Steviol (BioDeep_00000416114)

Main id: BioDeep_00000000426

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(4R,4aS,6aR,9S,11aR,11bS)-9-hydroxy-4,11b-dimethyl-8-methylenetetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid

化学式: C20H30O3 (318.2195)
中文名称: 甜菊醇, 甜叶菊甙元
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C=C1CC23CCC4C(C)(C(=O)O)CCCC4(C)C2CCC1(O)C3
InChI: InChI=1S/C20H30O3/c1-13-11-19-9-5-14-17(2,7-4-8-18(14,3)16(21)22)15(19)6-10-20(13,23)12-19/h14-15,23H,1,4-12H2,2-3H3,(H,21,22)/t14-,15-,17+,18+,19+,20-/m0/s1

描述信息

Steviol is an ent-kaurane diterpenoid that is 5beta,8alpha,9beta,10alpha-kaur-16-en-18-oic acid in which the hydrogen at position 13 has been replaced by a hydroxy group. It has a role as an antineoplastic agent. It is a tetracyclic diterpenoid, a tertiary allylic alcohol, a monocarboxylic acid, a bridged compound and an ent-kaurane diterpenoid. It is a conjugate acid of a steviol(1-).
Steviol is a natural product found in Ceriops decandra, Cucurbita, and other organisms with data available.
Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1].
Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1].

同义名列表

30 个代谢物同义名

(4R,4aS,6aR,9S,11aR,11bS)-9-hydroxy-4,11b-dimethyl-8-methylenetetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid; (1R,4S,5R,9S,10R,13S)-13-hydroxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylic acid; 13alpha-hydroxy-5beta,8alpha,9beta,10alpha-kaur-16-en-18-oic acid; Kaur-16-en-18-oic acid, 13-hydroxy-, (4.alpha.)-; Kaur-16-en-18-oic acid, 13-hydroxy-, (14-alpha)-; Kaur-16-en-18-oic acid, 13-hydroxy-, (4alpha)-; (4.ALPHA.)-13-HYDROXYKAUR-16-EN-18-OIC ACID; (14-alpha)-13-Hydroxykaur-16-en-18-oic acid; ent-13-Hydroxy-kauran-16-en-19-oic acid; (4R)-13-Hydroxykaur-16-en-18-oic acid; Steviol (Hydroxydehydrostevic acid); Steviol, analytical standard; QFVOYBUQQBFCRH-VQSWZGCSSA-N; Hydroxydehydrostevic acid; 13-Hydroxykaurenoic acid; kaur-16-en-18-oic acid; REBAUDIOSIDES AGLYCON; steviol, (+,-)-isomer; steviol, 3H-labeled; STEVIOSIDE AGLYCON; Steviol hydrate; STEVIOL [MI]; Tox21_501074; (-)-Steviol; Stevioside; Steviol; 13-hydroxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carboxylic acid; Kaur-16-en-18-oic acid, 13-hydroxy-, (4alpha )-; 13-Hydroxy-kaur-16-en-18-Oic acid; Steviol



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

39 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 BCL2, CASP3, CFTR, MTOR, NAP1L1, NFKB1, NR3C1, PKD1, SESN1, TLR4
Peripheral membrane protein 2 CYP1B1, MTOR
Endosome membrane 4 CFTR, CLCN5, LAMP2, TLR4
Endoplasmic reticulum membrane 5 BCL2, CFTR, CYP1B1, MTOR, UGT2B7
Nucleus 10 BCL2, CASP3, CFTR, MTOR, NAP1L1, NFKB1, NR1H4, NR3C1, PKD1, SESN1
cytosol 9 BCL2, CASP3, CFTR, CLCN5, MTOR, NFKB1, NR3C1, PKD1, SESN1
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
trans-Golgi network 2 LAMP2, PKD1
centrosome 1 NR3C1
nucleoplasm 6 CASP3, MTOR, NFKB1, NR1H4, NR3C1, SESN1
RNA polymerase II transcription regulator complex 1 NR1H4
Cell membrane 6 CFTR, CLCN5, LAMP2, PKD1, TLR4, TNF
Cytoplasmic side 1 MTOR
Early endosome membrane 1 CFTR
Multi-pass membrane protein 5 ABCC3, CFTR, CLCN5, PKD1, SLC22A8
Golgi apparatus membrane 2 CLCN5, MTOR
Synapse 1 NR3C1
cell cortex 1 PKD1
cell surface 4 CFTR, PKD1, TLR4, TNF
glutamatergic synapse 1 CASP3
Golgi apparatus 2 CLCN5, PKD1
Golgi membrane 4 CLCN5, INS, MTOR, PKD1
lysosomal membrane 4 CFTR, CLCN5, LAMP2, MTOR
neuronal cell body 2 CASP3, TNF
synaptic vesicle 1 CLCN5
Lysosome 2 LAMP2, MTOR
plasma membrane 8 ABCC3, CFTR, CLCN5, LAMP2, PKD1, SLC22A8, TLR4, TNF
Membrane 12 ABCC3, BCL2, CFTR, CLCN5, CYP1B1, LAMP2, MTOR, NAP1L1, NR3C1, PKD1, TLR4, UGT2B7
apical plasma membrane 2 CFTR, SLC22A8
basolateral plasma membrane 3 ABCC3, PKD1, SLC22A8
extracellular exosome 3 LAMP2, PKD1, SLC22A8
Lysosome membrane 2 LAMP2, MTOR
endoplasmic reticulum 2 BCL2, PKD1
extracellular space 3 INS, LAMP2, TNF
lysosomal lumen 1 LAMP2
perinuclear region of cytoplasm 3 LAMP2, PKD1, TLR4
mitochondrion 4 BCL2, CYP1B1, NFKB1, NR3C1
protein-containing complex 3 BCL2, CFTR, NR3C1
intracellular membrane-bounded organelle 2 CYP1B1, LAMP2
Microsome membrane 2 CYP1B1, MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 LAMP2, TLR4
Secreted 1 INS
extracellular region 3 INS, NFKB1, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 2 BCL2, UGT2B7
mitochondrial outer membrane 2 BCL2, MTOR
mitochondrial matrix 1 NR3C1
transcription regulator complex 1 NFKB1
Cell projection, cilium 1 PKD1
ciliary membrane 1 PKD1
motile cilium 1 PKD1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NR3C1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 TLR4, TNF
Z disc 1 PKD1
