esculetin modification:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- coumarins biosynthesis (engineered):
trans-6-hydroxyferuloyl-CoA ⟶ coenzyme A + scopoletin
- esculetin biosynthesis:
2,4,6-trihydroxycinnamoyl-CoA ⟶ coenzyme A + esculetin
- esculetin biosynthesis:
2,4,6-trihydroxycinnamoyl-CoA ⟶ coenzyme A + esculetin
- cichoriin interconversion:
H2O + cichoriin ⟶ D-glucopyranose + esculetin
- coumarins biosynthesis (engineered):
trans-6-hydroxyferuloyl-CoA ⟶ coenzyme A + scopoletin
- cichoriin interconversion:
UDP-α-D-glucose + esculetin ⟶ H+ + UDP + cichoriin
- esculetin biosynthesis:
2,4,6-trihydroxycinnamoyl-CoA ⟶ coenzyme A + esculetin
- coumarins biosynthesis (engineered):
trans-6-hydroxyferuloyl-CoA ⟶ coenzyme A + scopoletin
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
194 个相关的物种来源信息
- 282736 - Achillea filipendulina: 10.1007/BF02238223
- 282739 - Achillea grandifolia:
- 3625 - Actinidia Chinensis Planch: -
- 43364 - Aesculus hippocastanum: 10.1201/B10413-17
- 83375 - Aesculus turbinata: 10.1021/NP50044A042
- 45385 - Aloe arborescens: 10.1007/S10600-009-9405-Z
- 446321 - Althaea armeniaca: 10.1007/BF00630189
- 145745 - Althaea officinalis: 10.1007/BF00630189
- 40922 - Anethum graveolens: 10.1007/BF00595084
- 40888 - Anthriscus cerefolium: 10.1006/PHRS.1993.1052
- 3702 - Arabidopsis thaliana:
- 3818 - Arachis hypogaea: 10.1248/YAKUSHI1947.103.9_997
- 2065848 - Arnica amplexicaulis: 10.1055/S-2006-957793
- 72332 - Artemisia absinthium: 10.1007/BF00629808
- 35608 - Artemisia Annua L.: -
- 259893 - Artemisia argyi Lévl.et Vant.: -
- 265783 - Artemisia capillaris: 10.1016/S0968-0896(00)00225-X
- 1027781 - Artemisia eriopoda: 10.1016/0031-9422(96)00325-1
- 72329 - Artemisia herba-alba: 10.1016/0031-9422(88)80018-9
- 401905 - Artemisia jacutica: 10.1007/BF00629808
- 637481 - Artemisia keiskeana: 10.1007/BF00574599
- 72345 - Artemisia lucentica: 10.1016/0031-9422(88)80018-9
- 669133 - Artemisia mongolica: 10.1055/S-2006-957946
- 669134 - Artemisia montana: 10.1007/BF02976451
- 72349 - Artemisia nova: 10.1016/S0021-9673(01)97678-2
- 72350 - Artemisia reptans: 10.1016/0031-9422(88)80018-9
- 55611 - Artemisia tridentata:
- 4220 - Artemisia vulgaris: 10.1007/BF00574599
- 401942 - Artemisia xerophytica: 10.1007/BF00581612
- 155124 - Aspalathus linearis: 10.1248/BPB.29.1271
- 1133552 - Asphodeline damascena: 10.1016/0031-9422(85)80028-5
- 4210 - Asteraceae: 10.1021/JF053071W
- 258147 - Berberis canadensis: 10.1007/BF00579837
- 1433312 - Berberis heteropoda: 10.1007/BF00579837
- 1112794 - Berberis integerrima: 10.1007/BF00579837
- 211974 - Berberis koreana: 10.1007/BF00579837
- 258201 - Berberis sieboldii: 10.1007/BF00579837
- 258209 - Berberis vulgaris: 10.1007/BF00579837
- 51276 - Bidens tripartita: 10.1007/BF00564344
- 48103 - Bupleurum fruticosum: 10.1016/0031-9422(95)00749-0
- 41496 - Calendula Officinalis: -
- 41496 - Calendula officinalis: 10.1007/BF00598365
- 197417 - Camonea umbellata: 10.3390/MOLECULES15118241
- 1241126 - Campanula macrorhiza: 10.1007/BF00579785
- 239416 - Campanula persicifolia: 10.1007/BF00579785
- 239422 - Campanula rotundifolia: 10.1007/BF00579785
- 47643 - Caragana frutex: 10.1007/BF00575186
- 864332 - Cedrelopsis grevei: 10.1016/S0367-326X(03)00181-3
- 145513 - Centaurea raphanina: 10.1021/NP50021A025
- 2054445 - Ceratostigma willmottianum:
- 36622 - Chaenomeles Sinensis (Thouin) Koehne: -
- 75963 - Chondrilla juncea: 10.1515/ZNC-1993-5-603
- 1405821 - Cichorium glandulosum:
- 1405821 - Cichorium glandulosum Boiss. et Huet: -
- 13427 - Cichorium intybus:
- 13427 - Cichorium intybus L.: -
- 114281 - Cichorium pumilum:
- 392618 - Cunila: 10.1007/S00299-018-2303-8
- 434645 - Cyanthillium patulum: 10.1016/S1875-5364(19)30114-1
- 298346 - Dictamnus albus: 10.1007/BF00579494
- 244311 - Erigeron Breviscapus: -
- 1031519 - Euphorbia decipiens: 10.1002/MRC.2795
- 54672 - Euphorbia lagascae: 10.1021/NP50032A019
- 212925 - Euphorbia lathyris:
- 212925 - Euphorbia lathyris L.: -
- 526197 - Euphorbia lunulata:
- 212954 - Euphorbia petiolata: 10.1007/S11418-009-0382-0
- 1333940 - Euphorbia polycaulis: 10.1002/MRC.2795
- 38873 - Fraxinus excelsior: 10.1016/S0305-1978(97)00006-9
- 490840 - Fraxinus floribunda: 10.1016/S0031-9422(00)91068-9
- 757445 - Fraxinus insularis: 10.1248/CPB.41.1649
- 56035 - Fraxinus longicuspis:
- 38874 - Fraxinus ornus:
- 183030 - Galinsoga quadriradiata: 10.1007/BF00564480
- 148897 - Geum rivale: 10.1002/1099-1573(200011)14:7<561::AID-PTR651>3.0.CO;2-H
- 118509 - Glebionis segetum: 10.1016/0021-9673(95)00248-L
- 665695 - Gymnophyton isatidicarpum: 10.1021/NP50005A016
- 147773 - Haplopappus foliosus:
- 1114768 - Haplopappus multifolius:
- 261786 - Helichrysum italicum: 10.1007/BF00630665
- 630317 - Helichrysum maracandicum: 10.1007/BF00598091
- 9606 - Homo sapiens: -
- 4513 - Hordeum vulgare: 10.1016/S0176-1617(85)80225-X
- 79362 - Hydrophyllum tenuipes: 10.1002/J.1537-2197.1979.TB06321.X
- 4134 - Hydrophyllum virginianum: 10.1002/J.1537-2197.1979.TB06321.X
- 91096 - Hylotelephium ewersii: 10.1007/BF00567817
- 63779 - Impatiens Balsamina: -
- 662907 - Isodon eriocalyx:
- 318059 - Ixeridium laevigatum: 10.1081/JLC-100100511
- 122539 - Koelpinia linearis: 10.1007/BF00564819
- 43199 - Launaea arborescens: 10.1016/0305-1978(92)90106-N
- 2067295 - Lepidaploa remotiflora: 10.1016/S1875-5364(19)30114-1
- 2126591 - Ligularia amplexicaulis: 10.1055/S-2006-957793
- 217502 - Ligularia sagitta: 10.1515/ZNB-2004-0809
- 46072 - Ligustrum japonicum: 10.3746/JKFN.2006.35.6.713
