Nicotianamine (BioDeep_00000003340)
Secondary id: BioDeep_00000897494, BioDeep_00001892276
PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C12H21N3O6 (303.143)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(otcml) 15.5%
分子结构信息
SMILES: C1CN(C1C(=O)O)CCC(C(=O)O)NCCC(C(=O)O)N
InChI: InChI=1S/C12H21N3O6/c13-7(10(16)17)1-4-14-8(11(18)19)2-5-15-6-3-9(15)12(20)21/h7-9,14H,1-6,13H2,(H,16,17)(H,18,19)(H,20,21)/t7-,8-,9-/m0/s1
描述信息
The (S,S,S)-stereoisomer of nicotianamine.
IPB_RECORD: 2921; CONFIDENCE confident structure
同义名列表
3 个代谢物同义名
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:17721
- KEGG: C05324
- PubChem: 9882882
- PubChem: 3450503
- Metlin: METLIN66305
- ChEMBL: CHEMBL3581907
- MetaCyc: CPD-463
- CAS: 34441-14-0
- MoNA: PB003703
- MoNA: PB003702
- MoNA: PB003701
- MoNA: PB003681
- PMhub: MS000009503
- MetaboLights: MTBLC17721
- PubChem: 7705
- KNApSAcK: C00016287
- NIKKAJI: J18.352K
- LOTUS: LTS0031396
- KNApSAcK: 17721
- LOTUS: LTS0217066
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
261 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(261)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Mugineic acid biosynthesis:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Mugineic acid biosynthesis:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Mugineic acid biosynthesis:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Mugineic acid biosynthesis:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Mugineic acid biosynthesis:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Mugineic acid biosynthesis:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Mugineic acid biosynthesis:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Mugineic acid biosynthesis:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Inorganic nutrients metabolism:
Nitrite ⟶ H2O + ammonia
- Response to iron deficiency:
2OG + nicotianamine ⟶ 3''-deamino-3''-oxonicotianamine + L-Glu
- Mugineic acid biosynthesis:
2OG + nicotianamine ⟶ 3''-deamino-3''-oxonicotianamine + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Mugineic acid biosynthesis:
3''-deamino-3''-oxonicotianamine + TPNH ⟶ 2'-deoxymugineic acid + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Mugineic acid biosynthesis:
ATP + H2O + L-Met ⟶ HPO4(2-) + PPi + SAM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Response to iron deficiency:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Mugineic acid biosynthesis:
SAM ⟶ 5'-methylthioadenosine + nicotianamine
- Iron uptake and transport in root vascular system:
Fe(III)-DMA + L-ascorbate ⟶ Fe(II)-NA
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
68 个相关的物种来源信息
- 3563 - Amaranthaceae: LTS0217066
- 40948 - Angelica: LTS0217066
- 357850 - Angelica keiskei: 10.3177/JNSV.45.375
- 357850 - Angelica keiskei: LTS0217066
- 4037 - Apiaceae: LTS0217066
- 4496 - Avena: LTS0031396
- 4496 - Avena: LTS0217066
- 4498 - Avena sativa: 10.1016/0031-9422(82)83012-4
- 4498 - Avena sativa: LTS0031396
- 4498 - Avena sativa: LTS0217066
- 2 - Bacteria: LTS0217066
- 3554 - Beta: LTS0217066
- 161934 - Beta vulgaris: 10.1016/S0031-9422(00)91014-8
- 161934 - Beta vulgaris: LTS0217066
- 3555 - Beta vulgaris subsp. vulgaris: 10.1016/S0031-9422(00)91014-8
- 3555 - Beta vulgaris subsp. vulgaris: LTS0217066
- 3700 - Brassicaceae: LTS0217066
- 1804623 - Chenopodiaceae: LTS0217066
- 93758 - Corchorus: LTS0217066
- 93759 - Corchorus olitorius: 10.3136/FSTI9596T9798.4.223
- 93759 - Corchorus olitorius: LTS0217066
- 2759 - Eukaryota: LTS0031396
- 2759 - Eukaryota: LTS0217066
- 3803 - Fabaceae: LTS0217066
- 3616 - Fagopyrum: LTS0031396
- 3616 - Fagopyrum: LTS0217066
- 3617 - Fagopyrum esculentum: 10.1016/J.PHYTOCHEM.2005.12.022
- 3617 - Fagopyrum esculentum: LTS0031396
- 3617 - Fagopyrum esculentum: LTS0217066
- 3846 - Glycine: LTS0217066
- 3847 - Glycine max: 10.1271/BBB.57.1107
- 3847 - Glycine max: LTS0217066
- 19205 - Lepidium: LTS0217066
- 153317 - Lepidium draba: 10.1016/S0031-9422(00)91014-8