Early endosome 3 CFTR, CLCN5, TLR4
apical part of cell 1 CLCN5
cell-cell junction 1 PKD1
recycling endosome 2 CFTR, TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 PKD1
Apical cell membrane 1 CFTR
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton, spindle 1 NR3C1
spindle 1 NR3C1
Nucleus, PML body 1 MTOR
PML body 1 MTOR
lateral plasma membrane 2 PKD1, SLC22A8
nuclear speck 1 NR3C1
Cell projection, ruffle 1 TLR4
Late endosome 1 LAMP2
ruffle 1 TLR4
receptor complex 2 NR1H4, TLR4
cilium 1 PKD1
chromatin 4 NAP1L1, NFKB1, NR1H4, NR3C1
Cytoplasmic vesicle, autophagosome membrane 1 LAMP2
Late endosome membrane 1 LAMP2
autophagosome membrane 2 LAMP2, PKD1
phagocytic cup 2 TLR4, TNF
phagocytic vesicle membrane 1 LAMP2
Chromosome 1 NR3C1
[Isoform 3]: Nucleus 1 NR1H4
Golgi apparatus, trans-Golgi network 1 PKD1
Basolateral cell membrane 2 ABCC3, SLC22A8
fibrillar center 1 SESN1
nuclear envelope 1 MTOR
Recycling endosome membrane 1 CFTR
Endomembrane system 2 MTOR, PKD1
endosome lumen 1 INS
chloride channel complex 1 CFTR
Nucleus, nucleoplasm 1 NR3C1
Melanosome 1 NAP1L1
Golgi-associated vesicle membrane 2 CFTR, PKD1
euchromatin 1 NR1H4
myelin sheath 1 BCL2
basal plasma membrane 1 ABCC3
platelet dense granule membrane 1 LAMP2
lipopolysaccharide receptor complex 1 TLR4
secretory granule lumen 2 INS, NFKB1
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
specific granule lumen 1 NFKB1
transport vesicle 1 INS
azurophil granule membrane 1 LAMP2
Secreted, extracellular exosome 1 PKD1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
clathrin-coated endocytic vesicle membrane 1 CFTR
calcium channel complex 1 PKD1
[Isoform 2]: Nucleus 1 NR1H4
[Isoform 1]: Nucleus 1 NR1H4
Basal cell membrane 1 ABCC3
ficolin-1-rich granule membrane 1 LAMP2
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, phagosome 1 MTOR
[Isoform 4]: Nucleus 1 NR1H4
[Isoform Alpha]: Cytoplasm 1 NR3C1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 LAMP2
[Isoform Beta]: Nucleus 1 NR3C1
[Isoform Alpha-B]: Nucleus 1 NR3C1
BAD-BCL-2 complex 1 BCL2
migrasome 1 PKD1
chaperone-mediated autophagy translocation complex 1 LAMP2
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1
cation channel complex 1 PKD1
polycystin complex 1 PKD1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Shan Li, Shuangshuang Luo, Xingying Zhao, Song Gao, Xiaoyu Shan, Jian Lu, Jingwen Zhou. Efficient Conversion of Stevioside to Rebaudioside M in Saccharomyces cerevisiae by a Engineering Hydrolase System and Prolonging the Growth Cycle. Journal of agricultural and food chemistry. 2024 Apr; 72(14):8140-8148. doi: 10.1021/acs.jafc.4c01483. [PMID: 38563232]
  • Xiuqiong Zhang, Tiantian Chen, Zaifang Li, Xinxin Wang, Han Bao, Chunxia Zhao, Xinjie Zhao, Xin Lu, Guowang Xu. Fine-Scale Characterization of Plant Diterpene Glycosides Using Energy-Resolved Untargeted LC-MS/MS Metabolomics Analysis. Journal of the American Society for Mass Spectrometry. 2024 Mar; 35(3):603-612. doi: 10.1021/jasms.3c00420. [PMID: 38391322]
  • Samuel Simoni, Alberto Vangelisti, Clarissa Clemente, Gabriele Usai, Marco Santin, Maria Ventimiglia, Flavia Mascagni, Lucia Natali, Luciana G Angelini, Andrea Cavallini, Silvia Tavarini, Tommaso Giordani. Transcriptomic Analyses Reveal Insights into the Shared Regulatory Network of Phenolic Compounds and Steviol Glycosides in Stevia rebaudiana. International journal of molecular sciences. 2024 Feb; 25(4):. doi: 10.3390/ijms25042136. [PMID: 38396813]
  • Yu Lin, Meng Liang, Hao Pang, Zilong Wang, Hai Bi, Yutuo Wei, Liqin Du. Production of Gibberellins via a Non-Natural Pathway Using Steviol as a Substrate. Journal of agricultural and food chemistry. 2024 Jan; 72(1):540-548. doi: 10.1021/acs.jafc.3c06932. [PMID: 38131295]
  • Jakub Michał Kurek, Joanna Mikołajczyk-Stecyna, Zbigniew Krejpcio. Steviol glycosides from Stevia rebaudiana Bertoni mitigate lipid metabolism abnormalities in diabetes by modulating selected gene expression - An in vivo study. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Oct; 166(?):115424. doi: 10.1016/j.biopha.2023.115424. [PMID: 37677968]
  • Pritom Biswas, Ankita Kumari, Arpan Modi, Nitish Kumar. Improvement and Regulation of Steviol Glycoside Biosynthesis in Stevia rebaudiana Bertoni. Gene. 2023 Sep; ?(?):147809. doi: 10.1016/j.gene.2023.147809. [PMID: 37722610]
  • Takehiro Watanabe, Kohki Fujikawa, Soichiro Urai, Kazunari Iwaki, Tadayoshi Hirai, Katsuro Miyagawa, Hiroshi Uratani, Tohru Yamagaki, Koji Nagao, Yoshiaki Yokoo, Keiko Shimamoto. Identification, Chemical Synthesis, and Sweetness Evaluation of Rhamnose or Xylose Containing Steviol Glycosides of Stevia (Stevia rebaudiana) Leaves. Journal of agricultural and food chemistry. 2023 Jul; ?(?):. doi: 10.1021/acs.jafc.3c01753. [PMID: 37432401]
