falcarindiol (BioDeep_00000407529)

Main id: BioDeep_00000000767

Secondary id: BioDeep_00000172512, BioDeep_00000229851

natural product PANOMIX_OTCML-2023 Antitumor activity


代谢物信息卡片


1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3R,8S,9Z)-

化学式: C17H24O2 (260.1776)
中文名称: 镰叶芹二醇, 法卡林二醇
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 37.23%

分子结构信息

SMILES: C=CC(O)C#CC#CC(O)C=CCCCCCCC
InChI: InChI=1S/C17H24O2/c1-3-5-6-7-8-9-10-14-17(19)15-12-11-13-16(18)4-2/h4,10,14,16-19H,2-3,5-9H2,1H3/b14-10+

描述信息

(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

同义名列表

14 个代谢物同义名

1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3R,8S,9Z)-; (3R,8S,9Z)-heptadeca-1,9-dien-4,6-diyne-3,8-diol; falcarindiol; AIDS-185997; 55297-87-5; AIDS185997; C08449; Heptadeca-1,9-dien-4,6-diyne-3,8-diol; (E,3R,8S)-Heptadeca-1,9-dien-4,6-diyne-3,8-diol; Heptadeca-1,9E-dien-4,6-diyne-3R,8S-diol; (3R,8S)-Falcarindiol; 3(R),8(S),9(Z)-Falcarindiol; (+)-(3R,8S)-Falcarindiol; Falcarindiol



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

183 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AIMP2, ALOX5, BCL2, CASP3, HPGDS, NOS2, PPARG, PTGS1, PTGS2, PTTG1, RAD51, SRARP, STAT1, STAT3
Peripheral membrane protein 3 ALOX5, PTGS1, PTGS2
Endoplasmic reticulum membrane 4 ABCA1, BCL2, PTGS1, PTGS2
Nucleus 12 AIMP2, BCL2, CASP3, GABPA, MDC1, NOS2, PPARG, PTTG1, RAD51, SRARP, STAT1, STAT3
cytosol 11 AIMP2, ALOX5, BCL2, CASP3, HPGDS, NOS2, PPARG, PTTG1, RAD51, STAT1, STAT3
dendrite 1 STAT1
nuclear body 1 MDC1
phagocytic vesicle 1 ABCA1
centrosome 1 RAD51
nucleoplasm 10 ALOX5, CASP3, GABPA, HPGDS, MDC1, NOS2, PPARG, RAD51, STAT1, STAT3
RNA polymerase II transcription regulator complex 3 PPARG, STAT1, STAT3
Cell membrane 1 ABCA1
Multi-pass membrane protein 1 ABCA1
cell surface 1 EPCAM
glutamatergic synapse 1 CASP3
Golgi apparatus 2 ABCA1, PTGS1
Golgi membrane 1 INS
neuronal cell body 1 CASP3
Cytoplasm, cytosol 3 AIMP2, ALOX5, NOS2
endosome 1 ABCA1
plasma membrane 4 ABCA1, EPCAM, NOS2, STAT3
Membrane 3 ABCA1, AIMP2, BCL2
apical plasma membrane 1 EPCAM
axon 1 STAT1
basolateral plasma membrane 2 ABCA1, EPCAM
caveola 1 PTGS2
extracellular exosome 2 EPCAM, PTGS1
endoplasmic reticulum 2 BCL2, PTGS2
extracellular space 3 ALOX5, IL6, INS