- 458695 - Ligustrum lucidum: 10.3746/JKFN.2006.35.6.713
- 1503365 - Lonicera bournei: 10.1055/S-2001-14337
- 3871 - Lupinus angustifolius:
- 3983 - Manihot esculenta: 10.1006/ANBO.2000.1285
- 98504 - Matricaria chamomilla: 10.1007/BF00629946
- 672825 - Meehania urticifolia: 10.1021/NP800691K
- 1932750 - Melanoseris henryi: 10.1016/S0040-4039(00)75360-3
- 119949 - Myrtus communis: 10.1021/NP0501031
- 1168071 - Nervilia fordii: 10.1021/NP800760P
- 1442804 - Notoseris macilenta: 10.1007/978-3-7091-1084-3_4
- 459868 - Notoseris psilolepis: 10.1007/978-3-7091-1084-3_4
- 39350 - Ocimum basilicum: 10.1016/B978-0-12-818162-1.00040-7
- 204149 - Ocimum tenuiflorum: 10.1076/PHBI.37.1.92.6318
- 126552 - Olea capensis: 10.1016/S0031-9422(00)80417-3
- 4146 - Olea europaea:
- 495751 - Olea exasperata: 10.1016/S0031-9422(00)80417-3
- 495748 - Olea woodiana: 10.1016/S0031-9422(00)80417-3
- 1500521 - Parasenecio hastatus: 10.1007/S10600-005-0219-3
- 196581 - Passiflora menispermifolia: 10.1021/NP50015A025
- 2793609 - Passiflora trinervia: 10.1021/NP50028A036
- 48386 - Perilla Frutescens: -
- 48386 - Perilla frutescens: 10.1271/BBB.60.1093
- 3885 - Phaseolus vulgaris: 10.1007/BF00579781
- 91120 - Phedimus kamtschaticus: 10.1007/BF00567044
- 332630 - Phedimus selskianus: 10.1007/BF00567044
- 68554 - Phellodendron amurense:
- 33090 - Plants: -
- 57940 - Potentilla erecta: 10.1007/BF00629945
- 52496 - Prangos: 10.1007/BF00781092
- 39358 - Prunella vulgaris: 10.1007/BF00579835
- 81513 - Pterocaulon: 10.1016/J.EJMECH.2012.09.007
- 1548649 - Pterocaulon polystachyum:
- 501392 - Quercus faginea: 10.1021/JF9502461
- 38865 - Quercus petraea: 10.1021/JF9502461
- 453298 - Quercus pyrenaica: 10.1021/JF9502461
- 38942 - Quercus robur: 10.1021/JF9502461
- 58331 - Quercus suber:
- 376251 - Ranunculus sieboldii: 10.1055/S-2005-873169
- 75587 - Rhododendron diversipilosum: 10.1002/CHIN.200322269
- 49605 - Rhododendron groenlandicum: 10.1002/CHIN.200322269
- 313328 - Rhododendron hypoleucum: 10.1002/CHIN.200322269
- 2051890 - Rhododendron tolmachevii: 10.1002/CHIN.200322269
- 49170 - Rhododendron tomentosum: 10.1002/CHIN.200322269
- 74652 - Rosa laevigata: 10.1002/JCCS.199100050
- 1642911 - Salvia euphratica:
- 49220 - Salvia verticillata: 10.1021/NP50036A047
- 634960 - Santolina oblongifolia: 10.1021/NP960422F
- 182070 - Saxifraga Stolonifera: -
- 261613 - Scorzonera laciniata: 10.1016/0305-1978(92)90106-N
- 354518 - Skimmia laureola: 10.1016/S0031-9422(00)81759-8
- 329772 - Solanum dasyphyllum: 10.1021/NP50037A033
- 223891 - Solanum virginianum: 10.1055/S-0028-1099601
- 50191 - Sonchus acaulis: 10.1016/0031-9422(83)83031-3
- 50192 - Sonchus arvensis: 10.1016/0031-9422(83)83031-3
- 50193 - Sonchus asper:
- 381729 - Sonchus bipontini: 10.1016/0031-9422(83)83031-3
- 50195 - Sonchus brachylobus: 10.1016/0031-9422(83)83031-3
- 381730 - Sonchus brachyotus: 10.1016/0031-9422(83)83031-3
- 50196 - Sonchus canariensis: 10.1016/0031-9422(83)83031-3
- 50221 - Sonchus capillaris: 10.1016/0031-9422(83)83031-3
- 50197 - Sonchus congestus: 10.1016/0031-9422(83)83031-3
- 381731 - Sonchus crassifolius: 10.1016/0031-9422(83)83031-3
- 50199 - Sonchus fauces-orci: 10.1016/0031-9422(83)83031-3
- 50200 - Sonchus fruticosus: 10.1016/0031-9422(83)83031-3
- 50201 - Sonchus gandogeri: 10.1016/0031-9422(83)83031-3
- 1519691 - Sonchus gomerensis: 10.1016/0031-9422(83)83031-3
- 43192 - Sonchus grandifolius: 10.1016/0031-9422(83)83031-3
- 50222 - Sonchus heterophyllus: 10.1016/0031-9422(83)83031-3
- 50203 - Sonchus hierrensis: 10.1016/0031-9422(83)83031-3
- 255580 - Sonchus hydrophilus: 10.1016/0031-9422(83)83031-3
- 50205 - Sonchus luxurians: 10.1016/0031-9422(83)83031-3
- 50206 - Sonchus maritimus: 10.1016/0031-9422(83)83031-3
- 381734 - Sonchus mauritanicus: 10.1016/0031-9422(83)83031-3
- 329331 - Sonchus microcarpus: 10.1016/0031-9422(83)83031-3
- 50207 - Sonchus oleraceus: 10.1016/0031-9422(83)83031-3
- 50209 - Sonchus palmensis: 10.1016/0031-9422(83)83031-3
- 50211 - Sonchus pinnatifidus: 10.1016/0031-9422(83)83031-3
- 50212 - Sonchus pinnatus: 10.1016/0031-9422(83)83031-3
- 43190 - Sonchus platylepis: 10.1016/0031-9422(83)83031-3
- 332207 - Sonchus radicatus: 10.1016/0031-9422(83)83031-3
- 50224 - Sonchus regis-jubae: 10.1016/0031-9422(83)83031-3
- 50213 - Sonchus schweinfurthii: 10.1016/0031-9422(83)83031-3
- 255578 - Sonchus tenerrimus: 10.1016/0031-9422(83)83031-3
- 50215 - Sonchus ustulatus: 10.1016/0031-9422(83)83031-3
- 34270 - Syringa vulgaris: 10.1007/BF00597667
- 169606 - Tagetes lucida: 10.1021/JF053071W
- 170733 - Taraxacum formosanum:
- 90037 - Taraxacum mongolicum:
- 318066 - Tridax procumbens: 10.3390/MOLECULES15096357
- 78479 - Trollius Chinensis: -
- 2803933 - Vernonia patula: 10.1016/S1875-5364(19)30114-1
- 237931 - Viburnum cylindricum: 10.1002/HLCA.200800420
- 3908 - Vicia sativa: 10.1007/BF00598366
- 316493 - Viola philippica:
- 29760 - Vitis vinifera:
- 126910 - Withania somnifera: 10.1002/1521-4184(200208)335:6<267::AID-ARDP267>3.0.CO;2-E
- 462583 - Xenophyllum dactylophyllum: 10.1055/S-2006-961634
- 1752150 - Zanthoxylum piasezkii: 10.1007/S10600-018-2544-3
- 33090 - 七叶树: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sriravali Pulipaka, Hridya Chempon, Gajalakshmi Singuru, Shashikanta Sahoo, Altab Shaikh, Sunita Kumari, Rajamannar Thennati, Srigiridhar Kotamraju. Mitochondria-targeted esculetin and metformin delay endothelial senescence by promoting fatty acid β-oxidation: Relevance in age-associated atherosclerosis.