  • Vasile Coman, Violeta-Florina Scurtu, Cristina Coman, Doina Clapa, Ștefania D Iancu, Nicolae Leopold, Loredana-Florina Leopold. Effects of polystyrene nanoplastics exposure on in vitro-grown Stevia rebaudiana plants. Plant physiology and biochemistry : PPB. 2023 Apr; 197(?):107634. doi: 10.1016/j.plaphy.2023.03.011. [PMID: 36965317]
  • Alireza S Tehranian, Hossein Askari, Hassan Rezadoost. The effect of alginate as an elicitor on transcription of steviol glycosides biosynthesis pathway related key genes and sweeteners content in in vitro cultured Stevia rebaudiana. Molecular biology reports. 2023 Mar; 50(3):2283-2291. doi: 10.1007/s11033-022-07906-z. [PMID: 36576674]
  • Tulay Ozcan, Ezgi Eroglu. In vitro fermentation assay on the bifidogenic effect of steviol glycosides of Stevia rebaudiana plant for the development of dietetic novel products. Preparative biochemistry & biotechnology. 2023 Jan; ?(?):1-10. doi: 10.1080/10826068.2023.2169935. [PMID: 36709420]
  • Nazima Nasrullah, Javed Ahmad, Monica Saifi, Irum Gul Shah, Umara Nissar, Syed Naved Quadri, Kudsiya Ashrafi, Malik Zainul Abdin. Enhancement of diterpenoid steviol glycosides by co-overexpressing SrKO and SrUGT76G1 genes in Stevia rebaudiana Bertoni. PloS one. 2023; 18(2):e0260085. doi: 10.1371/journal.pone.0260085. [PMID: 36745615]
  • Chao Xu, E Ou, Zhiyin Li, Zhenyu Chen, Qi Jia, Xiaojia Xu, Liping Luo, Geng Xu, Jiansong Liu, Zhengqiang Yuan, Yu Zhao. Synthesis and in vivo evaluation of new steviol derivatives that protect against cardiomyopathy by inhibiting ferroptosis. Bioorganic chemistry. 2022 12; 129(?):106142. doi: 10.1016/j.bioorg.2022.106142. [PMID: 36150232]
  • Vartika Srivastava, Rakhi Chaturvedi. An interdisciplinary approach towards sustainable and higher steviol glycoside production from in vitro cultures of Stevia rebaudiana. Journal of biotechnology. 2022 Nov; 358(?):76-91. doi: 10.1016/j.jbiotec.2022.08.018. [PMID: 36075450]
  • Christos Velesiotis, Marinos Kanellakis, Demitrios H Vynios. Steviol glycosides affect functional properties and macromolecular expression of breast cancer cells. IUBMB life. 2022 10; 74(10):1012-1028. doi: 10.1002/iub.2669. [PMID: 36054915]
  • Jinzhu Zhang, Minghai Tang, Yujie Chen, Dan Ke, Jie Zhou, Xinyu Xu, Wenxian Yang, Jianxiong He, Haohao Dong, Yuquan Wei, James H Naismith, Yi Lin, Xiaofeng Zhu, Wei Cheng. Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides. Nature communications. 2021 12; 12(1):7030. doi: 10.1038/s41467-021-27144-4. [PMID: 34857750]
  • Rhubaniya Mahendran, Soo Kun Lim, Kien Chai Ong, Kek Heng Chua, Hwa Chia Chai. Natural-derived compounds and their mechanisms in potential autosomal dominant polycystic kidney disease (ADPKD) treatment. Clinical and experimental nephrology. 2021 Nov; 25(11):1163-1172. doi: 10.1007/s10157-021-02111-x. [PMID: 34254206]
  • Yuming Sun, Xiaoyang Xu, Ting Zhang, Yongheng Yang, Haiying Tong, Haiyan Yuan. Comparative transcriptome analysis provides insights into steviol glycoside synthesis in stevia (Stevia rebaudiana Bertoni) leaves under nitrogen deficiency. Plant cell reports. 2021 Sep; 40(9):1709-1722. doi: 10.1007/s00299-021-02733-1. [PMID: 34129077]
  • Luciana M Sergio, Yandara A Martins, Jackson L Amaral, Victor L B França, Camila F de Freitas, Antônio Medina Neto, Noboru Hioka, Maria I Ravanelli, Cecília Mareze-Costa, Sílvio Claudio da Costa, Valder N Freire, Kellen Brunaldi. Molecular insight on the binding of stevia glycosides to bovine serum albumin. Chemico-biological interactions. 2021 Aug; 344(?):109526. doi: 10.1016/j.cbi.2021.109526. [PMID: 34023281]
  • Maria Margarida Ribeiro, Tatiana Diamantino, Joana Domingues, Ílio Montanari, Marcos Nopper Alves, José Carlos Gonçalves. Stevia rebaudiana germplasm characterization using microsatellite markers and steviol glycosides quantification by HPLC. Molecular biology reports. 2021 Mar; 48(3):2573-2582. doi: 10.1007/s11033-021-06308-x. [PMID: 33811576]
  • Jianhui Zhu, Jiaxin Liu, Zhengyi Li, Ranhui Xi, Yuqing Li, Xian Peng, Xin Xu, Xin Zheng, Xuedong Zhou. The Effects of Nonnutritive Sweeteners on the Cariogenic Potential of Oral Microbiome. BioMed research international. 2021; 2021(?):9967035. doi: 10.1155/2021/9967035. [PMID: 34258285]
  • Victor Markus, Orr Share, Kerem Teralı, Nazmi Ozer, Robert S Marks, Ariel Kushmaro, Karina Golberg. Anti-Quorum Sensing Activity of Stevia Extract, Stevioside, Rebaudioside A and Their Aglycon Steviol. Molecules (Basel, Switzerland). 2020 Nov; 25(22):. doi: 10.3390/molecules25225480. [PMID: 33238612]
