Geranylgeranyl-PP (BioDeep_00000001649)
Secondary id: BioDeep_00000179397, BioDeep_00000638552
natural product human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C20H36O7P2 (450.1936)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 24.14%
分子结构信息
SMILES: CC(=CCCC(=CCCC(=CCCC(=CCOP(=O)(O)OP(=O)(O)O)C)C)C)C
InChI: InChI=1S/C20H36O7P2/c1-17(2)9-6-10-18(3)11-7-12-19(4)13-8-14-20(5)15-16-26-29(24,25)27-28(21,22)23/h9,11,13,15H,6-8,10,12,14,16H2,1-5H3,(H,24,25)(H2,21,22,23)/b18-11+,19-13+,20-15+
描述信息
Geranylgeranyl pyrophosphate, also known as geranylgeranyl-PP or GGPP, is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. This compound belongs to the family of acyclic diterpenes. These are diterpenes (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, GGPP is considered to be an isoprenoid lipid molecule. GGPP is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral.
Geranylgeranyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. [HMDB]. Geranylgeranyl-PP is found in many foods, some of which are burdock, longan, calabash, and cloves.
同义名列表
28 个代谢物同义名
{[hydroxy({[(2E,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]oxy})phosphoryl]oxy}phosphonic acid; phosphono[(2E,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl]hydrogenphosphate; (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-yl diphosphoric acid; (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-yl diphosphate; 3,7,11,15-Tetramethyl-2,6,10,14-hexadecatetraenyl diphosphate; Geranylgeranyl pyrophosphate, 14C-labeled, (e,e,e)-isomer; 2-trans,6-trans,10-trans-Geranylgeranyl diphosphate; all-trans-Geranylgeranyl pyrophosphoric acid; Geranylgeranyl pyrophosphate, (Z,e,e)-isomer; all-trans-Geranylgeranyl diphosphoric acid; Geranylgeranyl pyrophosphate ammonium salt; all-trans-Geranylgeranyl pyrophosphate; all-trans-Geranylgeranyl diphosphate; Geranylgeranyl pyrophosphoric acid; Geranylgeranyl diphosphoric acid; all-trans-Geranyl-geranyl-PP; Geranylgeranyl pyrophosphate; Geranylgeraniol diphosphate; Geranylgeranyl-diphosphate; Geranylgeranyl diphosphate; nerylneryl pyrophosphate; Nerylneryl diphosphate; Geranylgeranyl PP; Geranylgeranyl-PP; GGPP Diphosphate; GGPP CPD; GGDP; Geranylgeranyl diphosphate
数据库引用编号
28 个数据库交叉引用编号
- ChEBI: CHEBI:48861
- ChEBI: CHEBI:15831
- KEGG: C00353
- PubChem: 447277
- PubChem: 735
- HMDB: HMDB0004486
- Metlin: METLIN6134
- DrugBank: DB07841
- ChEMBL: CHEMBL1229266
- MetaCyc: GERANYLGERANYL-PP
- KNApSAcK: C00000908
- foodb: FDB023377
- chemspider: 394418
- CAS: 6699-20-3
- MoNA: PS012309
- MoNA: PS012310
- MoNA: PS012307
- MoNA: PS012308
- MoNA: PS012311
- MoNA: PS012312
- PMhub: MS000000915
- PubChem: 3646
- LipidMAPS: LMPR0104010001
- PDB-CCD: GRG
- 3DMET: B01223
- NIKKAJI: J39.582J
- KNApSAcK: 48861
- LOTUS: LTS0094270
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
564 个相关的代谢反应过程信息。
Reactome(44)
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- RAB geranylgeranylation:
RABGGTA:RABGGTB:CHMs:GGPP + RABs:GDP ⟶ RGGT:CHMs:RABs:GDP
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- RAB geranylgeranylation:
RABGGTA:RABGGTB:CHMs:GGPP + RABs:GDP ⟶ RGGT:CHMs:RABs:GDP
- RAB geranylgeranylation:
RABGGTA:RABGGTB:CHMs:GGPP + RABs:GDP ⟶ RGGT:CHMs:RABs:GDP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- RAB geranylgeranylation:
RABGGTA:RABGGTB:CHMs:GGPP + RABs:GDP ⟶ RGGT:CHMs:RABs:GDP
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- RAB geranylgeranylation:
CHM + RABGGTA:RABGGTB + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- RAB geranylgeranylation:
CHM + RABGGTA:RABGGTB + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- RAB geranylgeranylation:
RABGGTA:RABGGTB + chm + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- RAB geranylgeranylation:
CHMs + RABGGTA:RABGGTB + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- RAB geranylgeranylation:
RABGGTA:RABGGTB + Rep + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- RAB geranylgeranylation:
CHMs + RABGGTA:RABGGTB + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- RAB geranylgeranylation:
CHMs + RABGGTA:RABGGTB + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- RAB geranylgeranylation:
RGGT:CHMs:RABs:GDP + geranylgeranyl diphosphate ⟶ CHMs:GGC-RABs:GDP + PPi + RGGTA:RGGTB:GGPP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- RAB geranylgeranylation:
Chm + RABGGTA:RABGGTB + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- RAB geranylgeranylation:
CHM + RABGGTA:RABGGTB + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- RAB geranylgeranylation:
CHMs + RABGGTA:RABGGTB + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
- RAB geranylgeranylation:
RABGGTA:RABGGTB + chm + geranylgeranyl diphosphate ⟶ RABGGTA:RABGGTB:CHMs:GGPP
BioCyc(0)
WikiPathways(0)
Plant Reactome(513)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Momilactone biosynthesis:
geranylgeranyl diphosphate ⟶ syn-copalyl diphosphate
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + beta-cryptoxanthin + hydrogen donor ⟶ H2O + hydrogen acceptor + zeaxanthin
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
GPP + IPPP ⟶ FAPP + PPi
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- GGPP biosynthesis II (plastidic):
FAPP + IPPP ⟶ PPi + geranylgeranyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Ent-kaurene biosynthesis:
geranylgeranyl diphosphate ⟶ ent-copalyl diphosphate
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Chlorophyll a biosynthesis II:
TPNH + geranylgeranyl-chlorophyll a ⟶ TPN + dihydrogeranylgeranyl-chlorophyll a
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
- Phytyl-PP biosynthesis:
TPNH + geranylgeranyl diphosphate ⟶ TPN + dihydrogeranylgeranyl-PP
INOH(1)
- Steroids metabolism ( Steroids metabolism ):
7-Dehydro-cholesterol + NADP+ ⟶ Cholesterol + NADPH
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(6)
- Plastoquinol-9 Biosynthesis:
L-Tyrosine + Oxoglutaric acid ⟶ 4-Hydroxyphenylpyruvic acid + L-Glutamic acid
- Terpenoid Backbone Biosynthesis:
Farnesylcysteine + Oxygen + Water ⟶ 2-trans,6-trans-Farnesal + Hydrogen peroxide + L-Cysteine
- Terpenoid Backbone Biosynthesis:
3-Hydroxy-3-methylglutaryl-CoA + NADPH ⟶ Coenzyme A + Mevalonic acid + NADP
- Chlorophyll a Biosynthesis II:
3,8-divinyl chlorophyllide a + Hydrogen Ion + NADPH ⟶ NADP + chlorophyllide a
- Phylloquinol Biosynthesis:
2-carboxy-1,4-naphthoquinone + Hydrogen Ion + Phytyl diphosphate ⟶ Carbon dioxide + Demethylphylloquinone + Pyrophosphate
- Chlorophyll a Biosynthesis I:
Geranylgeranyl-PP + Hydrogen Ion + NADPH ⟶ NADP + dihydrogeranylgeranyl diphosphate
PharmGKB(0)
77 个相关的物种来源信息
- 28211 - Alphaproteobacteria: LTS0094270
- 3702 - Arabidopsis thaliana: 10.1007/BF00202639
- 4890 - Ascomycota: LTS0094270
- 1131492 - Aspergillaceae: LTS0094270
- 5052 - Aspergillus: LTS0094270
- 5059 - Aspergillus flavus:
- 5059 - Aspergillus flavus: 10.1021/JA3116636
- 5059 - Aspergillus flavus: LTS0094270