Mechanisms of ageing and development.
2024 Jun; 219(?):111931. doi:
10.1016/j.mad.2024.111931
. [PMID: 38554949] - Mehmet Güvenç, Murat Yüksel, Tuncer Kutlu, Muhammed Etyemez, İshak Gökçek, Mustafa Cellat. Protective effects of esculetin against ovary ischemia-reperfusion injury model in rats.
Journal of biochemical and molecular toxicology.
2024 Jan; 38(1):e23528. doi:
10.1002/jbt.23528
. [PMID: 37661762] - Zheng Lv, Boyang Wang, Bianli Wang, Huimin Zhang. In vivo comprehensive metabolite profiling of esculetin and esculin derived from chicory in hyperuricemia rats using ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap high-resolution mass spectrometry.
Journal of separation science.
2024 Jan; 47(1):e2300664. doi:
10.1002/jssc.202300664
. [PMID: 38010472] - Gajalakshmi Singuru, Sriravali Pulipaka, Altab Shaikh, Sai Balaji Andugulapati, Rajamannar Thennati, Srigiridhar Kotamraju. Therapeutic efficacy of mitochondria-targeted esculetin in the improvement of NAFLD-NASH via modulating AMPK-SIRT1 axis.
International immunopharmacology.
2023 Nov; 124(Pt B):111070. doi:
10.1016/j.intimp.2023.111070
. [PMID: 37862737] - Zheng-Ming Qian, Meng-Qi Wu, Guo-Ying Tan, Li-Ling Jin, Ning Li, Ju-Ying Xie. [Rapid determination of aesculin and aesculetin in Fraxini Cortex by high performance liquid chromatography-ultraviolet at equal absorption wavelength].
Se pu = Chinese journal of chromatography.
2023 Aug; 41(8):690-697. doi:
10.3724/sp.j.1123.2023.03018
. [PMID: 37534556] - Luana Eloísa Leal, Evelyn Silva Moreira, Bruna Lopes Correia, Paulo Sérgio Alves Bueno, Jurandir Fernando Comar, Anacharis Babeto de Sá-Nakanishi, Roberto Kenji Nakamura Cuman, Adelar Bracht, Ciomar Aparecida Bersani-Amado, Lívia Bracht. Comparative study of the antioxidant and anti-inflammatory effects of the natural coumarins 1,2-benzopyrone, umbelliferone and esculetin: in silico, in vitro and in vivo analyses.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Jul; ?(?):. doi:
10.1007/s00210-023-02606-2
. [PMID: 37395795] - Feng Shi, Wenxiong Yin, Michael Adu-Frimpong, Xiaoxiao Li, Xiaoli Xia, Weigang Sun, Hao Ji, Elmurat Toreniyazov, Wang Qilong, Xia Cao, Jiangnan Yu, Ximing Xu. In-vitro and in-vivo evaluation and anti-colitis activity of esculetin-loaded nanostructured lipid carrier decorated with DSPE-MPEG2000.
Journal of microencapsulation.
2023 May; ?(?):1-17. doi:
10.1080/02652048.2023.2215345
. [PMID: 37191893] - Xiaoqing Li, Lisi Wang, Lijun Yan, Xiao Han, Zejun Zhang, Xiaoping Zhang, Wei Sun. A Portable Wireless Intelligent Nanosensor for 6,7-Dihydroxycoumarin Analysis with A Black Phosphorene and Nano-Diamond Nanocomposite-Modified Electrode.
Biosensors.
2023 Jan; 13(2):. doi:
10.3390/bios13020153
. [PMID: 36831920] - Ji Ma, Yang Deng, Tingting Yang, Maoru Li, Jing Shang. Esculetin Alleviates Nonalcoholic Fatty Liver Disease on High-Cholesterol-Diet-Induced Larval Zebrafish and FFA-Induced BRL-3A Hepatocyte.
International journal of molecular sciences.
2023 Jan; 24(2):. doi:
10.3390/ijms24021593
. [PMID: 36675107] - Sourbh Suren Garg, Jeena Gupta, Debasis Sahu, Chuan-Ju Liu. Pharmacological and Therapeutic Applications of Esculetin.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012643
. [PMID: 36293500] - Santosh Karnewar, Sriravali Pulipaka, Sujana Katta, Devayani Panuganti, Praveen Kumar Neeli, Rajamannar Thennati, Mahesh Kumar Jerald, Srigiridhar Kotamraju. Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe-/- mice.
Atherosclerosis.
2022 09; 356(?):28-40. doi:
10.1016/j.atherosclerosis.2022.07.012
. [PMID: 35961209] - Ying Zhang, Zhaojun Li, Haijie Wu, Jing Wang, Sen Zhang. Esculetin alleviates murine lupus nephritis by inhibiting complement activation and enhancing Nrf2 signaling pathway.
Journal of ethnopharmacology.
2022 Apr; 288(?):115004. doi:
10.1016/j.jep.2022.115004
. [PMID: 35051603] - Changhao Bao, Min Shi, Wenwen Ma, Jun Li, Xianju Huang, Han Cheng. Simultaneous determination of aesculin and aesculetin and their interactions with DNA using carbon fiber microelectrode modified by Pt-Au bimetallic nanoparticles.
Analytica chimica acta.