  • Sidd Purkayastha, David Kwok. Metabolic fate in adult and pediatric population of steviol glycosides produced from stevia leaf extract by different production technologies. Regulatory toxicology and pharmacology : RTP. 2020 Oct; 116(?):104727. doi: 10.1016/j.yrtph.2020.104727. [PMID: 32745585]
  • Gertrud E Morlock, Julia Heil. HI-HPTLC-UV/Vis/FLD-HESI-HRMS and bioprofiling of steviol glycosides, steviol, and isosteviol in Stevia leaves and foods. Analytical and bioanalytical chemistry. 2020 Sep; 412(24):6431-6448. doi: 10.1007/s00216-020-02618-4. [PMID: 32328691]
  • Khaing Zar Myint, Jun-Ming Chen, Zhuo-Yu Zhou, Yong-Mei Xia, Jianguo Lin, Jue Zhang. Structural dependence of antidiabetic effect of steviol glycosides and their metabolites on streptozotocin-induced diabetic mice. Journal of the science of food and agriculture. 2020 Aug; 100(10):3841-3849. doi: 10.1002/jsfa.10421. [PMID: 32297310]
  • Rafał Typek, Andrzej L Dawidowicz, Katarzyna Bernacik. Aqueous and alcoholic adducts of steviol and steviol glycosides in food products containing stevia. Food chemistry. 2020 Jul; 317(?):126359. doi: 10.1016/j.foodchem.2020.126359. [PMID: 32097820]
  • Yongheng Yang, Menglan Hou, Ting Zhang, Yuming Sun, Yongxia Zhang, Suzhen Huang, Xiaoyang Xu, Haiyan Yuan. A beta-glucosidase gene from Stevia rebaudiana may be involved in the steviol glycosides catabolic pathway. Molecular biology reports. 2020 May; 47(5):3577-3584. doi: 10.1007/s11033-020-05450-2. [PMID: 32314186]
  • U A Ogorodnova, A S Sapunova, O A Timofeeva, V F Mironov. Stevioside Has the Maximum Biological Activity among Natural Stevia Diterpenes. Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections. 2020 May; 492(1):79-82. doi: 10.1134/s0012496620030060. [PMID: 32632831]
  • Jun Ho Moon, Kunjoong Lee, Jun Ho Lee, Pyung Cheon Lee. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli. Microbial cell factories. 2020 Feb; 19(1):20. doi: 10.1186/s12934-020-1291-x. [PMID: 32013995]
  • Concetta Schiano, Vincenzo Grimaldi, Monica Franzese, Carmela Fiorito, Filomena De Nigris, Francesco Donatelli, Andrea Soricelli, Marco Salvatore, Claudio Napoli. Non-nutritional sweeteners effects on endothelial vascular function. Toxicology in vitro : an international journal published in association with BIBRA. 2020 Feb; 62(?):104694. doi: 10.1016/j.tiv.2019.104694. [PMID: 31655124]
  • Yuming Sun, Menglan Hou, Luis A J Mur, Yongheng Yang, Ting Zhang, Xiaoyang Xu, Suzhen Huang, Haiying Tong. Nitrogen drives plant growth to the detriment of leaf sugar and steviol glycosides metabolisms in Stevia (Stevia rebaudiana Bertoni). Plant physiology and biochemistry : PPB. 2019 Aug; 141(?):240-249. doi: 10.1016/j.plaphy.2019.06.008. [PMID: 31195254]
  • Ting Yang, Jinzhu Zhang, Dan Ke, Wenxian Yang, Minghai Tang, Jian Jiang, Guo Cheng, Jianshu Li, Wei Cheng, Yuquan Wei, Qintong Li, James H Naismith, Xiaofeng Zhu. Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations. Nature communications. 2019 07; 10(1):3214. doi: 10.1038/s41467-019-11154-4. [PMID: 31324778]
  • Soon Goo Lee, Eitan Salomon, Oliver Yu, Joseph M Jez. Molecular basis for branched steviol glucoside biosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 2019 06; 116(26):13131-13136. doi: 10.1073/pnas.1902104116. [PMID: 31182573]
  • Ria R deGuzman, David J Midmore, Kerry B Walsh. Do Steviol Glycosides Provide Ecological Fitness to Stevia rebaudiana through Impact on Dietary Preference of Plant Pests and Herbivores?. Journal of natural products. 2019 05; 82(5):1200-1206. doi: 10.1021/acs.jnatprod.8b00958. [PMID: 31063378]
  • Eva Petit, Alban Jacques, Jean Daydé, Veronica Vallejo, Monique Berger. UGT76G1 polymorphism in Stevia rebaudiana: New variants for steviol glycosides conjugation. Plant physiology and biochemistry : PPB. 2019 Feb; 135(?):563-569. doi: 10.1016/j.plaphy.2018.11.002. [PMID: 30466787]
  • Nicholas D Gold, Elena Fossati, Cecilie Cetti Hansen, Marcos DiFalco, Veronique Douchin, Vincent J J Martin. A Combinatorial Approach To Study Cytochrome P450 Enzymes for De Novo Production of Steviol Glucosides in Baker's Yeast. ACS synthetic biology. 2018 12; 7(12):2918-2929. doi: 10.1021/acssynbio.8b00470. [PMID: 30474973]
  • Judith D Perrier, Jeremy J Mihalov, Susan J Carlson. FDA regulatory approach to steviol glycosides. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018 Dec; 122(?):132-142. doi: 10.1016/j.fct.2018.09.062. [PMID: 30268795]
  • Weichao Li, Yiqing Zhou, Wenjing You, Mengquan Yang, Yanrong Ma, Mingli Wang, Yong Wang, Shuguang Yuan, Youli Xiao. Development of Photoaffinity Probe for the Discovery of Steviol Glycosides Biosynthesis Pathway in Stevia rebuadiana and Rapid Substrate Screening. ACS chemical biology. 2018 08; 13(8):1944-1949. doi: 10.1021/acschembio.8b00285. [PMID: 29863335]