- 153317 - Lepidium draba: LTS0217066
- 4447 - Liliopsida: LTS0031396
- 4447 - Liliopsida: LTS0217066
- 3398 - Magnoliopsida: LTS0031396
- 3398 - Magnoliopsida: LTS0217066
- 3629 - Malvaceae: LTS0217066
- 3877 - Medicago: LTS0217066
- 3879 - Medicago sativa: 10.1016/S0031-9422(00)91014-8
- 3879 - Medicago sativa: LTS0217066
- 4085 - Nicotiana: LTS0031396
- 4085 - Nicotiana: LTS0217066
- 118703 - Nicotiana megalosiphon: 10.1007/BF01142552
- 118703 - Nicotiana megalosiphon: LTS0217066
- 4092 - Nicotiana plumbaginifolia: 10.1007/BF01142552
- 4092 - Nicotiana plumbaginifolia: LTS0217066
- 4097 - Nicotiana tabacum: 10.1007/S11248-005-7159-3
- 4097 - Nicotiana tabacum: 10.1111/J.1467-7652.2008.00374.X
- 4097 - Nicotiana tabacum: 10.7164/ANTIBIOTICS.49.1284
- 4097 - Nicotiana tabacum: LTS0031396
- 4479 - Poaceae: LTS0031396
- 4479 - Poaceae: LTS0217066
- 3615 - Polygonaceae: LTS0031396
- 3615 - Polygonaceae: LTS0217066
- 4070 - Solanaceae: LTS0031396
- 4070 - Solanaceae: LTS0217066
- 1883 - Streptomyces: 10.7164/ANTIBIOTICS.49.1284
- 1883 - Streptomyces: LTS0217066
- 2062 - Streptomycetaceae: LTS0217066
- 35493 - Streptophyta: LTS0031396
- 35493 - Streptophyta: LTS0217066
- 58023 - Tracheophyta: LTS0031396
- 58023 - Tracheophyta: LTS0217066
- 33090 - Viridiplantae: LTS0031396
- 33090 - Viridiplantae: LTS0217066
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xi Wu, Yafeng Jia, Qian Ma, Tingting Wang, Jiena Xu, Hongli Chen, Mingxia Wang, Hui Song, Shuqing Cao. The transcription factor bZIP44 cooperates with MYB10 and MYB72 to regulate the response of Arabidopsis thaliana to iron deficiency stress.
The New phytologist.
2024 Jun; 242(6):2586-2603. doi:
10.1111/nph.19706
. [PMID: 38523234] - Ilya V Seregin, Anna D Kozhevnikova. Nicotianamine: A Key Player in Metal Homeostasis and Hyperaccumulation in Plants.
International journal of molecular sciences.
2023 Jun; 24(13):. doi:
10.3390/ijms241310822
. [PMID: 37446000] - Hiroyuki Seebach, Gabriel Radow, Michael Brunek, Frank Schulz, Markus Piotrowski, Ute Krämer. Arabidopsis Nicotianamine Synthases (NAS) comprise a common core-NAS domain fused to a variable auto-inhibitory C-terminus.
The Journal of biological chemistry.
2023 Apr; ?(?):104732. doi:
10.1016/j.jbc.2023.104732
. [PMID: 37086785] - Wentao Sun, Xiaojin J Zhou, Chen Chen, Xin Zhang, Xiaolong Tian, Ke Xiao, Chenxu Liu, Rumei Chen, Shaojiang Chen. Maize Interveinal Chlorosis 1 links the Yang Cycle and Fe homeostasis through Nicotianamine biosynthesis.
Plant physiology.
2022 03; 188(4):2131-2145. doi:
10.1093/plphys/kiac009
. [PMID: 35099564] - Jesse T Beasley, Julien P Bonneau, Laura T Moreno-Moyano, Damien L Callahan, Kate S Howell, Elad Tako, Julian Taylor, Raymond P Glahn, Rudi Appels, Alexander A T Johnson. Multi-year field evaluation of nicotianamine biofortified bread wheat.
The Plant journal : for cell and molecular biology.
2022 03; 109(5):1168-1182. doi:
10.1111/tpj.15623
. [PMID: 34902177] - S Gopika, Cyril Augustine. Theoretical studies on the coordination chemistry of phytosiderophores with special reference to Fe-nicotianamine complexes in graminaceous plants.
Journal of molecular modeling.
2022 Feb; 28(3):71. doi:
10.1007/s00894-022-05065-3
. [PMID: 35226207] - Xin Zhang, Ke Xiao, Suzhen Li, Jie Li, Jiaxing Huang, Rumei Chen, Sen Pang, Xiaojin Zhou. Genome-wide analysis of the NAAT, DMAS, TOM, and ENA gene families in maize suggests their roles in mediating iron homeostasis.
BMC plant biology.
2022 Jan; 22(1):37. doi:
10.1186/s12870-021-03422-7
. [PMID: 35039017] - Ghaya Alchoubassi, Katarzyna Kińska, Katarzyna Bierla, Ryszard Lobinski, Joanna Szpunar. Speciation of essential nutrient trace elements in coconut water.
Food chemistry.
2021 Mar; 339(?):127680. doi:
10.1016/j.foodchem.2020.127680
. [PMID: 32860999] - Yoshiko Murata, Masami Yoshida, Naho Sakamoto, Shiho Morimoto, Takehiro Watanabe, Kosuke Namba. Iron uptake mediated by the plant-derived chelator nicotianamine in the small intestine.