perinuclear region of cytoplasm 6 ABCA1, ALOX5, NOS2, PPARG, RAD51, STAT1
Cell junction, tight junction 1 EPCAM
bicellular tight junction 1 EPCAM
mitochondrion 2 BCL2, RAD51
protein-containing complex 4 BCL2, PTGS2, RAD51, STAT1
intracellular membrane-bounded organelle 4 ABCA1, HPGDS, PPARG, PTGS1
Microsome membrane 2 PTGS1, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 EPCAM
Secreted 2 IL6, INS
extracellular region 3 ALOX5, IL6, INS
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
Mitochondrion matrix 1 RAD51
mitochondrial matrix 1 RAD51
transcription regulator complex 1 STAT3
photoreceptor outer segment 1 PTGS1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 RAD51
Nucleus membrane 2 ALOX5, BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 ALOX5, BCL2
external side of plasma membrane 1 ABCA1
nucleolus 2 RAD51, STAT1
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
Cytoplasm, perinuclear region 2 ALOX5, NOS2
Membrane raft 1 ABCA1
pore complex 1 BCL2
focal adhesion 1 MDC1
Peroxisome 1 NOS2
intracellular vesicle 1 ABCA1
peroxisomal matrix 1 NOS2
PML body 1 RAD51
lateral plasma membrane 1 EPCAM
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 PPARG
neuron projection 2 PTGS1, PTGS2
chromatin 5 GABPA, PPARG, RAD51, STAT1, STAT3
Chromosome 2 MDC1, RAD51
chromosome, telomeric region 1 RAD51
nuclear chromosome 1 RAD51
site of double-strand break 2 MDC1, RAD51
nuclear envelope 1 ALOX5
Nucleus envelope 1 ALOX5
Endomembrane system 1 PTGS1
endosome lumen 1 INS
lateral element 1 RAD51
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 ALOX5
secretory granule lumen 2 ALOX5, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
nuclear matrix 1 ALOX5
male germ cell nucleus 1 RAD51
endocytic vesicle 1 ABCA1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Nucleus matrix 1 ALOX5
nuclear envelope lumen 1 ALOX5
condensed nuclear chromosome 1 RAD51
Lateral cell membrane 1 EPCAM
death-inducing signaling complex 1 CASP3
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
condensed chromosome 1 RAD51
cortical cytoskeleton 1 NOS2
interleukin-6 receptor complex 1 IL6
presynaptic intermediate filament cytoskeleton 1 RAD51
Nucleus intermembrane space 1 ALOX5
BAD-BCL-2 complex 1 BCL2
nuclear ubiquitin ligase complex 1 RAD51
ISGF3 complex 1 STAT1


