Lysionotin (BioDeep_00000017291)

 

Secondary id: BioDeep_00000003627, BioDeep_00000270588, BioDeep_00000395461

human metabolite PANOMIX_OTCML-2023 blood metabolite


代谢物信息卡片


4H-1-Benzopyran-4-one, 5,7-dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-

化学式: C18H16O7 (344.0896)
中文名称: 5,7-二羟基-6,8,4-三甲氧基黄酮, 石吊兰素, 岩豆素, 5,7-二羟基-6,8,4'-三甲氧基黄酮
谱图信息: 最多检出来源 Homo sapiens(plant) 18.06%

分子结构信息

SMILES: C1(O)=C(OC)C2OC(C3C=CC(OC)=CC=3)=CC(=O)C=2C(O)=C1OC
InChI: InChI=1S/C18H16O7/c1-22-10-6-4-9(5-7-10)12-8-11(19)13-14(20)17(23-2)15(21)18(24-3)16(13)25-12/h4-8,20-21H,1-3H3

描述信息

Nevadensin is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 8 and 4 and hydroxy groups at positions 5 and 7 respectively. It has a role as a plant metabolite. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. It is a conjugate acid of a nevadensin-7-olate.
Nevadensin is a natural product found in Calanticaria bicolor, Gardenia resinifera, and other organisms with data available.
A trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 8 and 4 and hydroxy groups at positions 5 and 7 respectively.
Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2].
Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2].

同义名列表

17 个代谢物同义名

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-; 5,7-Dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one; 5,7-Dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one; 5,7-dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)chromen-4-one; flavone, 5,7-dihydroxy-4,6,8-trimethoxy-; 5,7-dihydroxy-6,8,4-trimethoxyflavone; 5,7-hydroxy-4,6,8-trimethoxyflavone; Ethoxychelerythrine; MEGxp0_001862; ACon0_001112; Nevadensin A; ACon1_000159; Lysionotin; Nevadensin; nebadensin; Lysionatin; Nevadensin