The Journal of biological chemistry.
2021 Jan; 296(?):100195. doi:
10.1074/jbc.ra120.015861
. [PMID: 33334885] - James F Collins. Iron chelates hitch a ride on PAT1.
The Journal of biological chemistry.
2021 Jan; 296(?):100418. doi:
10.1016/j.jbc.2021.100418
. [PMID: 33837730] - Clémentine Laffont, Pascal Arnoux. The ancient roots of nicotianamine: diversity, role, regulation and evolution of nicotianamine-like metallophores.
Metallomics : integrated biometal science.
2020 10; 12(10):1480-1493. doi:
10.1039/d0mt00150c
. [PMID: 33084706] - Yuta Kawakami, Navreet K Bhullar. Potential Implications of Interactions between Fe and S on Cereal Fe Biofortification.
International journal of molecular sciences.
2020 Apr; 21(8):. doi:
10.3390/ijms21082827
. [PMID: 32325653] - Huimin Zhang, Yang Li, Mengna Pu, Peng Xu, Gang Liang, Diqiu Yu. Oryza sativa POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis.
Plant, cell & environment.
2020 01; 43(1):261-274. doi:
10.1111/pce.13655
. [PMID: 31674679] - Ruohan Xie, Jianqi Zhao, Lingli Lu, Jun Ge, Patrick H Brown, Shuai Wei, Runze Wang, Yabei Qiao, Samuel M Webb, Shengke Tian. Efficient phloem remobilization of Zn protects apple trees during the early stages of Zn deficiency.
Plant, cell & environment.
2019 12; 42(12):3167-3181. doi:
10.1111/pce.13621
. [PMID: 31325325] - Houqing Zeng, Xin Zhang, Ming Ding, Xiajun Zhang, Yiyong Zhu. Transcriptome profiles of soybean leaves and roots in response to zinc deficiency.
Physiologia plantarum.
2019 Nov; 167(3):330-351. doi:
10.1111/ppl.12894
. [PMID: 30536844] - Raviraj Banakar, Ana Alvarez Fernandez, Changfu Zhu, Javier Abadia, Teresa Capell, Paul Christou. The ratio of phytosiderophores nicotianamine to deoxymugenic acid controls metal homeostasis in rice.
Planta.
2019 Oct; 250(4):1339-1354. doi:
10.1007/s00425-019-03230-2
. [PMID: 31278466] - Shaopei Gao, Yunhua Xiao, Fan Xu, Xiaokai Gao, Shouyun Cao, Fengxia Zhang, Guodong Wang, Dale Sanders, Chengcai Chu. Cytokinin-dependent regulatory module underlies the maintenance of zinc nutrition in rice.
The New phytologist.
2019 10; 224(1):202-215. doi:
10.1111/nph.15962
. [PMID: 31131881] - Jesse T Beasley, Julien P Bonneau, Jose T Sánchez-Palacios, Laura T Moreno-Moyano, Damien L Callahan, Elad Tako, Raymond P Glahn, Enzo Lombi, Alexander A T Johnson. Metabolic engineering of bread wheat improves grain iron concentration and bioavailability.
Plant biotechnology journal.
2019 08; 17(8):1514-1526. doi:
10.1111/pbi.13074
. [PMID: 30623558] - Jesse T Beasley, Jonathan J Hart, Elad Tako, Raymond P Glahn, Alexander A T Johnson. Investigation of Nicotianamine and 2' Deoxymugineic Acid as Enhancers of Iron Bioavailability in Caco-2 Cells.
Nutrients.
2019 Jun; 11(7):. doi:
10.3390/nu11071502
. [PMID: 31262064] - Shimpei Uraguchi, Michael Weber, Stephan Clemens. Elevated root nicotianamine concentrations are critical for Zn hyperaccumulation across diverse edaphic environments.
Plant, cell & environment.
2019 06; 42(6):2003-2014. doi:
10.1111/pce.13541
. [PMID: 30809818] - Xinxin Zhang, Di Zhang, Wei Sun, Tianzuo Wang. The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis.
International journal of molecular sciences.
2019 May; 20(10):. doi:
10.3390/ijms20102424
. [PMID: 31100819] - Brigitta Müller, Krisztina Kovács, Hong-Diep Pham, Yusuf Kavak, Jiři Pechoušek, Libor Machala, Radek Zbořil, Kálmán Szenthe, Javier Abadía, Ferenc Fodor, Zoltán Klencsár, Ádám Solti. Chloroplasts preferentially take up ferric-citrate over iron-nicotianamine complexes in Brassica napus.
Planta.
2019 Mar; 249(3):751-763. doi:
10.1007/s00425-018-3037-0
. [PMID: 30382344] - Alessio Aprile, Erika Sabella, Marzia Vergine, Alessandra Genga, Maria Siciliano, Eliana Nutricati, Patrizia Rampino, Mariarosaria De Pascali, Andrea Luvisi, Antonio Miceli, Carmine Negro, Luigi De Bellis. Activation of a gene network in durum wheat roots exposed to cadmium.