文献列表

  • Likang Zhao, Changkai Li, Meng Zhang, Honglian Li, Shengli Ding, Xi Zhao, Lianjuan Yang, Jia Liu, Qing X Li, Risong Na. Design, Synthesis, and Antifungal Activity of Polyacetylenic Alcohol Derivatives and Stereoisomers against Phytopathogenic Fungi. Journal of agricultural and food chemistry. 2023 Jun; ?(?):. doi: 10.1021/acs.jafc.3c00924. [PMID: 37261403]
  • Siyue Kan, Jingwen Tan, Qing Cai, Lulu An, Zhiqin Gao, Hong Yang, Siyu Liu, Risong Na, Lianjuan Yang. Synergistic activity of the combination of falcarindiol and itraconazole in vitro against dermatophytes. Frontiers in cellular and infection microbiology. 2023; 13(?):1128000. doi: 10.3389/fcimb.2023.1128000. [PMID: 37207188]
  • Gokay Albayrak, Serdar Demir, Halil Koyu, Sura Baykan. Anticholinesterase Compounds from Endemic Prangos uechtritzii. Chemistry & biodiversity. 2022 Nov; 19(11):e202200557. doi: 10.1002/cbdv.202200557. [PMID: 36201258]
  • Kyung-Ran Park, Hyun Hee Leem, Yoon-Ju Kwon, Il Keun Kwon, Jin Tae Hong, Hyung-Mun Yun. Falcarindiol Stimulates Apoptotic and Autophagic Cell Death to Attenuate Cell Proliferation, Cell Division, and Metastasis through the PI3K/AKT/mTOR/p70S6K Pathway in Human Oral Squamous Cell Carcinomas. The American journal of Chinese medicine. 2022; 50(1):295-311. doi: 10.1142/s0192415x22500112. [PMID: 34931585]
  • Chaoyue Zhao, Hongda Zheng, Liman Zhou, Hongrui Ji, Lu Zhao, Wengong Yu, Qianhong Gong. Falcarindiol Isolated from Notopterygium incisum Inhibits the Quorum Sensing of Pseudomonas aeruginosa. Molecules (Basel, Switzerland). 2021 Sep; 26(19):. doi: 10.3390/molecules26195896. [PMID: 34641440]
  • Chong-Zhi Wang, Yun Luo, Wei-Hua Huang, Jinxiang Zeng, Chun-Feng Zhang, Mallory Lager, Wei Du, Ming Xu, Chun-Su Yuan. Falcarindiol and dichloromethane fraction are bioactive components in Oplopanax elatus: Colorectal cancer chemoprevention via induction of apoptosis and G2/M cell cycle arrest mediated by cyclin A upregulation. Journal of applied biomedicine. 2021; 19(2):113-124. doi: 10.32725/jab.2021.013. [PMID: 34754259]
  • Corena V Grant, Shengxin Cai, April L Risinger, Huiyun Liang, Barry R O'Keefe, John G Doench, Robert H Cichewicz, Susan L Mooberry. CRISPR-Cas9 Genome-Wide Knockout Screen Identifies Mechanism of Selective Activity of Dehydrofalcarinol in Mesenchymal Stem-like Triple-Negative Breast Cancer Cells. Journal of natural products. 2020 10; 83(10):3080-3092. doi: 10.1021/acs.jnatprod.0c00642. [PMID: 33021790]
  • Mirta Resetar, Xin Liu, Sonja Herdlinger, Olaf Kunert, Eva-Maria Pferschy-Wenzig, Simone Latkolik, Theresa Steinacher, Daniela Schuster, Rudolf Bauer, Verena M Dirsch. Polyacetylenes from Oplopanax horridus and Panax ginseng: Relationship between Structure and PPARγ Activation. Journal of natural products. 2020 04; 83(4):918-926. doi: 10.1021/acs.jnatprod.9b00691. [PMID: 32129622]
  • Ju Eun Jeon, Jung-Gun Kim, Curt R Fischer, Niraj Mehta, Cosima Dufour-Schroif, Kimberly Wemmer, Mary Beth Mudgett, Elizabeth Sattely. A Pathogen-Responsive Gene Cluster for Highly Modified Fatty Acids in Tomato. Cell. 2020 01; 180(1):176-187.e19. doi: 10.1016/j.cell.2019.11.037. [PMID: 31923394]