  • Yiqing Zhou, Weichao Li, Wenjing You, Zhengao Di, Mingli Wang, Haiyan Zhou, Shuguang Yuan, Nai-Kei Wong, Youli Xiao. Discovery of Arabidopsis UGT73C1 as a steviol-catalyzing UDP-glycosyltransferase with chemical probes. Chemical communications (Cambridge, England). 2018 Jun; 54(52):7179-7182. doi: 10.1039/c7cc09951g. [PMID: 29892740]
  • Rattikarn Noitem, Chaowalit Yuajit, Sunhapas Soodvilai, Chatchai Muanprasat, Varanuj Chatsudthipong. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 May; 101(?):754-762. doi: 10.1016/j.biopha.2018.02.139. [PMID: 29524884]
  • Christina Panagiotou, Chrysovalantou Mihailidou, George Brauhli, Olga Katsarou, Paraskevi Moutsatsou. Effect of steviol, steviol glycosides and stevia extract on glucocorticoid receptor signaling in normal and cancer blood cells. Molecular and cellular endocrinology. 2018 01; 460(?):189-199. doi: 10.1016/j.mce.2017.07.023. [PMID: 28754349]
  • Jan Dusek, Alejandro Carazo, Frantisek Trejtnar, Lucie Hyrsova, Ondřej Holas, Tomas Smutny, Stanislav Micuda, Petr Pavek. Steviol, an aglycone of steviol glycoside sweeteners, interacts with the pregnane X (PXR) and aryl hydrocarbon (AHR) receptors in detoxification regulation. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2017 Nov; 109(Pt 1):130-142. doi: 10.1016/j.fct.2017.09.007. [PMID: 28887089]
  • Chaowalit Yuajit, Chatchai Muanprasat, Sureeporn Homvisasevongsa, Varanuj Chatsudthipong. Steviol stabilizes polycystin 1 expression and promotes lysosomal degradation of CFTR and β-catenin proteins in renal epithelial cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Oct; 94(?):820-826. doi: 10.1016/j.biopha.2017.07.165. [PMID: 28802235]
  • Gopal Singh, Gagandeep Singh, Pradeep Singh, Rajni Parmar, Navgeet Paul, Radhika Vashist, Mohit Kumar Swarnkar, Ashok Kumar, Sanatsujat Singh, Anil Kumar Singh, Sanjay Kumar, Ram Kumar Sharma. Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert. Scientific reports. 2017 09; 7(1):11835. doi: 10.1038/s41598-017-12025-y. [PMID: 28928460]
  • Julian P Wald, Gertrud E Morlock. Quantification of steviol glycosides in food products, Stevia leaves and formulations by planar chromatography, including proof of absence for steviol and isosteviol. Journal of chromatography. A. 2017 Jul; 1506(?):109-119. doi: 10.1016/j.chroma.2017.05.026. [PMID: 28552425]
  • Caomhan Logue, Le Roy C Dowey, J J Strain, Hans Verhagen, Stephen McClean, Alison M Gallagher. Application of Liquid Chromatography-Tandem Mass Spectrometry To Determine Urinary Concentrations of Five Commonly Used Low-Calorie Sweeteners: A Novel Biomarker Approach for Assessing Recent Intakes?. Journal of agricultural and food chemistry. 2017 Jun; 65(22):4516-4525. doi: 10.1021/acs.jafc.7b00404. [PMID: 28506059]
  • Yuki Yoneda, Hiroshi Nakashima, Juro Miyasaka, Katsuaki Ohdoi, Hiroshi Shimizu. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana. Phytochemistry. 2017 May; 137(?):57-65. doi: 10.1016/j.phytochem.2017.02.002. [PMID: 28215607]
  • Koenraad Philippaert, Andy Pironet, Margot Mesuere, William Sones, Laura Vermeiren, Sara Kerselaers, Sílvia Pinto, Andrei Segal, Nancy Antoine, Conny Gysemans, Jos Laureys, Katleen Lemaire, Patrick Gilon, Eva Cuypers, Jan Tytgat, Chantal Mathieu, Frans Schuit, Patrik Rorsman, Karel Talavera, Thomas Voets, Rudi Vennekens. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nature communications. 2017 03; 8(?):14733. doi: 10.1038/ncomms14733. [PMID: 28361903]
  • M Molina-Calle, F Priego-Capote, M D Luque de Castro. Characterization of Stevia leaves by LC-QTOF MS/MS analysis of polar and non-polar extracts. Food chemistry. 2017 Mar; 219(?):329-338. doi: 10.1016/j.foodchem.2016.09.148. [PMID: 27765234]
  • Amir Abbas Momtazi-Borojeni, Seyed-Alireza Esmaeili, Elham Abdollahi, Amirhossein Sahebkar. A Review on the Pharmacology and Toxicology of Steviol Glycosides Extracted from Stevia rebaudiana. Current pharmaceutical design. 2017; 23(11):1616-1622. doi: 10.2174/1381612822666161021142835. [PMID: 27784241]
  • Thi Thanh Hanh Nguyen, Jinbeom Si, Choongil Kang, Byoungsang Chung, Donghwa Chung, Doman Kim. Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides. Food chemistry. 2017 Jan; 214(?):366-373. doi: 10.1016/j.foodchem.2016.07.102. [PMID: 27507487]
  • Rabia Javed, Muhammad Usman, Buhara Yücesan, Muhammad Zia, Ekrem Gürel. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant physiology and biochemistry : PPB. 2017 Jan; 110(?):94-99. doi: 10.1016/j.plaphy.2016.05.032. [PMID: 27246994]