- 5062 - Aspergillus oryzae:
- 5062 - Aspergillus oryzae: 10.1021/JA3116636
- 5062 - Aspergillus oryzae: LTS0094270
- 1167532 - Aspergillus oryzae: 10.1021/JA3116636
- 2 - Bacteria: LTS0094270
- 5110 - Claviceps: LTS0094270
- 40601 - Claviceps paspali: 10.1021/JF902208W
- 40601 - Claviceps paspali: LTS0094270
- 34397 - Clavicipitaceae: LTS0094270
- 28221 - Deltaproteobacteria: LTS0094270
- 147541 - Dothideomycetes: LTS0094270
- 543 - Enterobacteriaceae: LTS0094270
- 5047 - Epichloe coenophiala: 10.1128/AEM.00953-08
- 447255 - Epichloe funkii: 10.1128/AEM.00953-08
- 71991 - Epichloe tembladerae: 10.1128/AEM.00953-08
- 1903409 - Erwiniaceae: LTS0094270
- 2759 - Eukaryota: LTS0094270
- 147545 - Eurotiomycetes: LTS0094270
- 49546 - Flavobacteriaceae: LTS0094270
- 117743 - Flavobacteriia: LTS0094270
- 237 - Flavobacterium: 10.1016/S0378-1119(96)00624-5
- 237 - Flavobacterium: LTS0094270
- 4751 - Fungi: LTS0094270
- 1236 - Gammaproteobacteria: LTS0094270
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 3398 - Magnoliopsida: LTS0094270
- 10090 - Mus musculus: 10.1016/S0378-1119(96)00593-8
- 31 - Myxococcaceae: LTS0094270
- 32 - Myxococcus: LTS0094270
- 34 - Myxococcus xanthus: 10.1111/J.1432-1033.1995.238_1.X
- 34 - Myxococcus xanthus: LTS0094270
- 45284 - Neotyphodium: 10.1128/AEM.00953-08
- 4085 - Nicotiana: LTS0094270
- 4097 - Nicotiana tabacum: 10.1007/BF00191570
- 4097 - Nicotiana tabacum: LTS0094270
- 204149 - Ocimum tenuiflorum: 10.1371/JOURNAL.PONE.0207097
- 53335 - Pantoea: LTS0094270
- 549 - Pantoea agglomerans:
- 553 - Pantoea ananatis:
- 553 - Pantoea ananatis: 10.1128/JB.172.12.6704-6712.1990
- 553 - Pantoea ananatis: LTS0094270
- 5073 - Penicillium: LTS0094270
- 545233 - Penicillium ianthinellum: 10.3390/TOXINS7082701
- 5079 - Penicillium janthinellum: 10.3390/TOXINS7082701
- 5079 - Penicillium janthinellum: LTS0094270
- 70109 - Penicillium paxilli: 10.3390/TOXINS7082701
- 70109 - Penicillium paxilli: LTS0094270
- 69488 - Penicillium simplicissimum: 10.3390/TOXINS7082701
- 69488 - Penicillium simplicissimum: LTS0094270
- 55067 - Phaeosphaeria: 10.1074/JBC.272.35.21706
- 55067 - Phaeosphaeria: LTS0094270
- 5020 - Phaeosphaeriaceae: LTS0094270
- 1060 - Rhodobacter: LTS0094270
- 1061 - Rhodobacter capsulatus: 10.1007/BF00334364
- 1061 - Rhodobacter capsulatus: LTS0094270
- 4070 - Solanaceae: LTS0094270
- 147550 - Sordariomycetes: LTS0094270
- 1883 - Streptomyces: LTS0094270
- 1911 - Streptomyces griseus:
- 1911 - Streptomyces griseus: 10.1007/BF02173971
- 1911 - Streptomyces griseus: LTS0094270
- 2062 - Streptomycetaceae: LTS0094270
- 35493 - Streptophyta: LTS0094270
- 124418 - Tolypocladium album: 10.1016/J.CHEMBIOL.2012.10.010
- 58023 - Tracheophyta: LTS0094270
- 28568 - Trichocomaceae: LTS0094270
- 19953 - Valeriana officinalis: 10.1016/J.PHYTOCHEM.2016.02.011
- 33090 - Viridiplantae: LTS0094270
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xuan Song, Yao-Guo Qin, Yi-Han Zhang, Yu-Bei Zhou, Zheng-Xi Li. Farnesyl/geranylgeranyl diphosphate synthases regulate the biosynthesis of alarm pheromone in a unique manner in the vetch aphid Megoura viciae.
Insect molecular biology.
2022 Dec; ?(?):. doi:
10.1111/imb.12826
. [PMID: 36533988] - Xin Shu, Jiaqi Wu, Tao Zhang, Xiaoyu Ma, Zuoqin Du, Jin Xu, Jingcan You, Liqun Wang, Ni Chen, Mao Luo, Jianbo Wu. Statin-Induced Geranylgeranyl Pyrophosphate Depletion Promotes PCSK9-Dependent Adipose Insulin Resistance.
Nutrients.