2022 Apr; 1202(?):339664. doi:
10.1016/j.aca.2022.339664
. [PMID: 35341516] - Authors Leah H Knoor, George R Du Laney, Isaac B Jonker, Liam P Hoogewerf, Yukun Tu, Hunter T Pham, Joy Yoo, Mark A Muyskens. Aesculetin Exhibits Strong Fluorescent Photoacid Character.
Journal of fluorescence.
2022 Jan; 32(1):307-318. doi:
10.1007/s10895-021-02842-w
. [PMID: 34787776] - Weijie Jiao, Nan Qin, Kun Wang, Dongmei Wu, Hongyan Yu, Lei Du, Guiyue Wu, Hong Wu, Xu Zhao. LC-MS/MS for determination of aesculetin in rat plasma and its application to a pharmacokinetic study.
Biomedical chromatography : BMC.
2022 Jan; 36(1):e5233. doi:
10.1002/bmc.5233
. [PMID: 34519055] - Linlin Zhang, Qingxuan Xie, Xiaofang Li. Esculetin: A review of its pharmacology and pharmacokinetics.
Phytotherapy research : PTR.
2022 Jan; 36(1):279-298. doi:
10.1002/ptr.7311
. [PMID: 34808701] - Woojin Na, Min-Kyung Kang, Sin-Hye Park, Dong Yeon Kim, Su Yeon Oh, Moon-Sik Oh, Sohyun Park, Ii-Jun Kang, Young-Hee Kang. Aesculetin Accelerates Osteoblast Differentiation and Matrix-Vesicle-Mediated Mineralization.
International journal of molecular sciences.
2021 Nov; 22(22):. doi:
10.3390/ijms222212391
. [PMID: 34830274] - Parikshit Kumar, S C Sati. Chemical composition, antioxidant and antimicrobial activities of Himalayan Fraxinus micrantha Lingelsh leaf extract.
Natural product research.
2021 Oct; 35(20):3519-3523. doi:
10.1080/14786419.2019.1710706
. [PMID: 31920103] - Aiman Masroor, Tajalli Ilm Chandel, Sadia Malik, Qazi Noorul Mateen, Vladimir N Uversky, Rizwan Hasan Khan. Evaluation of ThT augmentation and RLS inner filter effect caused by highly fluorescent coumarin derivative and establishing it as true inhibitor of amyloid fibrillation.
Archives of biochemistry and biophysics.
2021 09; 709(?):108981. doi:
10.1016/j.abb.2021.108981
. [PMID: 34214556] - Seyed-Mahdi Mohamadi-Zarch, Tourandokht Baluchnejadmojarad, Davood Nourabadi, Samira Ramazi, Morteza Nazari-Serenjeh, Mehrdad Roghani. Esculetin Alleviates Acute Liver Failure following Lipopolysaccharide/D-Galactosamine in Male C57BL/6 Mice.
Iranian journal of medical sciences.
2021 09; 46(5):373-382. doi:
10.30476/ijms.2020.84909.1474
. [PMID: 34539012] - Chitikela P Pullaiah, Vinod K Nelson, Sushma Rayapu, Narasimha Kumar G V, Thyagaraju Kedam. Exploring cardioprotective potential of esculetin against isoproterenol induced myocardial toxicity in rats: in vivo and in vitro evidence.
BMC pharmacology & toxicology.
2021 07; 22(1):43. doi:
10.1186/s40360-021-00510-0
. [PMID: 34266475] - Jae-Hwan Kwak, Younghwa Kim, Christine E Staatz, In-Hwan Baek. Oral bioavailability and pharmacokinetics of esculetin following intravenous and oral administration in rats.
Xenobiotica; the fate of foreign compounds in biological systems.
2021 Jul; 51(7):811-817. doi:
10.1080/00498254.2021.1925774
. [PMID: 33949288] - Bi Wang, Pirui Li, Shu Xu, Lanying Liu, Yannan Xu, Xu Feng, Xingzeng Zhao, Yu Chen. Inhibitory Effects of the Natural Product Esculetin on Phytophthora capsici and Its Possible Mechanism.
Plant disease.
2021 Jun; 105(6):1814-1822. doi:
10.1094/pdis-09-20-2054-re
. [PMID: 33332162] - Smita Prajapati, Bhawna Tomar, Anjali Srivastava, Yogesh B Narkhede, Anil N Gaikwad, Amit Lahiri, Shrikant R Mulay. 6,7-Dihydroxycoumarin ameliorates crystal-induced necroptosis during crystal nephropathies by inhibiting MLKL phosphorylation.
Life sciences.
2021 Apr; 271(?):119193. doi:
10.1016/j.lfs.2021.119193
. [PMID: 33577856] - Prajitha Mohandas Edathara, Shivakanth Chintalapally, Venkata Krishna Kanth Makani, Chitrakshi Pant, Suresh Yerramsetty, Manohar D Rao, Manika Pal Bhadra. Inhibitory role of oleanolic acid and esculetin in HeLa cells involve multiple signaling pathways.
Gene.
2021 Mar; 771(?):145370. doi:
10.1016/j.gene.2020.145370
. [PMID: 33346097] - Aaro Jalkanen, Veera Lassheikki, Tommi Torsti, Elham Gharib, Marko Lehtonen, Risto O Juvonen. Tissue and interspecies comparison of catechol-O-methyltransferase mediated catalysis of 6-O-methylation of esculetin to scopoletin and its inhibition by entacapone and tolcapone.
Xenobiotica; the fate of foreign compounds in biological systems.
2021 Mar; 51(3):268-278. doi:
10.1080/00498254.2020.1853850
. [PMID: 33289420] - Yang-Liu Xia, Jing-Jing Wang, Shi-Yang Li, Yong Liu, Frank J Gonzalez, Ping Wang, Guang-Bo Ge. Synthesis and structure-activity relationship of coumarins as potent Mcl-1 inhibitors for cancer treatment.
Bioorganic & medicinal chemistry.
2021 01; 29(?):115851. doi:
10.1016/j.bmc.2020.115851
. [PMID: 33218896] - Yiming Wang, Weikaixin Kong, Liang Wang, Tianyu Zhang, Boyue Huang, Jia Meng, Baoxue Yang, Zhengwei Xie, Hong Zhou. Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis.
International journal of molecular sciences.
2020 Oct; 21(20):. doi:
10.3390/ijms21207695
. [PMID: 33080936] - Lovedeep Singh, Anudeep Kaur, Saweta Garg, Amrit Pal Singh, Rajbir Bhatti. Protective Effect of Esculetin, Natural Coumarin in Mice Model of Fibromyalgia: Targeting Pro-Inflammatory Cytokines and MAO-A.
Neurochemical research.
2020 Oct; 45(10):2364-2374. doi:
10.1007/s11064-020-03095-y
. [PMID: 32676949] - Beom Zoo Lee, Ik Soo Lee, Chau Ha Pham, Soon-Kyu Jeong, Sulhae Lee, KwangWon Hong, Hee Min Yoo. Apoptosis in Leukemic Cells Induced by Anti-proliferative Coumarin Isolated from the Stem Bark of Fraxinus rhynchophylla.