  • Kim Olsson, Simon Carlsen, Angelika Semmler, Ernesto Simón, Michael Dalgaard Mikkelsen, Birger Lindberg Møller. Microbial production of next-generation stevia sweeteners. Microbial cell factories. 2016 Dec; 15(1):207. doi: 10.1186/s12934-016-0609-1. [PMID: 27923373]
  • Thi Thanh Hanh Nguyen, Seong-Bo Kim, Nahyun M Kim, Choongil Kang, Byoungsang Chung, Jun-Seong Park, Doman Kim. Production of steviol from steviol glucosides using β-glycosidase from Sulfolobus solfataricus. Enzyme and microbial technology. 2016 Nov; 93-94(?):157-165. doi: 10.1016/j.enzmictec.2016.08.013. [PMID: 27702476]
  • Irma Aranda-González, Yolanda Moguel-Ordóñez, Luis Chel-Guerrero, Maira Segura-Campos, David Betancur-Ancona. Evaluation of the Antihyperglycemic Effect of Minor Steviol Glycosides in Normoglycemic and Induced-Diabetic Wistar Rats. Journal of medicinal food. 2016 Sep; 19(9):844-52. doi: 10.1089/jmf.2016.0014. [PMID: 27513814]
  • M Molina-Calle, V Sánchez de Medina, M P Delgado de la Torre, F Priego-Capote, M D Luque de Castro. Development and application of a quantitative method based on LC-QqQ MS/MS for determination of steviol glycosides in Stevia leaves. Talanta. 2016 07; 154(?):263-9. doi: 10.1016/j.talanta.2016.03.051. [PMID: 27154673]
  • Sidd Purkayastha, Avetik Markosyan, Indra Prakash, Sachin Bhusari, George Pugh, Barry Lynch, Ashley Roberts. Steviol glycosides in purified stevia leaf extract sharing the same metabolic fate. Regulatory toxicology and pharmacology : RTP. 2016 Jun; 77(?):125-33. doi: 10.1016/j.yrtph.2016.02.015. [PMID: 26924787]
  • Roberto Lemus-Mondaca, Kong Ah-Hen, Antonio Vega-Gálvez, Carolina Honores, Nelson O Moraga. Stevia rebaudiana Leaves: Effect of Drying Process Temperature on Bioactive Components, Antioxidant Capacity and Natural Sweeteners. Plant foods for human nutrition (Dordrecht, Netherlands). 2016 Mar; 71(1):49-56. doi: 10.1007/s11130-015-0524-3. [PMID: 26650384]
  • Charikleia Chranioti, Sofia Chanioti, Constantina Tzia. Comparison of spray, freeze and oven drying as a means of reducing bitter aftertaste of steviol glycosides (derived from Stevia rebaudiana Bertoni plant)--Evaluation of the final products. Food chemistry. 2016 Jan; 190(?):1151-1158. doi: 10.1016/j.foodchem.2015.06.083. [PMID: 26213089]
  • Gerrit J Gerwig, Evelien M Te Poele, Lubbert Dijkhuizen, Johannis P Kamerling. Stevia Glycosides: Chemical and Enzymatic Modifications of Their Carbohydrate Moieties to Improve the Sweet-Tasting Quality. Advances in carbohydrate chemistry and biochemistry. 2016; 73(?):1-72. doi: 10.1016/bs.accb.2016.05.001. [PMID: 27816105]
  • Sihem Soufi, Gilda D'Urso, Cosimo Pizza, Salah Rezgui, Taoufik Bettaieb, Paola Montoro. Steviol glycosides targeted analysis in leaves of Stevia rebaudiana (Bertoni) from plants cultivated under chilling stress conditions. Food chemistry. 2016 Jan; 190(?):572-580. doi: 10.1016/j.foodchem.2015.05.116. [PMID: 26213012]
  • Mi Jung Kim, Jingjing Jin, Junshi Zheng, Limsoon Wong, Nam-Hai Chua, In-Cheol Jang. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production. Plant physiology. 2015 Dec; 169(4):2462-80. doi: 10.1104/pp.15.01353. [PMID: 26438788]
  • Meiyu Wang, Huixin Qi, Jiajun Li, Yunting Xu, Hongjian Zhang. Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2015 Dec; 86(?):217-24. doi: 10.1016/j.fct.2015.10.011. [PMID: 26525112]
  • Jane Hubert, Nicolas Borie, Sébastien Chollet, Joël Perret, Claire Barbet-Massin, Monique Berger, Jean Daydé, Jean-Hugues Renault. Intensified Separation of Steviol Glycosides from a Crude Aqueous Extract of Stevia rebaudiana Leaves Using Centrifugal Partition Chromatography. Planta medica. 2015 Nov; 81(17):1614-20. doi: 10.1055/s-0035-1545840. [PMID: 25798642]
  • Salini Bhasker, Harish Madhav, Mohankumar Chinnamma. Molecular evidence of insulinomimetic property exhibited by steviol and stevioside in diabetes induced L6 and 3T3L1 cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2015 Oct; 22(11):1037-44. doi: 10.1016/j.phymed.2015.07.007. [PMID: 26407946]
  • Monica Saifi, Nazima Nasrullah, Malik Mobeen Ahmad, Athar Ali, Jawaid A Khan, M Z Abdin. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana. Plant physiology and biochemistry : PPB. 2015 Sep; 94(?):57-64. doi: 10.1016/j.plaphy.2015.05.009. [PMID: 26042546]
  • Silvia Tavarini, Cristina Sgherri, Anna Maria Ranieri, Luciana G Angelini. Effect of Nitrogen Fertilization and Harvest Time on Steviol Glycosides, Flavonoid Composition, and Antioxidant Properties in Stevia rebaudiana Bertoni. Journal of agricultural and food chemistry. 2015 Aug; 63(31):7041-50. doi: 10.1021/acs.jafc.5b02147. [PMID: 26194177]