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

42 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 CASP3, CYP2C19, CYP3A4, ESR1, LATS1, LATS2, MAPK8, MST1
Peripheral membrane protein 1 ESR1
Endoplasmic reticulum membrane 4 CYP2C19, CYP3A4, UGT1A1, UGT1A6
Nucleus 9 CASP3, ESR1, FASLG, GABPA, LATS1, LATS2, MAPK8, MST1, PARP1
cytosol 8 AVP, CASP3, ESR1, LATS1, LATS2, MAPK8, MST1, PARP1
dendrite 1 AVP
nuclear body 2 MST1, PARP1
centrosome 1 LATS1
nucleoplasm 6 CASP3, ESR1, GABPA, MAPK8, MST1, PARP1
Cell membrane 6 ESR1, FASLG, FSHR, KIT, LHCGR, OPRD1
Cytoplasmic side 1 ESR1
Multi-pass membrane protein 4 FSHR, LHCGR, MT-CYB, OPRD1
Synapse 2 CRH, MAPK8
glutamatergic synapse 2 CASP3, LATS1
Golgi apparatus 1 ESR1
mitochondrial inner membrane 1 MT-CYB
neuronal cell body 1 CASP3
postsynapse 1 LATS1
presynaptic membrane 1 OPRD1
Cytoplasm, cytosol 1 PARP1
acrosomal vesicle 1 KIT
endosome 1 LHCGR
plasma membrane 8 CYP2C19, ESR1, FASLG, FSHR, KIT, LHCGR, OPRD1, UGT1A1
synaptic vesicle membrane 1 OPRD1
Membrane 10 CYP3A4, ESR1, FASLG, FSHR, KIT, MT-CYB, OPRD1, PARP1, UGT1A1, UGT1A6
axon 1 MAPK8
caveola 1 FASLG
extracellular exosome 1 FASLG
endoplasmic reticulum 2 UGT1A1, UGT1A6
extracellular space 6 AVP, CRH, FASLG, KIT, LHCGR, MST1
lysosomal lumen 1 FASLG
perinuclear region of cytoplasm 2 FASLG, UGT1A1
mitochondrion 2 MT-CYB, PARP1
protein-containing complex 3 ESR1, MST1, PARP1
intracellular membrane-bounded organelle 3 CYP2C19, CYP3A4, UGT1A6
Microsome membrane 1 CYP3A4
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 KIT
Secreted 3 AVP, CRH, FASLG
extracellular region 4 AVP, CRH, FASLG, MST1
cytoplasmic side of plasma membrane 1 KIT
Single-pass membrane protein 2 UGT1A1, UGT1A6
Cytoplasmic vesicle lumen 1 FASLG
transcription regulator complex 2 ESR1, PARP1
centriolar satellite 2 LATS2, LHCGR
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 LATS1
external side of plasma membrane 2 FASLG, KIT
varicosity 1 CRH
neuronal dense core vesicle lumen 1 CRH
perikaryon 1 CRH
nucleolus 1 PARP1
midbody 1 LATS1
cell-cell junction 1 KIT
Single-pass type II membrane protein 1 FASLG
Cytoplasm, perinuclear region 1 UGT1A1
Mitochondrion inner membrane 1 MT-CYB
Cytoplasm, cytoskeleton, spindle 1 LATS1
collagen-containing extracellular matrix 1 MST1
secretory granule 1 AVP
receptor complex 3 FSHR, KIT, LHCGR
neuron projection 1 OPRD1
chromatin 3 ESR1, GABPA, PARP1
Chromosome 1 PARP1
Nucleus, nucleolus 1 PARP1
spindle pole 2 LATS1, LATS2
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
Cytoplasm, cytoskeleton, microtubule organizing center, spindle pole body 1 LATS1
spindle pole body 1 LATS1
site of double-strand break 1 PARP1
fibrillar center 1 KIT
nuclear envelope 1 PARP1
euchromatin 1 ESR1
[Isoform 3]: Cytoplasm 1 KIT
axon terminus 1 OPRD1
Lysosome lumen 1 FASLG
postsynaptic density membrane 1 OPRD1
neuronal dense core vesicle 2 AVP, OPRD1
clathrin-coated endocytic vesicle membrane 1 AVP
respiratory chain complex III 1 MT-CYB
Vacuole 1 MST1
[Isoform 1]: Nucleus 1 ESR1
protein-DNA complex 1 PARP1
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
dendrite membrane 1 OPRD1
site of DNA damage 1 PARP1
endoplasmic reticulum chaperone complex 1 UGT1A1
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
cytochrome complex 1 UGT1A1
spine apparatus 1 OPRD1
[Tumor necrosis factor ligand superfamily member 6, soluble form]: Secreted 1 FASLG
[FasL intracellular domain]: Nucleus 1 FASLG