BMC plant biology.
2018 Oct; 18(1):238. doi:
10.1186/s12870-018-1473-4
. [PMID: 30326849] - Maria Garnica, Eva Bacaicoa, Veronica Mora, Sara San Francisco, Roberto Baigorri, Angel Mari Zamarreño, Jose Maria Garcia-Mina. Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat.
BMC plant biology.
2018 Jun; 18(1):105. doi:
10.1186/s12870-018-1324-3
. [PMID: 29866051] - Rakesh K Kumar, Heng-Hsuan Chu, Celina Abundis, Kenneth Vasques, David Chan Rodriguez, Ju-Chen Chia, Rong Huang, Olena K Vatamaniuk, Elsbeth L Walker. Iron-Nicotianamine Transporters Are Required for Proper Long Distance Iron Signaling.
Plant physiology.
2017 Nov; 175(3):1254-1268. doi:
10.1104/pp.17.00821
. [PMID: 28894019] - Takeshi Senoura, Emi Sakashita, Takanori Kobayashi, Michiko Takahashi, May Sann Aung, Hiroshi Masuda, Hiromi Nakanishi, Naoko K Nishizawa. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.
Plant molecular biology.
2017 Nov; 95(4-5):375-387. doi:
10.1007/s11103-017-0656-y
. [PMID: 28871478] - Raviraj Banakar, Ana Alvarez Fernandez, Pablo Díaz-Benito, Javier Abadia, Teresa Capell, Paul Christou. Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium.
Journal of experimental botany.
2017 10; 68(17):4983-4995. doi:
10.1093/jxb/erx304
. [PMID: 29048564] - Dong-Keun Lee, Pil Joong Chung, Jin Seo Jeong, Geupil Jang, Seung Woon Bang, Harin Jung, Youn Shic Kim, Sun-Hwa Ha, Yang Do Choi, Ju-Kon Kim. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance.
Plant biotechnology journal.
2017 Jun; 15(6):754-764. doi:
10.1111/pbi.12673
. [PMID: 27892643] - Chandan Kumar Gupta, Bhupinder Singh. Uninhibited biosynthesis and release of phytosiderophores in the presence of heavy metal (HM) favors HM remediation.
Environmental science and pollution research international.
2017 Apr; 24(10):9407-9416. doi:
10.1007/s11356-017-8636-y
. [PMID: 28233213] - Weilin Zhang, Chengqi Yan, Mei Li, Ling Yang, Bojun Ma, Hongyu Meng, Li Xie, Jianping Chen. Transcriptome Analysis Reveals the Response of Iron Homeostasis to Early Feeding by Small Brown Planthopper in Rice.
Journal of agricultural and food chemistry.
2017 Feb; 65(6):1093-1101. doi:
10.1021/acs.jafc.6b04674
. [PMID: 28112511] - Jelena Pavlovic, Jelena Samardzic, Ljiljana Kostic, Kristian H Laursen, Maja Natic, Gordana Timotijevic, Jan K Schjoerring, Miroslav Nikolic. Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions.
Annals of botany.
2016 08; 118(2):271-80. doi:
10.1093/aob/mcw105
. [PMID: 27371693] - Ghassan Ghssein, Catherine Brutesco, Laurent Ouerdane, Clémentine Fojcik, Amélie Izaute, Shuanglong Wang, Christine Hajjar, Ryszard Lobinski, David Lemaire, Pierre Richaud, Romé Voulhoux, Akbar Espaillat, Felipe Cava, David Pignol, Elise Borezée-Durant, Pascal Arnoux. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus.
Science (New York, N.Y.).
2016 May; 352(6289):1105-9. doi:
10.1126/science.aaf1018
. [PMID: 27230378] - Tomoko Ariga, Yuki Imura, Michio Suzuki, Etsuro Yoshimura. Determination of ferric iron chelators by high-performance liquid chromatography using luminol chemiluminescence detection.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2016 Mar; 1014(?):75-82. doi:
10.1016/j.jchromb.2016.01.048
. [PMID: 26874881] - Tadakatsu Yoneyama, Satoru Ishikawa, Shu Fujimaki. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification.
International journal of molecular sciences.
2015 Aug; 16(8):19111-29. doi:
10.3390/ijms160819111
. [PMID: 26287170] - Kenji Hazama, Shinji Nagata, Tamaki Fujimori, Shuichi Yanagisawa, Tadakatsu Yoneyama. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium.
Physiologia plantarum.
2015 Jun; 154(2):243-55. doi:
10.1111/ppl.12309
. [PMID: 25403762] - Ryo Nakabayashi, Zhigang Yang, Tomoko Nishizawa, Tetsuya Mori, Kazuki Saito. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis.
Journal of natural products.
2015 May; 78(5):1179-83. doi:
10.1021/acs.jnatprod.5b00092
. [PMID: 25922884] - Jean-Yves Cornu, Ulrich Deinlein, Stephan Höreth, Manuel Braun, Holger Schmidt, Michael Weber, Daniel P Persson, Søren Husted, Jan K Schjoerring, Stephan Clemens. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.