  • Sidd Purkayastha, Sachin Bhusari, George Pugh, Xiaowei Teng, David Kwok, Stanley M Tarka. In vitro metabolism of rebaudioside E under anaerobic conditions: Comparison with rebaudioside A. Regulatory toxicology and pharmacology : RTP. 2015 Aug; 72(3):646-57. doi: 10.1016/j.yrtph.2015.05.019. [PMID: 26003514]
  • Praveen Guleria, Shikha Masand, Sudesh Kumar Yadav. Diversion of carbon flux from gibberellin to steviol biosynthesis by over-expressing SrKA13H induced dwarfism and abnormality in pollen germination and seed set behaviour of transgenic Arabidopsis. Journal of experimental botany. 2015 Jul; 66(13):3907-16. doi: 10.1093/jxb/erv198. [PMID: 25954046]
  • Angela Periche, Maria Luisa Castelló, Ana Heredia, Isabel Escriche. Influence of Extraction Methods on the Yield of Steviol Glycosides and Antioxidants in Stevia rebaudiana Extracts. Plant foods for human nutrition (Dordrecht, Netherlands). 2015 Jun; 70(2):119-27. doi: 10.1007/s11130-015-0475-8. [PMID: 25726419]
  • Shantanu Mandal, Shivangi Upadhyay, Ved Pal Singh, Rupam Kapoor. Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant physiology and biochemistry : PPB. 2015 Apr; 89(?):100-6. doi: 10.1016/j.plaphy.2015.02.010. [PMID: 25734328]
  • Angela Periche, María Luisa Castelló, Ana Heredia, Isabel Escriche. Influence of drying method on steviol glycosides and antioxidants in Stevia rebaudiana leaves. Food chemistry. 2015 Apr; 172(?):1-6. doi: 10.1016/j.foodchem.2014.09.029. [PMID: 25442516]
  • Paul Holvoet, Anna Rull, Anabel García-Heredia, Sílvia López-Sanromà, Benjamine Geeraert, Jorge Joven, Jordi Camps. Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: a transcriptomic and metabolomic study. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2015 Mar; 77(?):22-33. doi: 10.1016/j.fct.2014.12.017. [PMID: 25554529]
  • Mojtaba Karimi, Javad Hashemi, Ali Ahmadi, Alireza Abbasi, Antonio Pompeiano, Silvia Tavarini, Lorenzo Guglielminetti, Luciana G Angelini. Opposing effects of external gibberellin and Daminozide on Stevia growth and metabolites. Applied biochemistry and biotechnology. 2015 Jan; 175(2):780-91. doi: 10.1007/s12010-014-1310-7. [PMID: 25342260]
  • Yongheng Yang, Suzhen Huang, Yulin Han, Haiyan Yuan, Chunsun Gu, Zhongwei Wang. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana. Plant physiology and biochemistry : PPB. 2015 Jan; 86(?):174-180. doi: 10.1016/j.plaphy.2014.12.004. [PMID: 25500454]
  • Jonathan D Urban, Michael C Carakostas, Steve L Taylor. Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens?. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2015 Jan; 75(?):71-8. doi: 10.1016/j.fct.2014.11.011. [PMID: 25449199]
  • Claire Barbet-Massin, Simon Giuliano, Lionel Alletto, Jean Daydé, Monique Berger. Nitrogen Limitation Alters Biomass Production but Enhances Steviol Glycoside Concentration in Stevia rebaudiana Bertoni. PloS one. 2015; 10(7):e0133067. doi: 10.1371/journal.pone.0133067. [PMID: 26192921]
  • Jean-Baptiste Jentzer, Marion Alignan, Carlos Vaca-Garcia, Luc Rigal, Gérard Vilarem. Response surface methodology to optimise Accelerated Solvent Extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves. Food chemistry. 2015 Jan; 166(?):561-567. doi: 10.1016/j.foodchem.2014.06.078. [PMID: 25053094]
  • María Inés Espinoza, Jean-Paul Vincken, Mark Sanders, Cristian Castro, Markus Stieger, Eduardo Agosin. Identification, quantification, and sensory characterization of steviol glycosides from differently processed Stevia rebaudiana commercial extracts. Journal of agricultural and food chemistry. 2014 Dec; 62(49):11797-804. doi: 10.1021/jf502878k. [PMID: 25393842]
  • Łukasz Woźniak, Krystian Marszałek, Sylwia Skąpska. Influence of steviol glycosides on the stability of vitamin C and anthocyanins. Journal of agricultural and food chemistry. 2014 Nov; 62(46):11264-9. doi: 10.1021/jf504001t. [PMID: 25376304]
  • Qi-Kun Tang, Yul Wang, Yue-Jin Wu, Di Min, Da-Wei Chen, Tong-Hua Hu. [Determination of steviol in Stevia Rebaudiana leaves by near infrared spectroscopy]. Guang pu xue yu guang pu fen xi = Guang pu. 2014 Oct; 34(10):2719-22. doi: ". [PMID: 25739214]
  • Arpan Modi, Nitesh Litoriya, Vijay Prajapati, Rutul Rafalia, Subhash Narayanan. Transcriptional profiling of genes involved in steviol glycoside biosynthesis in Stevia rebaudiana bertoni during plant hardening. Developmental dynamics : an official publication of the American Association of Anatomists. 2014 Sep; 243(9):1067-73. doi: 10.1002/dvdy.24157. [PMID: 24975237]
  • Cándida Lorenzo, Jéssica Serrano-Díaz, Miguel Plaza, Carmen Quintanilla, Gonzalo L Alonso. Fast methodology of analysing major steviol glycosides from Stevia rebaudiana leaves. Food chemistry. 2014 Aug; 157(?):518-23. doi: 10.1016/j.foodchem.2014.02.088. [PMID: 24679813]