文献列表

  • Tianze Wu, Li Xiang, Ranran Gao, Lan Wu, Gang Deng, Wenting Wang, Yongping Zhang, Bo Wang, Liang Shen, Shilin Chen, Xia Liu, Qinggang Yin. Integrated multi-omics analysis and microbial recombinant protein system reveal hydroxylation and glycosylation involving nevadensin biosynthesis in Lysionotus pauciflorus. Microbial cell factories. 2022 Sep; 21(1):195. doi: 10.1186/s12934-022-01921-2. [PMID: 36123741]
  • Lysanne Salomon, Peter Lorenz, Marek Bunse, Otmar Spring, Florian C Stintzing, Dietmar R Kammerer. Comparison of the Phenolic Compound Profile and Antioxidant Potential of Achillea atrata L. and Achillea millefolium L. Molecules (Basel, Switzerland). 2021 Mar; 26(6):. doi: 10.3390/molecules26061530. [PMID: 33799635]
  • Caijuan Liang, Jintuo Yin, Yinling Ma, Xia Zhang, Lantong Zhang. Quantitative determination of characteristic components from compound of Lysionotus pauciflorus Maxim. by LC-MS/MS and its application to a pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2020 Jan; 177(?):112835. doi: 10.1016/j.jpba.2019.112835. [PMID: 31499428]
  • Ya-Qiao Wang, Zi-Miao Weng, Tong-Yi Dou, Jie Hou, Dan-Dan Wang, Le-Le Ding, Li-Wei Zou, Yang Yu, Jing Chen, Hui Tang, Guang-Bo Ge. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1. International journal of biological macromolecules. 2018 Dec; 120(Pt B):1944-1954. doi: 10.1016/j.ijbiomac.2018.09.178. [PMID: 30268757]
  • Krisztina Végh, Eszter Riethmüller, Levente Hosszú, András Darcsi, Judit Müller, Ágnes Alberti, Anita Tóth, Szabolcs Béni, Árpád Könczöl, György Tibor Balogh, Ágnes Kéry. Three newly identified lipophilic flavonoids in Tanacetum parthenium supercritical fluid extract penetrating the Blood-Brain Barrier. Journal of pharmaceutical and biomedical analysis. 2018 Feb; 149(?):488-493. doi: 10.1016/j.jpba.2017.11.029. [PMID: 29182998]
  • Anna Berim, Min-Jeong Kim, David R Gang. Identification of a unique 2-oxoglutarate-dependent flavone 7-O-demethylase completes the elucidation of the lipophilic flavone network in basil. Plant & cell physiology. 2015 Jan; 56(1):126-36. doi: 10.1093/pcp/pcu152. [PMID: 25378691]
  • Suzanne J P L van den Berg, Verena Klaus, Wasma Alhusainy, Ivonne M C M Rietjens. Matrix-derived combination effect and risk assessment for estragole from basil-containing plant food supplements (PFS). Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2013 Dec; 62(?):32-40. doi: 10.1016/j.fct.2013.08.019. [PMID: 23959103]
  • Hongju Liu, Chong Yan, Chunmin Li, Li Lin. LC-MS/MS determination of nevadensin in rat plasma and its application in pharmacokinetic studies. Journal of pharmaceutical and biomedical analysis. 2013 Feb; 74(?):56-61. doi: 10.1016/j.jpba.2012.10.021. [PMID: 23245233]
  • Xing Tong, Xiaohua Xiao, Gongke Li. On-line coupling of dynamic microwave-assisted extraction with high-speed counter-current chromatography for continuous isolation of nevadensin from Lyeicnotus pauciflorus Maxim. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2011 Aug; 879(24):2397-402. doi: 10.1016/j.jchromb.2011.06.035. [PMID: 21775221]
  • Jinfeng Wei, Lin Chen, Jinmei Wang, Wenyi Kang. [Anti-bacteria activity of Puraboeo rutescens and Lysionotus pauciflorus]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Jul; 36(14):1975-8. doi: ". [PMID: 22016971]
  • W Alhusainy, A Paini, A Punt, J Louisse, A Spenkelink, J Vervoort, T Delatour, G Scholz, B Schilter, T Adams, P J van Bladeren, I M C M Rietjens. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect. Toxicology and applied pharmacology. 2010 Jun; 245(2):179-90. doi: 10.1016/j.taap.2010.02.017. [PMID: 20226806]
  • Apichart Suksamrarn, Ponsuda Poomsing, Nuntana Aroonrerk, Tadsanee Punjanon, Sunit Suksamrarn, Somkiat Kongkun. Antimycobacterial and antioxidant flavones from Limnophila geoffrayi. Archives of pharmacal research. 2003 Oct; 26(10):816-20. doi: 10.1007/bf02980026. [PMID: 14609129]
  • Roberto F Vieira, Renée J Grayer, Alan J Paton. Chemical profiling of Ocimum americanum using external flavonoids. Phytochemistry. 2003 Jul; 63(5):555-67. doi: 10.1016/s0031-9422(03)00143-2. [PMID: 12809716]
  • R J Grayer, N C Veitch, G C Kite, A M Price, T Kokubun. Distribution of 8-oxygenated leaf-surface flavones in the genus Ocimum. Phytochemistry. 2001 Mar; 56(6):559-67. doi: 10.1016/s0031-9422(00)00439-8. [PMID: 11281133]
  • J Du, L Gao. [Chemical constituents of the leaves of Acanthopanax trifoliatus (Linn) Merr]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1992 Jun; 17(6):356-7, 383. doi: ". [PMID: 1418581]
  • G Z Han, C Y Su, Y Zhang. [The absorption, distribution and elimination of nevadensin in the rat, and the relationship between plasma concentration of the drug and its hypotensive effect]. Yao xue xue bao = Acta pharmaceutica Sinica. 1982 Aug; 17(8):572-8. doi: . [PMID: 7180490]
  • . . . . doi: . [PMID: 23184958]