The New phytologist.
2015 Apr; 206(2):738-50. doi:
10.1111/nph.13237
. [PMID: 25545296] - Saori Takahashi, Taku Yoshiya, Kumiko Yoshizawa-Kumagaye, Toshihiro Sugiyama. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean.
Biomedical research (Tokyo, Japan).
2015; 36(3):219-24. doi:
10.2220/biomedres.36.219
. [PMID: 26106051] - Munkhtsetseg Tsednee, Shun-Chung Yang, Der-Chuen Lee, Kuo-Chen Yeh. Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability.
Plant physiology.
2014 Oct; 166(2):839-52. doi:
10.1104/pp.114.241224
. [PMID: 25118254] - Stephan Clemens. Zn and Fe biofortification: the right chemical environment for human bioavailability.
Plant science : an international journal of experimental plant biology.
2014 Aug; 225(?):52-7. doi:
10.1016/j.plantsci.2014.05.014
. [PMID: 25017159] - Emmanuel Koen, Angélique Besson-Bard, Céline Duc, Jérémy Astier, Antoine Gravot, Pierre Richaud, Olivier Lamotte, Jossia Boucherez, Frédéric Gaymard, David Wendehenne. Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure.
Plant science : an international journal of experimental plant biology.
2013 Aug; 209(?):1-11. doi:
10.1016/j.plantsci.2013.04.006
. [PMID: 23759098] - Stephan Clemens, Ulrich Deinlein, Hassan Ahmadi, Stephan Höreth, Shimpei Uraguchi. Nicotianamine is a major player in plant Zn homeostasis.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2013 Aug; 26(4):623-32. doi:
10.1007/s10534-013-9643-1
. [PMID: 23775667] - Matsuda Sanae, Aoyagi Yasuo. Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats.
Journal of agricultural and food chemistry.
2013 Jun; 61(23):5520-5. doi:
10.1021/jf3041066
. [PMID: 23647085] - Roberto Terzano, Tanja Mimmo, Bart Vekemans, Laszlo Vincze, Gerald Falkenberg, Nicola Tomasi, Magali Schnell Ramos, Roberto Pinton, Stefano Cesco. Iron (Fe) speciation in xylem sap by XANES at a high brilliant synchrotron X-ray source: opportunities and limitations.
Analytical and bioanalytical chemistry.
2013 Jun; 405(16):5411-9. doi:
10.1007/s00216-013-6959-1
. [PMID: 23609785] - Allison R Hayward, Kahlan E Coates, Amy L Galer, Thomas C Hutchinson, R J Neil Emery. Chelator profiling in Deschampsia cespitosa (L.) Beauv. Reveals a Ni reaction, which is distinct from the ABA and cytokinin associated response to Cd.
Plant physiology and biochemistry : PPB.
2013 Mar; 64(?):84-91. doi:
10.1016/j.plaphy.2012.12.018
. [PMID: 23399533] - Ahmad H Kabir, Nicholas G Paltridge, Ute Roessner, James C R Stangoulis. Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum.
Physiologia plantarum.
2013 Mar; 147(3):381-95. doi:
10.1111/j.1399-3054.2012.01682.x
. [PMID: 22913816] - Ling Yuan, Lianghuan Wu, Chunlei Yang, Qian Lv. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality.
Journal of the science of food and agriculture.
2013 Jan; 93(2):254-61. doi:
10.1002/jsfa.5749
. [PMID: 22740351] - Wesley R Harris, R Douglas Sammons, Raymond C Grabiak. A speciation model of essential trace metal ions in phloem.
Journal of inorganic biochemistry.
2012 Nov; 116(?):140-50. doi:
10.1016/j.jinorgbio.2012.07.011
. [PMID: 23018277] - Hitomi Yamaguchi, Riichiro Uchida. Determination of nicotianamine in soy sauce and other plant-based foods by LC-MS/MS.
Journal of agricultural and food chemistry.
2012 Oct; 60(40):10000-6. doi:
10.1021/jf3035868
. [PMID: 23025624] - Scott Aleksander Sinclair, Ute Krämer. The zinc homeostasis network of land plants.
Biochimica et biophysica acta.
2012 Sep; 1823(9):1553-67. doi:
10.1016/j.bbamcr.2012.05.016
. [PMID: 22626733] - Luqing Zheng, Naoki Yamaji, Kengo Yokosho, Jian Feng Ma. YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice.
The Plant cell.
2012 Sep; 24(9):3767-82. doi:
10.1105/tpc.112.103820
. [PMID: 23012434] - Rongli Shi, Günther Weber, Jessica Köster, Mohammad Reza-Hajirezaei, Chunqin Zou, Fusuo Zhang, Nicolaus von Wirén. Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants.
The New phytologist.
2012 Jul; 195(2):372-383. doi:
10.1111/j.1469-8137.2012.04165.x
. [PMID: 22591276] - Wesley R Harris, R Douglas Sammons, Raymond C Grabiak, Akbar Mehrsheikh, Marian S Bleeke. Computer simulation of the interactions of glyphosate with metal ions in phloem.