2022 Dec; 14(24):. doi:
10.3390/nu14245314
. [PMID: 36558473] - Xin Shu, Jiaqi Wu, Tao Zhang, Xiaoyu Ma, Zuoqin Du, Jin Xu, Jingcan You, Liqun Wang, Ni Chen, Mao Luo, Jianbo Wu. Statin-Induced Geranylgeranyl Pyrophosphate Depletion Promotes Ferroptosis-Related Senescence in Adipose Tissue.
Nutrients.
2022 Oct; 14(20):. doi:
10.3390/nu14204365
. [PMID: 36297049] - Feifei Xu, Zining Wang, Hongxia Zhang, Jiemin Chen, Xiaojuan Wang, Lei Cui, Chunyuan Xie, Mengyun Li, Fang Wang, Penghui Zhou, Jinyun Liu, Peng Huang, Xiaodong Xia, Xiaojun Xia. Mevalonate Blockade in Cancer Cells Triggers CLEC9A+ Dendritic Cell-Mediated Antitumor Immunity.
Cancer research.
2021 09; 81(17):4514-4528. doi:
10.1158/0008-5472.can-20-3977
. [PMID: 34266895] - Lai Wang, Zu-Guo Zheng, Lingchang Meng, Lijun Zhu, Ping Li, Jun Chen, Hua Yang. Statins induce skeletal muscle atrophy via GGPP depletion-dependent myostatin overexpression in skeletal muscle and brown adipose tissue.
Cell biology and toxicology.
2021 06; 37(3):441-460. doi:
10.1007/s10565-020-09558-w
. [PMID: 33034787] - Liping Zhu, Fangbo Liu, Qiang Hao, Tian Feng, Zeshuai Chen, Shengquan Luo, Rui Xiao, Mengxiang Sun, Ting Zhang, Xiaohang Fan, Xianqin Zeng, Jianguo He, Ping Yuan, Jinming Liu, Matthieu Ruiz, Jocelyn Dupuis, Qinghua Hu. Dietary Geranylgeranyl Pyrophosphate Counteracts the Benefits of Statin Therapy in Experimental Pulmonary Hypertension.
Circulation.
2021 05; 143(18):1775-1792. doi:
10.1161/circulationaha.120.046542
. [PMID: 33660517] - Joseph Longo, Petr Smirnov, Zhihua Li, Emily Branchard, Jenna E van Leeuwen, Jonathan D Licht, Benjamin Haibe-Kains, David W Andrews, Jonathan J Keats, Trevor J Pugh, Suzanne Trudel, Linda Z Penn. The mevalonate pathway is an actionable vulnerability of t(4;14)-positive multiple myeloma.
Leukemia.
2021 03; 35(3):796-808. doi:
10.1038/s41375-020-0962-2
. [PMID: 32665698] - Sarah Ötzkan, Walter E Muller, W Gibson Wood, Gunter P Eckert. Effects of 7,8-Dihydroxyflavone on Lipid Isoprenoid and Rho Protein Levels in Brains of Aged C57BL/6 Mice.
Neuromolecular medicine.
2021 03; 23(1):130-139. doi:
10.1007/s12017-020-08640-0
. [PMID: 33377988] - Marie Chantal Lemfack, Wolfgang Brandt, Katja Krüger, Alexandra Gurowietz, Jacky Djifack, Jan-Philip Jung, Marius Hopf, Heiko Noack, Björn Junker, Stephan von Reuß, Birgit Piechulla. Reaction mechanism of the farnesyl pyrophosphate C-methyltransferase towards the biosynthesis of pre-sodorifen pyrophosphate by Serratia plymuthica 4Rx13.
Scientific reports.
2021 02; 11(1):3182. doi:
10.1038/s41598-021-82521-9
. [PMID: 33542330] - Chi Zhang, Dan-Dan Jin, Xi-Ying Wang, Lian Lou, Jian Yang. Key Enzymes for the Mevalonate Pathway in the Cardiovascular System.
Journal of cardiovascular pharmacology.
2021 02; 77(2):142-152. doi:
10.1097/fjc.0000000000000952
. [PMID: 33538531] - Lisha Wei, Yan-Yan Zheng, Jie Sun, Pei Wang, Tao Tao, Yeqiong Li, Xin Chen, Yongjuan Sang, Danyang Chong, Wei Zhao, Yuwei Zhou, Ye Wang, Zhihui Jiang, Tiantian Qiu, Chao-Jun Li, Min-Sheng Zhu, Xuena Zhang. GGPP depletion initiates metaflammation through disequilibrating CYB5R3-dependent eicosanoid metabolism.
The Journal of biological chemistry.