  • A Djebara, M L Ciavatta, V Mathieu, M Colin, F Bitam, M Carbone, M Gavagnin. Oxygenated C17 polyacetylene metabolites from Algerian Eryngium tricuspidatum L. roots: Structure and biological activity. Fitoterapia. 2019 Oct; 138(?):104355. doi: 10.1016/j.fitote.2019.104355. [PMID: 31520650]
  • Emma Pipó-Ollé, Prasad Walke, Martine K Notabi, Rime B El-Houri, Morten Østergaard Andersen, David Needham, Eva C Arnspang. Uptake of New Lipid-coated Nanoparticles Containing Falcarindiol by Human Mesenchymal Stem Cells. Journal of visualized experiments : JoVE. 2019 02; ?(144):. doi: 10.3791/59094. [PMID: 30799864]
  • Lucas Busta, Won Cheol Yim, Evan William LaBrant, Peng Wang, Lindsey Grimes, Kiah Malyszka, John C Cushman, Patricia Santos, Dylan K Kosma, Edgar B Cahoon. Identification of Genes Encoding Enzymes Catalyzing the Early Steps of Carrot Polyacetylene Biosynthesis. Plant physiology. 2018 12; 178(4):1507-1521. doi: 10.1104/pp.18.01195. [PMID: 30333150]
  • Lin Xiao, Yuan-Ming Zhou, Xiang-Fei Zhang, Feng-Yu Du. Notopterygium incisum extract and associated secondary metabolites inhibit apple fruit fungal pathogens. Pesticide biochemistry and physiology. 2018 Sep; 150(?):59-65. doi: 10.1016/j.pestbp.2018.07.001. [PMID: 30195388]
  • Morten Kobaek-Larsen, Rime B El-Houri, Lars P Christensen, Issam Al-Najami, Xavier Fretté, Gunnar Baatrup. Dietary polyacetylenes, falcarinol and falcarindiol, isolated from carrots prevents the formation of neoplastic lesions in the colon of azoxymethane-induced rats. Food & function. 2017 Mar; 8(3):964-974. doi: 10.1039/c7fo00110j. [PMID: 28197615]
  • Gai Liu, Daowan Lai, Qi Zhi Liu, Ligang Zhou, Zhi Long Liu. Identification of Nematicidal Constituents of Notopterygium incisum Rhizomes against Bursaphelenchus xylophilus and Meloidogyne incognita. Molecules (Basel, Switzerland). 2016 Sep; 21(10):. doi: 10.3390/molecules21101276. [PMID: 27669203]
  • Wei Sun, Yi-Sheng He, Ling-Hui Xu, Bi-Ying Zhang, Lian-Wen Qi, Jie Yang, Ping Li, Xiao-Dong Wen. Pharmacokinetic profiles of falcarindiol and oplopandiol in rats after oral administration of polyynes extract of Oplopanax elatus. Chinese journal of natural medicines. 2016 Sep; 14(9):714-720. doi: 10.1016/s1875-5364(16)30085-1. [PMID: 27667518]
  • Takuhiro Uto, Nguyen Huu Tung, Risa Taniyama, Tosihide Miyanowaki, Osamu Morinaga, Yukihiro Shoyama. Anti-inflammatory Activity of Constituents Isolated from Aerial Part of Angelica acutiloba Kitagawa. Phytotherapy research : PTR. 2015 Dec; 29(12):1956-63. doi: 10.1002/ptr.5490. [PMID: 26463105]
  • Ingrid Aguiló-Aguayo, Corina Abreu, Mohammad B Hossain, Rosa Altisent, Nigel Brunton, Inmaculada Viñas, Dilip K Rai. Exploring the effects of pulsed electric field processing parameters on polyacetylene extraction from carrot slices. Molecules (Basel, Switzerland). 2015 Mar; 20(3):3942-54. doi: 10.3390/molecules20033942. [PMID: 25738537]
  • Jin-Long Li, Li-Xin Gao, Fan-Wang Meng, Chun-Lan Tang, Ru-Jun Zhang, Jing-Ya Li, Cheng Luo, Jia Li, Wei-Min Zhao. PTP1B inhibitors from stems of Angelica keiskei (Ashitaba). Bioorganic & medicinal chemistry letters. 2015; 25(10):2028-32. doi: 10.1016/j.bmcl.2015.04.003. [PMID: 25891102]