Journal of agricultural and food chemistry.
2012 Jun; 60(24):6077-87. doi:
10.1021/jf3004288
. [PMID: 22651133] - Mara Schuler, Rubén Rellán-Álvarez, Claudia Fink-Straube, Javier Abadía, Petra Bauer. Nicotianamine functions in the Phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis.
The Plant cell.
2012 Jun; 24(6):2380-400. doi:
10.1105/tpc.112.099077
. [PMID: 22706286] - Ishari Waduwara-Jayabahu, Yasmin Oppermann, Markus Wirtz, Zachary T Hull, Sarah Schoor, Alexander N Plotnikov, Rüdiger Hell, Margret Sauter, Barbara A Moffatt. Recycling of methylthioadenosine is essential for normal vascular development and reproduction in Arabidopsis.
Plant physiology.
2012 Apr; 158(4):1728-44. doi:
10.1104/pp.111.191072
. [PMID: 22345506] - Anita Zamboni, Laura Zanin, Nicola Tomasi, Mario Pezzotti, Roberto Pinton, Zeno Varanini, Stefano Cesco. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency.
BMC genomics.
2012 Mar; 13(?):101. doi:
10.1186/1471-2164-13-101
. [PMID: 22433273] - Ulrich Deinlein, Michael Weber, Holger Schmidt, Stefan Rensch, Aleksandra Trampczynska, Thomas H Hansen, Søren Husted, Jan K Schjoerring, Ina N Talke, Ute Krämer, Stephan Clemens. Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation.
The Plant cell.
2012 Feb; 24(2):708-23. doi:
10.1105/tpc.111.095000
. [PMID: 22374395] - Michael J Haydon, Miki Kawachi, Markus Wirtz, Stefan Hillmer, Rüdiger Hell, Ute Krämer. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis.
The Plant cell.
2012 Feb; 24(2):724-37. doi:
10.1105/tpc.111.095042
. [PMID: 22374397] - Reiko Nishiyama, Mariyo Kato, Shinji Nagata, Shuichi Yanagisawa, Tadakatsu Yoneyama. Identification of Zn-nicotianamine and Fe-2'-Deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.).
Plant & cell physiology.
2012 Feb; 53(2):381-90. doi:
10.1093/pcp/pcr188
. [PMID: 22218421] - Nancy R Hofmann. Nicotianamine in zinc and iron homeostasis.
The Plant cell.
2012 Feb; 24(2):373. doi:
10.1105/tpc.112.240212
. [PMID: 22374391] - Sarah S Conte, Elsbeth L Walker. Genetic and biochemical approaches for studying the yellow stripe-like transporter family in plants.
Current topics in membranes.
2012; 69(?):295-322. doi:
10.1016/b978-0-12-394390-3.00011-2
. [PMID: 23046655] - Hiroshi Masuda, Yasuhiro Ishimaru, May Sann Aung, Takanori Kobayashi, Yusuke Kakei, Michiko Takahashi, Kyoko Higuchi, Hiromi Nakanishi, Naoko K Nishizawa. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition.
Scientific reports.
2012; 2(?):543. doi:
10.1038/srep00543
. [PMID: 22848789] - Ricardo J Stein, Brian M Waters. Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots.
Journal of experimental botany.
2012 Jan; 63(2):1039-55. doi:
10.1093/jxb/err343
. [PMID: 22039296] - Akimasa Sasaki, Naoki Yamaji, Jixing Xia, Jian Feng Ma. OsYSL6 is involved in the detoxification of excess manganese in rice.
Plant physiology.
2011 Dec; 157(4):1832-40. doi:
10.1104/pp.111.186031
. [PMID: 21969384] - Henning Redestig, Miyako Kusano, Kaworu Ebana, Makoto Kobayashi, Akira Oikawa, Yozo Okazaki, Fumio Matsuda, Masanori Arita, Naoko Fujita, Kazuki Saito. Exploring molecular backgrounds of quality traits in rice by predictive models based on high-coverage metabolomics.
BMC systems biology.
2011 Oct; 5(?):176. doi:
10.1186/1752-0509-5-176
. [PMID: 22034874] - Sichul Lee, Daniel P Persson, Thomas H Hansen, Søren Husted, Jan K Schjoerring, You-Sun Kim, Un Sil Jeon, Yoon-Keun Kim, Yusuke Kakei, Hiroshi Masuda, Naoko K Nishizawa, Gynheung An. Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase.
Plant biotechnology journal.
2011 Oct; 9(8):865-73. doi:
10.1111/j.1467-7652.2011.00606.x
. [PMID: 21426477] - Jun Cao, Jinling Huang, Yongping Yang, Xiangyang Hu. Analyses of the oligopeptide transporter gene family in poplar and grape.
BMC genomics.
2011 Sep; 12(?):465. doi:
10.1186/1471-2164-12-465
. [PMID: 21943393] - Marjana Regvar, Diane Eichert, Burkhard Kaulich, Alessandra Gianoncelli, Paula Pongrac, Katarina Vogel-Mikus, Ivan Kreft. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy.