2020 11; 295(47):15988-16001. doi:
10.1074/jbc.ra120.015020
. [PMID: 32913122] - Garret P Miller, Wajid Waheed Bhat, Emily R Lanier, Sean R Johnson, Davis T Mathieu, Björn Hamberger. The biosynthesis of the anti-microbial diterpenoid leubethanol in Leucophyllum frutescens proceeds via an all-cis prenyl intermediate.
The Plant journal : for cell and molecular biology.
2020 11; 104(3):693-705. doi:
10.1111/tpj.14957
. [PMID: 32777127] - Cheng-Yi Chiang, Chia-Cheng Chou, Hsin-Yang Chang, Min-Feng Hsu, Po-Jung Pao, Ming-Hui Chiang, Andrew H-J Wang. Biochemical and molecular dynamics studies of archaeal polyisoprenyl pyrophosphate phosphatase from Saccharolobus solfataricus.
Enzyme and microbial technology.
2020 Sep; 139(?):109585. doi:
10.1016/j.enzmictec.2020.109585
. [PMID: 32732034] - Gal Hivert, Rachel Davidovich-Rikanati, Einat Bar, Yaron Sitrit, Arthur Schaffer, Natalia Dudareva, Efraim Lewinsohn. Prenyltransferases catalyzing geranyldiphosphate formation in tomato fruit.
Plant science : an international journal of experimental plant biology.
2020 Jul; 296(?):110504. doi:
10.1016/j.plantsci.2020.110504
. [PMID: 32540020] - Oliver Gericke, Nikolaj Lervad Hansen, Gustav Blichfeldt Pedersen, Louise Kjaerulff, Dan Luo, Dan Staerk, Birger Lindberg Møller, Irini Pateraki, Allison Maree Heskes. Nerylneryl diphosphate is the precursor of serrulatane, viscidane and cembrane-type diterpenoids in Eremophila species.
BMC plant biology.
2020 Feb; 20(1):91. doi:
10.1186/s12870-020-2293-x
. [PMID: 32111159] - Shou Tanaka, Noriko Ishihara, Sawako Suzuki, Yasuhiro Watanabe, Daiji Nagayama, Takashi Yamaguchi, Masahiro Ohira, Atsuhito Saiki, Tomoaki Tanaka, Ichiro Tatsuno. Fatty acid desaturase 2 is up-regulated by the treatment with statin through geranylgeranyl pyrophosphate-dependent Rho kinase pathway in HepG2 cells.
Scientific reports.
2019 07; 9(1):10009. doi:
10.1038/s41598-019-46461-9
. [PMID: 31292513] - Sean R Johnson, Wajid Waheed Bhat, Radin Sadre, Garret P Miller, Alekzander Sky Garcia, Björn Hamberger. Promiscuous terpene synthases from Prunella vulgaris highlight the importance of substrate and compartment switching in terpene synthase evolution.
The New phytologist.
2019 07; 223(1):323-335. doi:
10.1111/nph.15778
. [PMID: 30843212] - Maheshwor Timilshina, Zhiwei You, Sonja M Lacher, Suman Acharya, Liyuan Jiang, Youra Kang, Jung-Ae Kim, Hyeun Wook Chang, Keuk-Jun Kim, Byoungduck Park, Jae-Hyoung Song, Hyun-Jeong Ko, Yun-Yong Park, Min-Jung Ma, Mahesh Raj Nepal, Tae Cheon Jeong, Yeonseok Chung, Ari Waisman, Jae-Hoon Chang. Activation of Mevalonate Pathway via LKB1 Is Essential for Stability of Treg Cells.
Cell reports.
2019 06; 27(10):2948-2961.e7. doi:
10.1016/j.celrep.2019.05.020
. [PMID: 31167140] - Maurizio Camagna, Alexander Grundmann, Cornelia Bär, Julian Koschmieder, Peter Beyer, Ralf Welsch. Enzyme Fusion Removes Competition for Geranylgeranyl Diphosphate in Carotenogenesis.
Plant physiology.
2019 03; 179(3):1013-1027. doi:
10.1104/pp.18.01026
. [PMID: 30309967] - Wei-Cai Chen, Shan Lu. From golden rice to aSTARice, more than just two steps forward in a pathway.
Science China. Life sciences.
2019 Feb; 62(2):280-281. doi:
10.1007/s11427-018-9426-2
. [PMID: 30506343] - Yashpal S Chhonker, Staci L Haney, Veenu Bala, Sarah A Holstein, Daryl J Murry. Simultaneous Quantitation of Isoprenoid Pyrophosphates in Plasma and Cancer Cells Using LC-MS/MS.