  • Xin Liu, Olaf Kunert, Martina Blunder, Nanang Fakhrudin, Stefan M Noha, Clemens Malainer, Andreas Schinkovitz, Elke H Heiss, Atanas G Atanasov, Manfred Kollroser, Daniela Schuster, Verena M Dirsch, Rudolf Bauer. Polyyne hybrid compounds from Notopterygium incisum with peroxisome proliferator-activated receptor gamma agonistic effects. Journal of natural products. 2014 Nov; 77(11):2513-21. doi: 10.1021/np500605v. [PMID: 25333853]
  • Chong-Zhi Wang, Zhiyu Zhang, Wei-Hua Huang, Guang-Jian Du, Xiao-Dong Wen, Tyler Calway, Chunhao Yu, Rachael Nass, Jing Zhao, Wei Du, Shao-Ping Li, Chun-Su Yuan. Identification of potential anticancer compounds from Oplopanax horridus. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2013 Aug; 20(11):999-1006. doi: 10.1016/j.phymed.2013.04.013. [PMID: 23746754]
  • Jun Yoshida, Hiroko Seino, Yoshiaki Ito, Toshimitsu Nakano, Takumi Satoh, Yoshiko Ogane, Saori Suwa, Hiroyuki Koshino, Ken-Ichi Kimura. Inhibition of glycogen synthase kinase-3β by falcarindiol isolated from Japanese Parsley (Oenanthe javanica). Journal of agricultural and food chemistry. 2013 Aug; 61(31):7515-21. doi: 10.1021/jf401042m. [PMID: 23895038]
  • Juan David Guzman, Dimitrios Evangelopoulos, Antima Gupta, Jose M Prieto, Simon Gibbons, Sanjib Bhakta. Antimycobacterials from lovage root (Ligusticum officinale Koch). Phytotherapy research : PTR. 2013 Jul; 27(7):993-8. doi: 10.1002/ptr.4823. [PMID: 22899555]
  • Taryn O'Neill, John A Johnson, Duncan Webster, Christopher A Gray. The Canadian medicinal plant Heracleum maximum contains antimycobacterial diynes and furanocoumarins. Journal of ethnopharmacology. 2013 May; 147(1):232-7. doi: 10.1016/j.jep.2013.03.009. [PMID: 23501157]
  • Randi Seljåsen, Gjermund Vogt, Elisabeth Olsen, Per Lea, Lars Arne Høgetveit, Torgeir Tajet, Richard Meadow, Gunnar B Bengtsson. Influence of field attack by carrot psyllid (Trioza apicalis Förster) on sensory quality, antioxidant capacity and content of terpenes, falcarindiol and 6-methoxymellein of carrots (Daucus carota L.). Journal of agricultural and food chemistry. 2013 Mar; 61(11):2831-8. doi: 10.1021/jf303979y. [PMID: 23414489]
  • Atanas G Atanasov, Martina Blunder, Nanang Fakhrudin, Xin Liu, Stefan M Noha, Clemens Malainer, Matthias P Kramer, Amina Cocic, Olaf Kunert, Andreas Schinkovitz, Elke H Heiss, Daniela Schuster, Verena M Dirsch, Rudolf Bauer. Polyacetylenes from Notopterygium incisum--new selective partial agonists of peroxisome proliferator-activated receptor-gamma. PloS one. 2013; 8(4):e61755. doi: 10.1371/journal.pone.0061755. [PMID: 23630612]
  • Lars Kjellenberg, Eva Johansson, Karl-Erik Gustavsson, Marie E Olsson. Polyacetylenes in fresh and stored carrots (Daucus carota): relations to root morphology and sugar content. Journal of the science of food and agriculture. 2012 Jun; 92(8):1748-54. doi: 10.1002/jsfa.5541. [PMID: 22190221]
  • Jin Woo Lee, Cheong-Yong Yun, Eunmiri Roh, Chul Lee, Qinghao Jin, Kwon Ki Bang, Sang-Hun Jung, Dongho Lee, Mi Kyeong Lee, Youngsoo Kim, Bang Yeon Hwang. Melanogenesis inhibitory bisabolane-type sesquiterpenoids from the roots of Angelica koreana. Bioorganic & medicinal chemistry letters. 2012 Apr; 22(8):2927-31. doi: 10.1016/j.bmcl.2012.02.047. [PMID: 22450129]
  • Xing Su, Xiang-kun Li, Tao Wu, Tong Zhang, Zhen-tao Wang. [Fingerprint analysis of Glehniae Radix by TLC]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2012 Feb; 35(2):210-3. doi: . [PMID: 22822664]