Journal of experimental botany.
2011 Jul; 62(11):3929-39. doi:
10.1093/jxb/err090
. [PMID: 21447756] - Elsbeth L Walker, Brian M Waters. The role of transition metal homeostasis in plant seed development.
Current opinion in plant biology.
2011 Jun; 14(3):318-24. doi:
10.1016/j.pbi.2011.03.025
. [PMID: 21530368] - Silvia Farinati, Giovanni DalCrso, Monica Panigati, Antonella Furini. Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation.
Journal of experimental botany.
2011 Jun; 62(10):3433-47. doi:
10.1093/jxb/err015
. [PMID: 21357773] - Mara Schuler, Andreas Keller, Christina Backes, Katrin Philippar, Hans-Peter Lenhof, Petra Bauer. Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana.
BMC plant biology.
2011 May; 11(?):87. doi:
10.1186/1471-2229-11-87
. [PMID: 21592396] - Rui-Sheng Wang, Sona Pandey, Song Li, Timothy E Gookin, Zhixin Zhao, Réka Albert, Sarah M Assmann. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells.
BMC genomics.
2011 May; 12(?):216. doi:
10.1186/1471-2164-12-216
. [PMID: 21554708] - Achref Aloui, Ghislaine Recorbet, Franck Robert, Benoît Schoefs, Martine Bertrand, Céline Henry, Vivienne Gianinazzi-Pearson, Eliane Dumas-Gaudot, Samira Aschi-Smiti. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula.
BMC plant biology.
2011 May; 11(?):75. doi:
10.1186/1471-2229-11-75
. [PMID: 21545723] - Benjamin Pommerrenig, Kirstin Feussner, Wolfgang Zierer, Valentyna Rabinovych, Franz Klebl, Ivo Feussner, Norbert Sauer. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis.
The Plant cell.
2011 May; 23(5):1904-19. doi:
10.1105/tpc.110.079657
. [PMID: 21540433] - Daniela Duy, Roland Stübe, Gerhard Wanner, Katrin Philippar. The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron.
Plant physiology.
2011 Apr; 155(4):1709-22. doi:
10.1104/pp.110.170233
. [PMID: 21343424] - Tomoko Nozoye, Seiji Nagasaka, Takanori Kobayashi, Michiko Takahashi, Yuki Sato, Yoko Sato, Nobuyuki Uozumi, Hiromi Nakanishi, Naoko K Nishizawa. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants.
The Journal of biological chemistry.
2011 Feb; 286(7):5446-54. doi:
10.1074/jbc.m110.180026
. [PMID: 21156806] - Felipe K Ricachenevsky, Raul A Sperotto, Paloma K Menguer, Edilena R Sperb, Karina L Lopes, Janette P Fett. ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs.
BMC plant biology.
2011 Jan; 11(?):20. doi:
10.1186/1471-2229-11-20
. [PMID: 21266036] - Mara Schuler, Petra Bauer. Heavy Metals Need Assistance: The Contribution of Nicotianamine to Metal Circulation Throughout the Plant and the Arabidopsis NAS Gene Family.
Frontiers in plant science.
2011; 2(?):69. doi:
10.3389/fpls.2011.00069
. [PMID: 22639605] - Muhammad Sajid Aqeel Ahmad, Muhammad Ashraf. Essential roles and hazardous effects of nickel in plants.
Reviews of environmental contamination and toxicology.
2011; 214(?):125-67. doi:
10.1007/978-1-4614-0668-6_6
. [PMID: 21913127] - Jiaojiao Wu, Chuang Wang, Luqing Zheng, Lu Wang, Yunlong Chen, James Whelan, Huixia Shou. Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa.
Journal of experimental botany.
2011 Jan; 62(2):667-74. doi:
10.1093/jxb/erq301
. [PMID: 21112958] - Rubén Rellán-Álvarez, Hamdi El-Jendoubi, Gert Wohlgemuth, Anunciación Abadía, Oliver Fiehn, Javier Abadía, Ana Alvarez-Fernández. Metabolite profile changes in xylem sap and leaf extracts of strategy I plants in response to iron deficiency and resupply.
Frontiers in plant science.
2011; 2(?):66. doi:
10.3389/fpls.2011.00066
. [PMID: 22645546] - Holger Schmidt, Christoph Böttcher, Aleksandra Trampczynska, Stephan Clemens. Use of recombinantly produced 15N3-labelled nicotianamine for fast and sensitive stable isotope dilution ultra-performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry.
Analytical and bioanalytical chemistry.
2011 Jan; 399(3):1355-61. doi:
10.1007/s00216-010-4436-7
. [PMID: 21110009] - Philip J White, Martin R Broadley. Physiological limits to zinc biofortification of edible crops.
Frontiers in plant science.
2011; 2(?):80. doi:
10.3389/fpls.2011.00080
. [PMID: 22645552] - Alexander A T Johnson, Bianca Kyriacou, Damien L Callahan, Lorraine Carruthers, James Stangoulis, Enzo Lombi, Mark Tester. Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm.