Journal of microbiology and biotechnology.
2020 Aug; 30(8):1214-1221. doi:
10.4014/jmb.2006.06022
. [PMID: 32699201] - Junyao Duan, Jing Shi, Xin Ma, Yundong Xuan, Pin Li, Hanfeng Wang, Yang Fan, Huijie Gong, Ling Wang, Yuewen Pang, Shaoqiang Pang, Yongji Yan. Esculetin inhibits proliferation, migration, and invasion of clear cell renal cell carcinoma cells.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2020 May; 125(?):110031. doi:
10.1016/j.biopha.2020.110031
. [PMID: 32164951] - Yuanyang Dong, Qihang Hou, Meng Sun, Jingjing Sun, Bingkun Zhang. Targeted Isolation of Antioxidant Constituents from Plantago asiatica L. and In Vitro Activity Assay.
Molecules (Basel, Switzerland).
2020 Apr; 25(8):. doi:
10.3390/molecules25081825
. [PMID: 32316264] - Chi-Na Zhao, Zong-Li Yao, Dan Yang, Jian Ke, Qing-Lai Wu, Jun-Kai Li, Xu-Dong Zhou. Chemical Constituents from Fraxinus hupehensis and Their Antifungal and Herbicidal Activities.
Biomolecules.
2020 01; 10(1):. doi:
10.3390/biom10010074
. [PMID: 31906487] - Geng Zhang, Yi Xu, Hui-Fang Zhou. Esculetin Inhibits Proliferation, Invasion, and Migration of Laryngeal Cancer In Vitro and In Vivo by Inhibiting Janus Kinas (JAK)-Signal Transducer and Activator of Transcription-3 (STAT3) Activation.
Medical science monitor : international medical journal of experimental and clinical research.
2019 Oct; 25(?):7853-7863. doi:
10.12659/msm.916246
. [PMID: 31630150] - Bingru Xu, Liyang Zhu, Jin Chu, Zhanqiang Ma, Qiang Fu, Wei Wei, Xueyang Deng, Shiping Ma. Esculetin improves cognitive impairments induced by transient cerebral ischaemia and reperfusion in mice via regulation of mitochondrial fragmentation and mitophagy.
Behavioural brain research.
2019 10; 372(?):112007. doi:
10.1016/j.bbr.2019.112007
. [PMID: 31238056] - Si-Xin Huang, Jun-Fei Mou, Qin Luo, Qing-Hu Mo, Xian-Li Zhou, Xiao Huang, Qing Xu, Xiang-Duan Tan, Xu Chen, Cheng-Qin Liang. Anti-Hepatitis B Virus Activity of Esculetin from Microsorium fortunei In Vitro and In Vivo.
Molecules (Basel, Switzerland).
2019 Sep; 24(19):. doi:
10.3390/molecules24193475
. [PMID: 31557836] - Xiaoyi Qi, Tongyi Dou, Zhongqiong Wang, Jianming Wu, Ling Yang, Su Zeng, Mingming Deng, Muhan Lü, Sicheng Liang. Inhibition of human cytochrome P450 2A6 by 7-hydroxycoumarin analogues: Analysis of the structure-activity relationship and isoform selectivity.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2019 Aug; 136(?):104944. doi:
10.1016/j.ejps.2019.05.022
. [PMID: 31163215] - Zhang Sen, Wang Weida, Ma Jie, Sheng Li, Zhang Dongming, Chen Xiaoguang. Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 anti-oxidation and smad2/3-mediated profibrosis.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2019 Apr; 57(?):385-395. doi:
10.1016/j.phymed.2018.12.045
. [PMID: 30849675] - Yuhuan Li, Wenjie Song, Xiaojun Ou, Guangkuo Luo, Yushan Xie, Rongjin Sun, Ying Wang, Xiaoxiao Qi, Ming Hu, Zhongqiu Liu, Lijun Zhu. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Determine the Disposition of Esculetin-7-O-Glucuronide and 4-Methylesculetin-7-O-Glucuronide.
Drug metabolism and disposition: the biological fate of chemicals.
2019 03; 47(3):203-214. doi:
10.1124/dmd.118.083493
. [PMID: 30602435] - Meijie Liu, Yan Bone And Joint Diseases Laboratory Li, Jinghua Pan, Hong Liu, Shaojun Wang, Dahong Ju, Ruiha Wang, Dong Bai, Jiaying Wu, Gang Sun, Qing Miao, Limei Liu. Effect of esculetin on bone metabolism in ovariectomized rats.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2018 12; 38(6):896-903. doi:
. [PMID: 32186137]
- Tainá Neves Ferreira, Daniela Pita-Pereira, Samara Graciane Costa, Reginaldo Peçanha Brazil, Caroline Silva Moraes, Hector Manuel Díaz-Albiter, Fernando Ariel Genta. Transmission blocking sugar baits for the control of Leishmania development inside sand flies using environmentally friendly beta-glycosides and their aglycones.
Parasites & vectors.
2018 Nov; 11(1):614. doi:
10.1186/s13071-018-3122-z
. [PMID: 30501613] - Renganathan Selvasundaram, Shanmugam Manoharan, Rajamanickam Buddhan, Mani Neelakandan, Radhakrishnan Murali Naidu. Chemopreventive potential of esculetin in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis.
Molecular and cellular biochemistry.
2018 Nov; 448(1-2):145-153. doi:
10.1007/s11010-018-3321-0
. [PMID: 29435870] - Yuanli Zhou, Xuanguo Zhang, Chao Li, Xin Yuan, Lihua Han, Zheng Li, Xiaobin Tan, Jie Song, Gang Wang, Xiaobin Jia, Liang Feng, Xiting Qiao, Jiping Liu. Research on the pharmacodynamics and mechanism of Fraxini Cortex on hyperuricemia based on the regulation of URAT1 and GLUT9.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2018 Oct; 106(?):434-442. doi:
10.1016/j.biopha.2018.06.163
. [PMID: 29990831] - Liang Yang, Lintong Wu, Xiaoyuan Yao, Shiyuan Zhao, Jiao Wang, Shili Li, Wei Ding. Hydroxycoumarins: New, effective plant-derived compounds reduce Ralstonia pseudosolanacearum populations and control tobacco bacterial wilt.
Microbiological research.
2018 Oct; 215(?):15-21. doi:
10.1016/j.micres.2018.05.011
. [PMID: 30172302] - Zhibin Wang, Wenbo Zhu, Hua Liu, Gaosong Wu, Mengmeng Song, Bingyou Yang, Deqiang Yang, Qiuhong Wang, Haixue Kuang. Simultaneous Determination of Aesculin, Aesculetin, Fraxetin, Fraxin and Polydatin in Beagle Dog Plasma by UPLC-ESI-MS/MS and Its Application in a Pharmacokinetic Study after Oral Administration Extracts of Ledum palustre L.
Molecules (Basel, Switzerland).