  • Ki-Eun Bae, Young-Woong Choi, Sang-Tae Kim, Young-Kyoon Kim. Components of rhizome extract of Cnidium officinale Makino and their in vitro biological effects. Molecules (Basel, Switzerland). 2011 Oct; 16(10):8833-47. doi: 10.3390/molecules16108833. [PMID: 22019572]
  • Maciej Roman, Jan Cz Dobrowolski, Malgorzata Baranska, Rafal Baranski. Spectroscopic studies on bioactive polyacetylenes and other plant components in wild carrot root. Journal of natural products. 2011 Aug; 74(8):1757-63. doi: 10.1021/np200265d. [PMID: 21800857]
  • Dilip K Rai, Nigel P Brunton, Anastasios Koidis, Ashish Rawson, Padraig McLoughlin, William J Griffiths. Characterisation of polyacetylenes isolated from carrot (Daucus carota) extracts by negative ion tandem mass spectrometry. Rapid communications in mass spectrometry : RCM. 2011 Aug; 25(15):2231-9. doi: 10.1002/rcm.5103. [PMID: 21735506]
  • Ill-Min Chung, Hong-Keun Song, Sun-Jin Kim, Hyung-In Moon. Anticomplement activity of polyacetylenes from leaves of Dendropanax morbifera Leveille. Phytotherapy research : PTR. 2011 May; 25(5):784-6. doi: 10.1002/ptr.3336. [PMID: 21520473]
  • Tomokazu Ohnuma, Eisaburo Anan, Rika Hoashi, Yuika Takeda, Takahito Nishiyama, Kenichiro Ogura, Akira Hiratsuka. Dietary diacetylene falcarindiol induces phase 2 drug-metabolizing enzymes and blocks carbon tetrachloride-induced hepatotoxicity in mice through suppression of lipid peroxidation. Biological & pharmaceutical bulletin. 2011; 34(3):371-8. doi: 10.1248/bpb.34.371. [PMID: 21372387]
  • Seika Mitsui, Kan Torii, Hajime Fukui, Kunio Tsujimura, Akira Maeda, Mitsuhiko Nose, Akito Nagatsu, Hajime Mizukami, Akimichi Morita. The herbal medicine compound falcarindiol from Notopterygii Rhizoma suppresses dendritic cell maturation. The Journal of pharmacology and experimental therapeutics. 2010 Jun; 333(3):954-60. doi: 10.1124/jpet.109.162305. [PMID: 20215408]
  • Taichi Inui, Yuehong Wang, Dejan Nikolic, David C Smith, Scott G Franzblau, Guido F Pauli. Sesquiterpenes from Oplopanax horridus. Journal of natural products. 2010 Apr; 73(4):563-7. doi: 10.1021/np900674d. [PMID: 20218656]
  • Ivan Vucković, Vlatka Vajs, Miroslava Stanković, Vele Tesević, Slobodan Milosavljević. A new prenylated flavanonol from Seseli annuum roots showing protective effect on human lymphocytes DNA. Chemistry & biodiversity. 2010 Mar; 7(3):698-704. doi: 10.1002/cbdv.200900067. [PMID: 20232332]
  • Laetitia Meot-Duros, Stéphane Cérantola, Hélène Talarmin, Christophe Le Meur, Gaëtan Le Floch, Christian Magné. New antibacterial and cytotoxic activities of falcarindiol isolated in Crithmum maritimum L. leaf extract. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2010 Feb; 48(2):553-7. doi: 10.1016/j.fct.2009.11.031. [PMID: 19922760]
  • Ludger Schmiech, Carole Alayrac, Bernhard Witulski, Thomas Hofmann. Structure determination of bisacetylenic oxylipins in carrots (Daucus carota L.) and enantioselective synthesis of falcarindiol. Journal of agricultural and food chemistry. 2009 Nov; 57(22):11030-40. doi: 10.1021/jf9031475. [PMID: 19845355]