Molecules (Basel, Switzerland).
2018 Dec; 23(12):. doi:
10.3390/molecules23123275
. [PMID: 30544938] - Zhiliang Xu, Fengsen Duan, Huiai Lu, Maytham Abdulkadhim Dragh, Yanzhi Xia, Huageng Liang, Ling Hong. UBIAD1 suppresses the proliferation of bladder carcinoma cells by regulating H-Ras intracellular trafficking via interaction with the C-terminal domain of H-Ras.
Cell death & disease.
2018 12; 9(12):1170. doi:
10.1038/s41419-018-1215-4
. [PMID: 30518913] - Sholeem Griffin, Gareth D Healey, I Martin Sheldon. Isoprenoids increase bovine endometrial stromal cell tolerance to the cholesterol-dependent cytolysin from Trueperella pyogenes.
Biology of reproduction.
2018 10; 99(4):749-760. doi:
10.1093/biolre/ioy099
. [PMID: 29688258] - Caixia Yan, Yirui Zhang, Xiaoxu Zhang, Jiye Aa, Guangji Wang, Yuan Xie. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2018 Sep; 105(?):274-281. doi:
10.1016/j.biopha.2018.05.135
. [PMID: 29860219] - Zhaojun Shen, Saisai Li, Bo Sheng, Qi Shen, Lu-Zhe Sun, Haiyan Zhu, Xueqiong Zhu. The role of atorvastatin in suppressing tumor growth of uterine fibroids.
Journal of translational medicine.
2018 03; 16(1):53. doi:
10.1186/s12967-018-1430-x
. [PMID: 29523174] - Xiao-Xiao Liu, Xiao-Wen Zhang, Kai Wang, Xue-Ying Wang, Wen-Long Ma, Wei Cao, Dan Mo, Yang Sun, Xiao-Qiang Li. Kuwanon G attenuates atherosclerosis by upregulation of LXRα-ABCA1/ABCG1 and inhibition of NFκB activity in macrophages.
Toxicology and applied pharmacology.
2018 02; 341(?):56-63. doi:
10.1016/j.taap.2018.01.007
. [PMID: 29355567] - Nobuhito Murai, Hideki Hiyama, Tetsuo Kiso, Toshihiro Sekizawa, Tomonari Watabiki, Hiromasa Oka, Toshiaki Aoki. Analgesic effects of novel lysophosphatidic acid receptor 5 antagonist AS2717638 in rodents.
Neuropharmacology.
2017 Nov; 126(?):97-107. doi:
10.1016/j.neuropharm.2017.08.032
. [PMID: 28859883] - Noriko Ishihara, Sawako Suzuki, Shou Tanaka, Yasuhiro Watanabe, Daiji Nagayama, Atsuhito Saiki, Tomoaki Tanaka, Ichiro Tatsuno. Atorvastatin increases Fads1, Fads2 and Elovl5 gene expression via the geranylgeranyl pyrophosphate-dependent Rho kinase pathway in 3T3-L1 cells.
Molecular medicine reports.
2017 Oct; 16(4):4756-4762. doi:
10.3892/mmr.2017.7141
. [PMID: 28765914] - Sameh S M Soliman, Kareem A Mosa, Ali A El-Keblawy, Mohamed I Husseiny. Exogenous and endogenous increase in fungal GGPP increased fungal Taxol production.
Applied microbiology and biotechnology.
2017 Oct; 101(20):7523-7533. doi:
10.1007/s00253-017-8509-9
. [PMID: 28918530] - Jan Rinkel, Patrick Rabe, Xinlu Chen, Tobias G Köllner, Feng Chen, Jeroen S Dickschat. Mechanisms of the Diterpene Cyclases β-Pinacene Synthase from Dictyostelium discoideum and Hydropyrene Synthase from Streptomyces clavuligerus.
Chemistry (Weinheim an der Bergstrasse, Germany).
2017 Aug; 23(44):10501-10505. doi:
10.1002/chem.201702704
. [PMID: 28696553] - Tariq A Akhtar, Przemysław Surowiecki, Hanna Siekierska, Magdalena Kania, Kristen Van Gelder, Kevin A Rea, Lilia K A Virta, Maritza Vatta, Katarzyna Gawarecka, Jacek Wojcik, Witold Danikiewicz, Daniel Buszewicz, Ewa Swiezewska, Liliana Surmacz. Polyprenols Are Synthesized by a Plastidial cis-Prenyltransferase and Influence Photosynthetic Performance.