2018 Sep; 23(9):. doi:
10.3390/molecules23092285
. [PMID: 30205426] - Na-Hee Jeong, Eun-Ju Yang, Meiling Jin, Jong Yeong Lee, Young-Ae Choi, Pil-Hoon Park, Sang-Rae Lee, Sun-Uk Kim, Tae-Yong Shin, Taeg Kyu Kwon, Yong Hyun Jang, Kyung-Sik Song, Sang-Hyun Kim. Esculetin from Fraxinus rhynchophylla attenuates atopic skin inflammation by inhibiting the expression of inflammatory cytokines.
International immunopharmacology.
2018 Jun; 59(?):209-216. doi:
10.1016/j.intimp.2018.04.005
. [PMID: 29656211] - Sujana Katta, Santosh Karnewar, Devayani Panuganti, Mahesh Kumar Jerald, B K S Sastry, Srigiridhar Kotamraju. Mitochondria-targeted esculetin inhibits PAI-1 levels by modulating STAT3 activation and miR-19b via SIRT3: Role in acute coronary artery syndrome.
Journal of cellular physiology.
2018 Jan; 233(1):214-225. doi:
10.1002/jcp.25865
. [PMID: 28213977] - D Jiang, X Liu, J Hu. Topical administration of Esculetin as a potential therapy for experimental dry eye syndrome.
Eye (London, England).
2017 Dec; 31(12):1724-1732. doi:
10.1038/eye.2017.117
. [PMID: 28643798] - Jian Gong, Wei-Guo Zhang, Xiao-Fen Feng, Mei-Juan Shao, Chao Xing. Aesculetin (6,7-dihydroxycoumarin) exhibits potent and selective antitumor activity in human acute myeloid leukemia cells (THP-1) via induction of mitochondrial mediated apoptosis and cancer cell migration inhibition.
Journal of B.U.ON. : official journal of the Balkan Union of Oncology.
2017 Nov; 22(6):1563-1569. doi:
NULL
. [PMID: 29332353] - Binsong Han, Zhongquan Xin, Shasha Ma, Wenbin Liu, Bingyang Zhang, Lu Ran, Lunzhao Yi, Dabing Ren. Comprehensive characterization and identification of antioxidants in Folium Artemisiae Argyi using high-resolution tandem mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2017 Sep; 1063(?):84-92. doi:
10.1016/j.jchromb.2017.08.021
. [PMID: 28850890] - Anuradha Pandey, Priyank Raj, Santosh Kumar Goru, Almesh Kadakol, Vajir Malek, Nisha Sharma, Anil Bhanudas Gaikwad. Esculetin ameliorates hepatic fibrosis in high fat diet induced non-alcoholic fatty liver disease by regulation of FoxO1 mediated pathway.
Pharmacological reports : PR.
2017 Aug; 69(4):666-672. doi:
10.1016/j.pharep.2017.02.005
. [PMID: 28527877] - Chengyuan Liang, Weihui Ju, Shaomeng Pei, Yonghong Tang, Yadong Xiao. Pharmacological Activities and Synthesis of Esculetin and Its Derivatives: A Mini-Review.
Molecules (Basel, Switzerland).
2017 Mar; 22(3):. doi:
10.3390/molecules22030387
. [PMID: 28257115] - Yang Wang, Chennong Xiang, Ting Li, Piming Ma, Huiyu Bai, Yi Xie, Mingqing Chen, Weifu Dong. Enhanced Thermal Stability and UV-Shielding Properties of Poly(vinyl alcohol) Based on Esculetin.
The journal of physical chemistry. B.
2017 02; 121(5):1148-1157. doi:
10.1021/acs.jpcb.6b11453
. [PMID: 28085278] - Lianrong Yang, Xin Meng, Xiaojin Yu, Haixue Kuang. Simultaneous determination of anemoside B4, phellodendrine, berberine, palmatine, obakunone, esculin, esculetin in rat plasma by UPLC-ESI-MS/MS and its application to a comparative pharmacokinetic study in normal and ulcerative colitis rats.
Journal of pharmaceutical and biomedical analysis.
2017 Feb; 134(?):43-52. doi:
10.1016/j.jpba.2016.11.021
. [PMID: 27875787] - Li Li, Ilana Greene, Benjamin Readhead, Madhav C Menon, Brian A Kidd, Andrew V Uzilov, Chengguo Wei, Nimrod Philippe, Bernd Schroppel, John Cijiang He, Rong Chen, Joel T Dudley, Barbara Murphy. Novel Therapeutics Identification for Fibrosis in Renal Allograft Using Integrative Informatics Approach.
Scientific reports.
2017 01; 7(?):39487. doi:
10.1038/srep39487
. [PMID: 28051114] - Sun Haeng Park, Yoon-Young Sung, Kyoung Jin Nho, Dong Sun Kim, Ho Kyoung Kim. Effects of Viola mandshurica on Atherosclerosis and Hepatic Steatosis in ApoE[Formula: see text] via the AMPK Pathway.
The American journal of Chinese medicine.
2017; 45(4):757-772. doi:
10.1142/s0192415x17500409
. [PMID: 28514904] - Ra-Yeong Choi, Ju Ri Ham, Mi-Kyung Lee. Esculetin prevents non-alcoholic fatty liver in diabetic mice fed high-fat diet.
Chemico-biological interactions.
2016 Dec; 260(?):13-21. doi:
10.1016/j.cbi.2016.10.013
. [PMID: 27769711] - Rui-Xue Xu, Shuai Gao, Yu Zhao, Hong-Xiang Lou, Ai-Xia Cheng. Functional characterization of a Mg(2+)-dependent O-methyltransferase with coumarin as preferred substrate from the liverwort Plagiochasma appendiculatum.
Plant physiology and biochemistry : PPB.
2016 Sep; 106(?):269-77. doi:
10.1016/j.plaphy.2016.05.018
. [PMID: 27213954] - Sudhakar Raja Subramaniam, Elizabeth M Ellis. Umbelliferone and esculetin protect against N-nitrosodiethylamine-induced hepatotoxicity in rats.
Cell biology international.
2016 Jul; 40(7):761-9. doi:
10.1002/cbin.10611
. [PMID: 27080985] - Santosh Karnewar, Sathish Babu Vasamsetti, Raja Gopoju, Anantha Koteswararao Kanugula, Sai Krishna Ganji, Sripadi Prabhakar, Nandini Rangaraj, Nitin Tupperwar, Jerald Mahesh Kumar, Srigiridhar Kotamraju. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis.
Scientific reports.
2016 Apr; 6(?):24108. doi:
10.1038/srep24108
. [PMID: 27063143] - Long Hongyan. Esculetin Attenuates Th2 and Th17 Responses in an Ovalbumin-Induced Asthmatic Mouse Model.
Inflammation.
2016 Apr; 39(2):735-43. doi:
10.1007/s10753-015-0300-4
. [PMID: 26797918] - Lei Wu, Xueqin Li, Haifeng Wu, Wei Long, Xiaojian Jiang, Ting Shen, Qian Qiang, Chuanling Si, Xinfeng Wang, Yunyao Jiang, Weicheng Hu. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells.
International journal of molecular sciences.