  • Stig Purup, Eric Larsen, Lars P Christensen. Differential effects of falcarinol and related aliphatic C(17)-polyacetylenes on intestinal cell proliferation. Journal of agricultural and food chemistry. 2009 Sep; 57(18):8290-6. doi: 10.1021/jf901503a. [PMID: 19694436]
  • Tomokazu Ohnuma, Takao Komatsu, Shinji Nakayama, Takahito Nishiyama, Kenichiro Ogura, Akira Hiratsuka. Induction of antioxidant and phase 2 drug-metabolizing enzymes by falcarindiol isolated from Notopterygium incisum extract, which activates the Nrf2/ARE pathway, leads to cytoprotection against oxidative and electrophilic stress. Archives of biochemistry and biophysics. 2009 Aug; 488(1):34-41. doi: 10.1016/j.abb.2009.06.006. [PMID: 19527678]
  • Andreas Schinkovitz, Michael Stavri, Simon Gibbons, Franz Bucar. Antimycobacterial polyacetylenes from Levisticum officinale. Phytotherapy research : PTR. 2008 May; 22(5):681-4. doi: 10.1002/ptr.2408. [PMID: 18350523]
  • Rikke M Prior, Nanna H Lundgaard, Marnie E Light, Gary I Stafford, Johannes van Staden, Anna K Jäger. The polyacetylene falcarindiol with COX-1 activity isolated from Aegopodium podagraria L. Journal of ethnopharmacology. 2007 Aug; 113(1):176-8. doi: 10.1016/j.jep.2007.05.005. [PMID: 17574359]
  • Shixin Deng, Shao-Nong Chen, Ping Yao, Dejan Nikolic, Richard B van Breemen, Judy L Bolton, Harry H S Fong, Norman R Farnsworth, Guido F Pauli. Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis. Journal of natural products. 2006 Apr; 69(4):536-41. doi: 10.1021/np050301s. [PMID: 16643021]
  • Michael Stavri, Simon Gibbons. The antimycobacterial constituents of dill (Anethum graveolens). Phytotherapy research : PTR. 2005 Nov; 19(11):938-41. doi: 10.1002/ptr.1758. [PMID: 16317649]
  • Ya-Li Wang, Yi-Zeng Liang, Ben-Mei Chen, Yong-Kang He, Bo-Yan Li, Qian-Nan Hu. LC-DAD-APCI-MS-based screening and analysis of the absorption and metabolite components in plasma from a rabbit administered an oral solution of danggui. Analytical and bioanalytical chemistry. 2005 Sep; 383(2):247-54. doi: 10.1007/s00216-005-0008-7. [PMID: 16132135]
  • Stefano Dall'Acqua, Giampietro Viola, Sonia Piacente, Elsa Mariella Cappelletti, Gabbriella Innocenti. Cytotoxic constituents of roots of Chaerophyllum hirsutum. Journal of natural products. 2004 Sep; 67(9):1588-90. doi: 10.1021/np040046w. [PMID: 15387667]
  • Andreas Czepa, Thomas Hofmann. Quantitative studies and sensory analyses on the influence of cultivar, spatial tissue distribution, and industrial processing on the bitter off-taste of carrots (Daucus carota l.) and carrot products. Journal of agricultural and food chemistry. 2004 Jul; 52(14):4508-14. doi: 10.1021/jf0496393. [PMID: 15237959]
  • Doris Lechner, Michael Stavri, Moyosoluwa Oluwatuyi, Rogelio Pereda-Miranda, Simon Gibbons. The anti-staphylococcal activity of Angelica dahurica (Bai Zhi). Phytochemistry. 2004 Feb; 65(3):331-5. doi: 10.1016/j.phytochem.2003.11.010. [PMID: 14751304]
  • Toshihiro Akihisa, Harukuni Tokuda, Motohiko Ukiya, Masao Iizuka, Stefan Schneider, Kazuya Ogasawara, Teruo Mukainaka, Kenji Iwatsuki, Takashi Suzuki, Hoyoku Nishino. Chalcones, coumarins, and flavanones from the exudate of Angelica keiskei and their chemopreventive effects. Cancer letters. 2003 Nov; 201(2):133-7. doi: 10.1016/s0304-3835(03)00466-x. [PMID: 14607326]