The Plant cell.
2017 Jul; 29(7):1709-1725. doi:
10.1105/tpc.16.00796
. [PMID: 28655749] - Hiroshi Sugimoto, Mie Iguchi, Fumihiro Jinno. Bioanalysis of farnesyl pyrophosphate in human plasma by high-performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry and hybrid quadrupole Orbitrap high-resolution mass spectrometry.
Analytical and bioanalytical chemistry.
2017 May; 409(14):3551-3560. doi:
10.1007/s00216-017-0293-y
. [PMID: 28343347] - Ramasamy P Kumar, Benjamin R Morehouse, Jason O Matos, Karan Malik, Hongkun Lin, Isaac J Krauss, Daniel D Oprian. Structural Characterization of Early Michaelis Complexes in the Reaction Catalyzed by (+)-Limonene Synthase from Citrus sinensis Using Fluorinated Substrate Analogues.
Biochemistry.
2017 03; 56(12):1716-1725. doi:
10.1021/acs.biochem.7b00144
. [PMID: 28272876] - Vít Kosek, Milena Stránská, Marie Fenclová, Tomáš Ruml, Libor Vítek, Jana Hajšlová. High resolution mass spectrometry based method applicable for a wide range of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors in blood serum including intermediates and products of the cholesterol biosynthetic pathway.
Journal of chromatography. A.
2017 Mar; 1489(?):86-94. doi:
10.1016/j.chroma.2017.01.084
. [PMID: 28209347] - Sibongile Mafu, Prema Sambandaswami Karunanithi, Teresa Ann Palazzo, Bronwyn Lee Harrod, Selina Marakana Rodriguez, Iris Natalie Mollhoff, Terrence Edward O'Brien, Shen Tong, Oliver Fiehn, Dean J Tantillo, Jörg Bohlmann, Philipp Zerbe. Biosynthesis of the microtubule-destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase.
Proceedings of the National Academy of Sciences of the United States of America.
2017 01; 114(5):974-979. doi:
10.1073/pnas.1612901114
. [PMID: 28096378] - Yu-Sheng Yeh, Tsuyoshi Goto, Nobuyuki Takahashi, Kahori Egawa, Haruya Takahashi, Huei-Fen Jheng, Young-Il Kim, Teruo Kawada. Geranylgeranyl pyrophosphate performs as an endogenous regulator of adipocyte function via suppressing the LXR pathway.
Biochemical and biophysical research communications.
2016 09; 478(3):1317-22. doi:
10.1016/j.bbrc.2016.08.119
. [PMID: 27569282] - Kayla J Temple, Elia N Wright, Carol A Fierke, Richard A Gibbs. Exploration of GGTase-I substrate requirements. Part 2: Synthesis and biochemical analysis of novel saturated geranylgeranyl diphosphate analogs.
Bioorganic & medicinal chemistry letters.
2016 08; 26(15):3503-7. doi:
10.1016/j.bmcl.2016.06.035
. [PMID: 27342751] - Kayla J Temple, Elia N Wright, Carol A Fierke, Richard A Gibbs. Exploration of GGTase-I substrate requirements. Part 1: Synthesis and biochemical evaluation of novel aryl-modified geranylgeranyl diphosphate analogs.
Bioorganic & medicinal chemistry letters.
2016 08; 26(15):3499-502. doi:
10.1016/j.bmcl.2016.06.034
. [PMID: 27342750] - Marc M Schumacher, Dong-Jae Jun, Youngah Jo, Joachim Seemann, Russell A DeBose-Boyd. Geranylgeranyl-regulated transport of the prenyltransferase UBIAD1 between membranes of the ER and Golgi.
Journal of lipid research.
2016 07; 57(7):1286-99. doi:
10.1194/jlr.m068759
. [PMID: 27121042] - Mathias Woschek, Niels Kneip, Katrin Jurida, Ingo Marzi, Borna Relja. Simvastatin Reduces Cancerogenic Potential of Renal Cancer Cells via Geranylgeranyl Pyrophosphate and Mevalonate Pathway.
Nutrition and cancer.
2016; 68(3):420-7. doi:
10.1080/01635581.2016.1152383
. [PMID: 27042994] - M Águila Ruiz-Sola, Diana Coman, Gilles Beck, M Victoria Barja, Maite Colinas, Alexander Graf, Ralf Welsch, Philipp Rütimann, Peter Bühlmann, Laurent Bigler, Wilhelm Gruissem, Manuel Rodríguez-Concepción, Eva Vranová. Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids.