2016 Mar; 17(3):315. doi:
10.3390/ijms17030315
. [PMID: 26938526] - Kunjbihari Sulakhiya, Gohil Pratik Keshavlal, Babul B Bezbaruah, Shubham Dwivedi, Satendra Singh Gurjar, Nitin Munde, Ashok Jangra, Mangala Lahkar, Ranadeep Gogoi. Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin.
Neuroscience letters.
2016 Jan; 611(?):106-11. doi:
10.1016/j.neulet.2015.11.031
. [PMID: 26620836] - Hui Pan, Bao-Hui Wang, Wang Lv, Yan Jiang, Lei He. Esculetin induces apoptosis in human gastric cancer cells through a cyclophilin D-mediated mitochondrial permeability transition pore associated with ROS.
Chemico-biological interactions.
2015 Dec; 242(?):51-60. doi:
10.1016/j.cbi.2015.09.015
. [PMID: 26388407] - Zaizhi Liu, Huiyan Gu, Lei Yang. An approach of ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergistic extraction for two coumarins preparation from Cortex fraxini.
Journal of chromatography. A.
2015 Oct; 1417(?):8-20. doi:
10.1016/j.chroma.2015.09.037
. [PMID: 26411478] - Almesh Kadakol, Anuradha Pandey, Santosh Kumar Goru, Vajir Malek, Anil Bhanudas Gaikwad. Insulin sensitizing and cardioprotective effects of Esculetin and Telmisartan combination by attenuating Ang II mediated vascular reactivity and cardiac fibrosis.
European journal of pharmacology.
2015 Oct; 765(?):591-7. doi:
10.1016/j.ejphar.2015.09.035
. [PMID: 26409041] - Tarique Sarwar, Mohammed Amir Husain, Sayeed Ur Rehman, Hassan Mubarak Ishqi, Mohammad Tabish. Multi-spectroscopic and molecular modelling studies on the interaction of esculetin with calf thymus DNA.
Molecular bioSystems.
2015 Feb; 11(2):522-31. doi:
10.1039/c4mb00636d
. [PMID: 25424306] - Przemyslaw Rzodkiewicz, Emilia Gasinska, Slawomir Maslinski, Magdalena Bujalska-Zadrozny. Antinociceptive properties of esculetin in non-inflammatory and inflammatory models of pain in rats.
Clinical and experimental pharmacology & physiology.
2015 Feb; 42(2):213-9. doi:
10.1111/1440-1681.12346
. [PMID: 25425056] - Edson Luis Maistro, Eduardo de Souza Marques, Rafael Palhano Fedato, Flora Tolentino, Chayene de Andrade Cezário da Silva, Marcela Stefanini Ferreira Tsuboy, Flavia Aparecida Resende, Eliana Aparecida Varanda. In vitro assessment of mutagenic and genotoxic effects of coumarin derivatives 6,7-dihydroxycoumarin and 4-methylesculetin.
Journal of toxicology and environmental health. Part A.
2015; 78(2):109-18. doi:
10.1080/15287394.2014.943865
. [PMID: 25424619] - Yu-jie Wang, Rong Tan, Li-shi Zhou, Rui Gu, Yi Zhang. [Phenylpropanoids from Saussureae hieracioides].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2015 Jan; 38(1):101-3. doi:
. [PMID: 26214878]
- Ayaka Nakajima, Yuka Yamamoto, Nao Yoshinaka, Mayuri Namba, Hirotaka Matsuo, Tetsuya Okuyama, Emi Yoshigai, Tadayoshi Okumura, Mikio Nishizawa, Yukinobu Ikeya. A new flavanone and other flavonoids from green perilla leaf extract inhibit nitric oxide production in interleukin 1β-treated hepatocytes.
Bioscience, biotechnology, and biochemistry.
2015; 79(1):138-46. doi:
10.1080/09168451.2014.962474
. [PMID: 25266050] - Massimiliano Tattini, Martina Di Ferdinando, Cecilia Brunetti, Andrea Goti, Susanna Pollastri, Chandra Bellasio, Cristiana Giordano, Alessio Fini, Giovanni Agati. Esculetin and esculin (esculetin 6-O-glucoside) occur as inclusions and are differentially distributed in the vacuole of palisade cells in Fraxinus ornus leaves: a fluorescence microscopy analysis.
Journal of photochemistry and photobiology. B, Biology.
2014 Nov; 140(?):28-35. doi:
10.1016/j.jphotobiol.2014.06.012
. [PMID: 25063983] - Minglan Yu, Ailing Sun, Yongqing Zhang, Renmin Liu. Purification of coumarin compounds from Cortex fraxinus by adsorption chromatography.
Journal of chromatographic science.
2014 Oct; 52(9):1033-7. doi:
10.1093/chromsci/bmt153
. [PMID: 24114664] - Yuheng Lin, Yajun Yan. Biotechnological production of plant-specific hydroxylated phenylpropanoids.
Biotechnology and bioengineering.
2014 Sep; 111(9):1895-9. doi:
10.1002/bit.25237
. [PMID: 24752627] - Younghwa Kim, Yooheon Park, Seulgi Namkoong, Junsoo Lee. Esculetin inhibits the inflammatory response by inducing heme oxygenase-1 in cocultured macrophages and adipocytes.
Food & function.
2014 Sep; 5(9):2371-7. doi:
10.1039/c4fo00351a
. [PMID: 25088305] - Nicole B Schmid, Ricardo F H Giehl, Stefanie Döll, Hans-Peter Mock, Nadine Strehmel, Dierk Scheel, Xiaole Kong, Robert C Hider, Nicolaus von Wirén. Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis.
Plant physiology.
2014 Jan; 164(1):160-72. doi:
10.1104/pp.113.228544
. [PMID: 24246380] - Aniket Karmase, Sneha Jagtap, Kamlesh K Bhutani. Anti adipogenic activity of Aegle marmelos Correa.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2013 Nov; 20(14):1267-71. doi:
10.1016/j.phymed.2013.07.011
. [PMID: 23972792] - Pravin O Patil, Sanjay B Bari, Sandip D Firke, Prashant K Deshmukh, Shailesh T Donda, Dilip A Patil. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer's disease.
Bioorganic & medicinal chemistry.
2013 May; 21(9):2434-50. doi:
10.1016/j.bmc.2013.02.017
. [PMID: 23517722] - Dhamodaran Prabakaran, Natarajan Ashokkumar. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats.
Biochimie.
2013 Feb; 95(2):366-73. doi:
10.1016/j.biochi.2012.10.008
. [PMID: 23079336] - Guang-Ya Zheng, Yu-Ying Ma, Xiang-Rong Mu, Xiao-Lin Lu, Meng Zhai. [Study on the chemical constituents of Lonicera similes].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2012 Nov; 35(11):1792-5. doi:
"
. [PMID: 23627091] - Ying-yi Li, Ye-ying Song, Chang-hui Liu, Xiao-tao Huang, Xia Zheng, Neng Li, Mei-li Xu, Sui-qing Mi, Ning-sheng Wang. Simultaneous determination of esculin and its metabolite esculetin in rat plasma by LC-ESI-MS/MS and its application in pharmacokinetic study.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2012 Oct; 907(?):27-33. doi:
10.1016/j.jchromb.2012.08.027
. [PMID: 22999477] - Eun-Sun Yun, Sung-Kyu Park, Bog-Soon Kim, Young-Zoo Chae, Soo-Min Cho, Hee Yi, Hee-Jung Cho, Ho-Chul Shin. Determination of the esculetin contents of medicinal plants by liquid chromatography-tandem mass spectrometry.