  • Yong-Heng Yang, Su-Zhen Huang, Yu-Lin Han, Hai-Yan Yuan, Chun-Sun Gu, Yan-Hai Zhao. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis. Plant physiology and biochemistry : PPB. 2014 Jul; 80(?):220-5. doi: 10.1016/j.plaphy.2014.04.005. [PMID: 24811677]
  • Hiroki Tanabe, Tomohiro Yasui, Hitoshi Kotani, Akito Nagatsu, Makoto Makishima, Sakae Amagaya, Makoto Inoue. Retinoic acid receptor agonist activity of naturally occurring diterpenes. Bioorganic & medicinal chemistry. 2014 Jun; 22(12):3204-12. doi: 10.1016/j.bmc.2014.03.047. [PMID: 24799257]
  • Mohamed A Ibrahim, Douglas L Rodenburg, Kamilla Alves, Frank R Fronczek, James D McChesney, Chongming Wu, Brian J Nettles, Sylesh K Venkataraman, Frank Jaksch. Minor diterpene glycosides from the leaves of Stevia rebaudiana. Journal of natural products. 2014 May; 77(5):1231-5. doi: 10.1021/np4009656. [PMID: 24758242]
  • Praveen Guleria, Shikha Masand, Sudesh Kumar Yadav. Overexpression of SrUGT85C2 from Stevia reduced growth and yield of transgenic Arabidopsis by influencing plastidial MEP pathway. Gene. 2014 Apr; 539(2):250-7. doi: 10.1016/j.gene.2014.01.071. [PMID: 24518812]
  • Chaowalit Yuajit, Chatchai Muanprasat, Anna-Rachel Gallagher, Sorin V Fedeles, Suticha Kittayaruksakul, Sureeporn Homvisasevongsa, Stefan Somlo, Varanuj Chatsudthipong. Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease. Biochemical pharmacology. 2014 Apr; 88(3):412-21. doi: 10.1016/j.bcp.2014.01.038. [PMID: 24518257]
  • Sidd Purkayastha, George Pugh, Barry Lynch, Ashley Roberts, David Kwok, Stanley M Tarka. In vitro metabolism of rebaudioside B, D, and M under anaerobic conditions: comparison with rebaudioside A. Regulatory toxicology and pharmacology : RTP. 2014 Mar; 68(2):259-68. doi: 10.1016/j.yrtph.2013.12.004. [PMID: 24361573]
  • Pratibha Gupta, Satyawati Sharma, Sanjay Saxena. Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for Steviol glycoside production. Applied biochemistry and biotechnology. 2014 Mar; 172(6):2894-906. doi: 10.1007/s12010-014-0736-2. [PMID: 24449376]
  • Chaiwat Boonkaewwan, Anyanee Burodom. Anti-inflammatory and immunomodulatory activities of stevioside and steviol on colonic epithelial cells. Journal of the science of food and agriculture. 2013 Dec; 93(15):3820-5. doi: 10.1002/jsfa.6287. [PMID: 23794454]
  • Caroline Well, Oliver Frank, Thomas Hofmann. Quantitation of sweet steviol glycosides by means of a HILIC-MS/MS-SIDA approach. Journal of agricultural and food chemistry. 2013 Nov; 61(47):11312-20. doi: 10.1021/jf404018g. [PMID: 24206531]
  • Paola Montoro, Ilaria Molfetta, Mariateresa Maldini, Lucia Ceccarini, Sonia Piacente, Cosimo Pizza, Mario Macchia. Determination of six steviol glycosides of Stevia rebaudiana (Bertoni) from different geographical origin by LC-ESI-MS/MS. Food chemistry. 2013 Nov; 141(2):745-53. doi: 10.1016/j.foodchem.2013.03.041. [PMID: 23790843]
  • Nazish Aman, Fazal Hadi, Shahid Akbar Khalil, Roshan Zamir, Nisar Ahmad. Efficient regeneration for enhanced steviol glycosides production in Stevia rebaudiana (Bertoni). Comptes rendus biologies. 2013 Oct; 336(10):486-92. doi: 10.1016/j.crvi.2013.10.002. [PMID: 24246890]
  • Andrey I Nikiforov, Marisa O Rihner, Alex K Eapen, Jennifer A Thomas. Metabolism and toxicity studies supporting the safety of rebaudioside D. International journal of toxicology. 2013 Jul; 32(4):261-73. doi: 10.1177/1091581813492828. [PMID: 23766392]
  • Silvia Tavarini, Luciana G Angelini. Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. Journal of the science of food and agriculture. 2013 Jul; 93(9):2121-9. doi: 10.1002/jsfa.6016. [PMID: 23303701]
  • Stijn Ceunen, Jan M C Geuns. Steviol glycosides: chemical diversity, metabolism, and function. Journal of natural products. 2013 Jun; 76(6):1201-28. doi: 10.1021/np400203b. [PMID: 23713723]
  • Stijn Ceunen, Jan M C Geuns. Spatio-temporal variation of the diterpene steviol in Stevia rebaudiana grown under different photoperiods. Phytochemistry. 2013 May; 89(?):32-8. doi: 10.1016/j.phytochem.2013.01.007. [PMID: 23402803]
  • Benedetta Rizzo, Laura Zambonin, Cristina Angeloni, Emanuela Leoncini, Francesco Vieceli Dalla Sega, Cecilia Prata, Diana Fiorentini, Silvana Hrelia. Steviol glycosides modulate glucose transport in different cell types. Oxidative medicine and cellular longevity. 2013; 2013(?):348169. doi: 10.1155/2013/348169. [PMID: 24327825]
  • Chaowalit Yuajit, Sureeporn Homvisasevongsa, Lisa Chatsudthipong, Sunhapas Soodvilai, Chatchai Muanprasat, Varanuj Chatsudthipong. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation. PloS one. 2013; 8(3):e58871. doi: 10.1371/journal.pone.0058871. [PMID: 23536832]