PloS one.
2011; 6(9):e24476. doi:
10.1371/journal.pone.0024476
. [PMID: 21915334] - Manuel Becana, Manuel A Matamoros, Michael Udvardi, David A Dalton. Recent insights into antioxidant defenses of legume root nodules.
The New phytologist.
2010 Dec; 188(4):960-76. doi:
10.1111/j.1469-8137.2010.03512.x
. [PMID: 21039567] - Silvia Donnini, Bhakti Prinsi, Alfredo S Negri, Gianpiero Vigani, Luca Espen, Graziano Zocchi. Proteomic characterization of iron deficiency responses in Cucumis sativus L. roots.
BMC plant biology.
2010 Dec; 10(?):268. doi:
10.1186/1471-2229-10-268
. [PMID: 21122124] - Rong Qin, Yunqiu Jiao, Shanshan Zhang, Wusheng Jiang, Donghua Liu. Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L.
BMC plant biology.
2010 Oct; 10(?):225. doi:
10.1186/1471-2229-10-225
. [PMID: 20964828] - Heng-Hsuan Chu, Jeff Chiecko, Tracy Punshon, Antonio Lanzirotti, Brett Lahner, David E Salt, Elsbeth L Walker. Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures.
Plant physiology.
2010 Sep; 154(1):197-210. doi:
10.1104/pp.110.159103
. [PMID: 20625001] - Peter V Minorsky. Plant Physiology. On the inside.
Plant physiology.
2010 Sep; 154(1):1-2. doi:
10.1104/pp.110.900331
. [PMID: 20836252] - Luqing Zheng, Yinghui Ying, Lu Wang, Fang Wang, James Whelan, Huixia Shou. Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa.
BMC plant biology.
2010 Aug; 10(?):166. doi:
10.1186/1471-2229-10-166
. [PMID: 20699001] - Pengjuan Gong, Junhong Zhang, Hanxia Li, Changxian Yang, Chanjuan Zhang, Xiaohui Zhang, Ziaf Khurram, Yuyang Zhang, Taotao Wang, Zhangjun Fei, Zhibiao Ye. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato.
Journal of experimental botany.
2010 Aug; 61(13):3563-75. doi:
10.1093/jxb/erq167
. [PMID: 20643807] - Terri A Long, Hironaka Tsukagoshi, Wolfgang Busch, Brett Lahner, David E Salt, Philip N Benfey. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots.
The Plant cell.
2010 Jul; 22(7):2219-36. doi:
10.1105/tpc.110.074096
. [PMID: 20675571] - Yu Wu, Qing Zhao, Lei Gao, Xiao-Min Yu, Ping Fang, David J Oliver, Cheng-Bin Xiang. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis.
Journal of experimental botany.
2010 Jul; 61(12):3407-22. doi:
10.1093/jxb/erq161
. [PMID: 20547563] - Rubén Rellán-Alvarez, Sofía Andaluz, Jorge Rodríguez-Celma, Gert Wohlgemuth, Graziano Zocchi, Ana Alvarez-Fernández, Oliver Fiehn, Ana Flor López-Millán, Javier Abadía. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply.
BMC plant biology.
2010 Jun; 10(?):120. doi:
10.1186/1471-2229-10-120
. [PMID: 20565974] - Geyu Liu, Tuanyao Chai, Tao Sun. [Heavy metal absorption, transportation and accumulation mechanisms in hyperaccumulator Thlaspi caerulescens].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2010 May; 26(5):561-8. doi:
"
. [PMID: 20684297] - Luqing Zheng, Zhiqiang Cheng, Chunxiang Ai, Xinhang Jiang, Xiaoshu Bei, Ye Zheng, Raymond P Glahn, Ross M Welch, Dennis D Miller, Xin Gen Lei, Huixia Shou. Nicotianamine, a novel enhancer of rice iron bioavailability to humans.
PloS one.
2010 Apr; 5(4):e10190. doi:
10.1371/journal.pone.0010190
. [PMID: 20419136] - Wusheng Jiang, Donghua Liu. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L.
BMC plant biology.
2010 Mar; 10(?):40. doi:
10.1186/1471-2229-10-40
. [PMID: 20196842] - Stefania Astolfi, Sabrina Zuchi, Hans-Michael Hubberten, Roberto Pinton, Rainer Hoefgen. Supply of sulphur to S-deficient young barley seedlings restores their capability to cope with iron shortage.
Journal of experimental botany.
2010 Mar; 61(3):799-806. doi:
10.1093/jxb/erp346
. [PMID: 20018904] - Cristina Cvitanich, Wojciech J Przybyłowicz, Dorian F Urbanski, Anna M Jurkiewicz, Jolanta Mesjasz-Przybyłowicz, Matthew W Blair, Carolina Astudillo, Erik Ø Jensen, Jens Stougaard. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds.
BMC plant biology.
2010 Feb; 10(?):26. doi:
10.1186/1471-2229-10-26
. [PMID: 20149228]