Biomedical chromatography : BMC.
2012 Oct; 26(10):1247-51. doi:
10.1002/bmc.2686
. [PMID: 22383249] - Alessio Fini, Lucia Guidi, Francesco Ferrini, Cecilia Brunetti, Martina Di Ferdinando, Stefano Biricolti, Susanna Pollastri, Luca Calamai, Massimiliano Tattini. Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: an excess light stress affair?.
Journal of plant physiology.
2012 Jul; 169(10):929-39. doi:
10.1016/j.jplph.2012.02.014
. [PMID: 22537713] - Hyun Ah Jung, Jin Ju Park, Md Nurul Islam, Seung Eun Jin, Byung-Sun Min, Je-Hyun Lee, Hee Sook Sohn, Jae Sue Choi. Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation.
Archives of pharmacal research.
2012 Jun; 35(6):1021-35. doi:
10.1007/s12272-012-0610-0
. [PMID: 22870812] - M V Potapovich, D I Metelitsa, O I Shadyro. [Antioxidant activity of hydroxy derivatives of coumarin].
Prikladnaia biokhimiia i mikrobiologiia.
2012 May; 48(3):282-8. doi:
. [PMID: 22834298]
- Amani S Awaad, Nabilah A Al-Jaber, Gamal A Soliman, Mounerah R Al-Outhman, Mohamed E Zain, John E Moses, Reham M El-Meligy. New biological activities of Casimiroa edulis leaf extract and isolated compounds.
Phytotherapy research : PTR.
2012 Mar; 26(3):452-7. doi:
10.1002/ptr.3690
. [PMID: 22173732] - Amani S Awaad, Gamal A Soliman, Dalia F El-Sayed, Omimah D El-Gindi, Saleh I Alqasoumi. Hepatoprotective activity of Cyperus alternifolius on carbon tetrachloride-induced hepatotoxicity in rats.
Pharmaceutical biology.
2012 Feb; 50(2):155-61. doi:
10.3109/13880209.2011.580351
. [PMID: 22235884] - Damiana R Vianna, Guilherme Bubols, Gabriela Meirelles, Bárbara V Silva, Alessandra Da Rocha, Maurício Lanznaster, José Maria Monserrat, Solange Cristina Garcia, Gilsane Von Poser, Vera Lucia Eifler-Lima. Evaluation of the antioxidant capacity of synthesized coumarins.
International journal of molecular sciences.
2012; 13(6):7260-7270. doi:
10.3390/ijms13067260
. [PMID: 22837692] - Lei Yang, Xiaowei Sun, Fengjian Yang, Chunjian Zhao, Lin Zhang, Yuangang Zu. Application of ionic liquids in the microwave-assisted extraction of proanthocyanidins from Larix gmelini bark.
International journal of molecular sciences.
2012; 13(4):5163-5178. doi:
10.3390/ijms13045163
. [PMID: 22606036] - Liangbin Zhou, Tian Tian, Bailin Xue, Liyan Song, Ling Liu, Rongmin Yu. Biosynthesis of coumarin glycosides by transgenic hairy roots of Polygonum multiflorum.
Bioscience, biotechnology, and biochemistry.
2012; 76(5):1008-10. doi:
10.1271/bbb.110347
. [PMID: 22738975] - Mukadder Atmaca, Hakkı Murat Bilgin, Basra Deniz Obay, Hüda Diken, Mustafa Kelle, Ebru Kale. The hepatoprotective effect of coumarin and coumarin derivates on carbon tetrachloride-induced hepatic injury by antioxidative activities in rats.
Journal of physiology and biochemistry.
2011 Dec; 67(4):569-76. doi:
10.1007/s13105-011-0103-5
. [PMID: 21656273] - Jeannette Vera, Jorge Castro, Alberto Gonzalez, Alejandra Moenne. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants.
Marine drugs.
2011 Dec; 9(12):2514-25. doi:
10.3390/md9122514
. [PMID: 22363237] - Yifang Sun, Lili Du, Le Zhou, Wugang Zhang, Fang Miao, Xinjuan Yang, Huiling Geng. [Study on antibacterial active components from Viola yedoensis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2011 Oct; 36(19):2666-71. doi:
10.4268/cjcmm20111913
. [PMID: 22242426] - Zhi-Gang Yang, Liu-Nan Jia, Yan Shen, Atsuko Ohmura, Susumu Kitanaka. Inhibitory effects of constituents from Euphorbia lunulata on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells.
Molecules (Basel, Switzerland).
2011 Sep; 16(10):8305-18. doi:
10.3390/molecules16108305
. [PMID: 21959301] - Jian-Mei Li, Xian Zhang, Xing Wang, Yong-Chang Xie, Ling-Dong Kong. Protective effects of cortex fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice.
European journal of pharmacology.
2011 Sep; 666(1-3):196-204. doi:
10.1016/j.ejphar.2011.05.021
. [PMID: 21620826] - Oh Song Kwon, Jae Sue Choi, Md Nurul Islam, Yeong Shik Kim, Hyun Pyo Kim. Inhibition of 5-lipoxygenase and skin inflammation by the aerial parts of Artemisia capillaris and its constituents.
Archives of pharmacal research.
2011 Sep; 34(9):1561-9. doi:
10.1007/s12272-011-0919-0
. [PMID: 21975819] - Sumayya Saied, Shazia Shah, Zulfiqar Ali, Ajmal Khan, Bishnu P Marasini, Muhammad Iqbal Choudhary. Chemical constituents of Cichorium intybus and their inhibitory effects against urease and alpha-chymotrypsin enzymes.
Natural product communications.
2011 Aug; 6(8):1117-20. doi:
. [PMID: 21922913]
- Vivek Madhukar Surse, Jeena Gupta, Kulbhushan Tikoo. Esculetin induced changes in Mmp13 and Bmp6 gene expression and histone H3 modifications attenuate development of glomerulosclerosis in diabetic rats.
Journal of molecular endocrinology.
2011 Jun; 46(3):245-54. doi:
10.1530/jme-10-0154
. [PMID: 21450970] - Sora Han, Ki Sook Oh, Yoosik Yoon, Jeong Su Park, Yun Sun Park, Jeong Hye Han, Ae Lee Jeong, Sunyi Lee, Miyoung Park, Yeon A Choi, Jong Seok Lim, Young Yang. Herbal extract THI improves metabolic abnormality in mice fed a high-fat diet.
Nutrition research and practice.
2011 Jun; 5(3):198-204. doi:
10.4162/nrp.2011.5.3.198
. [PMID: 21779522]