  • Andreas Czepa, Thomas Hofmann. Structural and sensory characterization of compounds contributing to the bitter off-taste of carrots (Daucus carota L.) and carrot puree. Journal of agricultural and food chemistry. 2003 Jun; 51(13):3865-73. doi: 10.1021/jf034085+. [PMID: 12797757]
  • Anokha S Ratnayake, Thomas Hemscheidt. Olefin cross-metathesis as a tool in natural product degradation. The stereochemistry of (+)-falcarindiol. Organic letters. 2002 Dec; 4(26):4667-9. doi: 10.1021/ol027033z. [PMID: 12489956]
  • K Uwai, K Ohashi, Y Takaya, T Ohta, T Tadano, K Kisara, K Shibusawa, R Sakakibara, Y Oshima. Exploring the structural basis of neurotoxicity in C(17)-polyacetylenes isolated from water hemlock. Journal of medicinal chemistry. 2000 Nov; 43(23):4508-15. doi: 10.1021/jm000185k. [PMID: 11087575]
  • H Matsuda, T Murakami, T Kageura, K Ninomiya, I Toguchida, N Nishida, M Yoshikawa. Hepatoprotective and nitric oxide production inhibitory activities of coumarin and polyacetylene constituents from the roots of Angelica furcijuga. Bioorganic & medicinal chemistry letters. 1998 Aug; 8(16):2191-6. doi: 10.1016/s0960-894x(98)00391-6. [PMID: 9873511]
  • J H Liu, S Zschocke, E Reininger, R Bauer. Inhibitory effects of Angelica pubescens f. biserrata on 5-lipoxygenase and cyclooxygenase. Planta medica. 1998 Aug; 64(6):525-9. doi: 10.1055/s-2006-957507. [PMID: 9741298]
  • Y Nakano, H Matsunaga, T Saita, M Mori, M Katano, H Okabe. Antiproliferative constituents in Umbelliferae plants II. Screening for polyacetylenes in some Umbelliferae plants, and isolation of panaxynol and falcarindiol from the root of Heracleum moellendorffii. Biological & pharmaceutical bulletin. 1998 Mar; 21(3):257-61. doi: 10.1248/bpb.21.257. [PMID: 9556156]
  • K Furumi, T Fujioka, H Fujii, H Okabe, Y Nakano, H Matsunaga, M Katano, M Mori, K Mihashi. Novel antiproliferative falcarindiol furanocoumarin ethers from the root of Angelica japonica. Bioorganic & medicinal chemistry letters. 1998 Jan; 8(1):93-6. doi: 10.1016/s0960-894x(97)10193-7. [PMID: 9871635]
  • M Kobaisy, Z Abramowski, L Lermer, G Saxena, R E Hancock, G H Towers, D Doxsee, R W Stokes. Antimycobacterial polyynes of Devil's Club (Oplopanax horridus), a North American native medicinal plant. Journal of natural products. 1997 Nov; 60(11):1210-3. doi: 10.1021/np970182j. [PMID: 9392889]
  • G Rao, X Wang, W Jin. [Polyacetylene compounds from Panax notoginsenoside]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 1997 Jun; 20(6):298-9. doi: . [PMID: 12572474]
  • M W Bernart, J H Cardellina, M S Balaschak, M R Alexander, R H Shoemaker, M R Boyd. Cytotoxic falcarinol oxylipins from Dendropanax arboreus. Journal of natural products. 1996 Aug; 59(8):748-53. doi: 10.1021/np960224o. [PMID: 8792622]
  • A Satoh, Y Narita, N Endo, H Nishimura. Potent allelochemical falcalindiol from Glehnia littoralis F. Schm. Bioscience, biotechnology, and biochemistry. 1996 Jan; 60(1):152-3. doi: 10.1271/bbb.60.152. [PMID: 8824837]
  • F Cunsolo, G Ruberto, V Amico, M Piattelli. Bioactive metabolites from Sicilian marine fennel, Crithmum maritimum. Journal of natural products. 1993 Sep; 56(9):1598-600. doi: 10.1021/np50099a022. [PMID: 8254353]