The New phytologist.
2016 Jan; 209(1):252-64. doi:
10.1111/nph.13580
. [PMID: 26224411] - Meng Zhang, Ping Su, Yong-Jin Zhou, Xiu-Juan Wang, Yu-Jun Zhao, Yu-Jia Liu, Yu-Ru Tong, Tian-Yuan Hu, Lu-Qi Huang, Wei Gao. Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii.
Plant cell reports.
2015 Dec; 34(12):2179-88. doi:
10.1007/s00299-015-1860-3
. [PMID: 26449416] - Yue-Hua Wu, Guo-Dong Chen, Rong-Rong He, Chuan-Xi Wang, Dan Hu, Gao-Qian Wang, Liang-Dong Guo, Xin-Sheng Yao, Hao Gao. Pericolactines A-C, a New Class of Diterpenoid Alkaloids with Unusual Tetracyclic Skeleton.
Scientific reports.
2015 Nov; 5(?):17082. doi:
10.1038/srep17082
. [PMID: 26611465] - Koji Miyamoto, Yoko Nishizawa, Eiichi Minami, Hideaki Nojiri, Hisakazu Yamane, Kazunori Okada. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells.
Journal of plant physiology.
2015 Jan; 173(?):19-27. doi:
10.1016/j.jplph.2014.09.001
. [PMID: 25462074] - Meiya Li, Fusheng Jiang, Xiangli Yu, Zhiqi Miao. Engineering isoprenoid biosynthesis in Artemisia annua L. for the production of taxadiene: a key intermediate of taxol.
BioMed research international.
2015; 2015(?):504932. doi:
10.1155/2015/504932
. [PMID: 25705665] - Yuki Matsuba, Jiachen Zi, A Daniel Jones, Reuben J Peters, Eran Pichersky. Biosynthesis of the diterpenoid lycosantalonol via nerylneryl diphosphate in Solanum lycopersicum.
PloS one.
2015; 10(3):e0119302. doi:
10.1371/journal.pone.0119302
. [PMID: 25786135] - Juan P Zúñiga-Hertz, Eduardo Rebelato, Adam Kassan, Abdelrahman M Khalifa, Sameh S Ali, Hemal H Patel, Fernando Abdulkader. Distinct pathways of cholesterol biosynthesis impact on insulin secretion.
The Journal of endocrinology.
2015 Jan; 224(1):75-84. doi:
10.1530/joe-14-0348
. [PMID: 25453115] - Y Yamamura, Y Mizuguchi, F Taura, F Kurosaki. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.
Journal of natural medicines.
2014 Oct; 68(4):748-53. doi:
10.1007/s11418-014-0855-7
. [PMID: 25027024] - S Zafar, D E Coates, M P Cullinan, B K Drummond, T Milne, G J Seymour. Zoledronic acid and geranylgeraniol regulate cellular behaviour and angiogenic gene expression in human gingival fibroblasts.
Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.
2014 Oct; 43(9):711-21. doi:
10.1111/jop.12181
. [PMID: 24762323] - Hao Zhang, Zheng-Xi Li. A type-III insect geranylgeranyl diphosphate synthase with a novel catalytic property.
Protein and peptide letters.
2014 Jul; 21(7):615-23. doi:
10.2174/0929866521666140214123942
. [PMID: 24527738] - Md Mohidul Hasan, Hyun-Soon Kim, Jae-Heung Jeon, Sung Hong Kim, BoKyung Moon, Jai-Young Song, Sang Hee Shim, Kwang-Hyun Baek. Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene.
Plant cell reports.
2014 Jun; 33(6):895-904. doi:
10.1007/s00299-014-1568-9
. [PMID: 24463610] - W Gibson Wood, Ling Li, Walter E Müller, Gunter P Eckert. Cholesterol as a causative factor in Alzheimer's disease: a debatable hypothesis.
Journal of neurochemistry.
2014 May; 129(4):559-72. doi:
10.1111/jnc.12637
. [PMID: 24329875] - Raimund Nagel, Aileen Berasategui, Christian Paetz, Jonathan Gershenzon, Axel Schmidt. Overexpression of an isoprenyl diphosphate synthase in spruce leads to unexpected terpene diversion products that function in plant defense.
Plant physiology.
2014 Feb; 164(2):555-69. doi:
10.1104/pp.113.228940
. [PMID: 24346420] - Jiachen Zi, Sibongile Mafu, Reuben J Peters. To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism.
Annual review of plant biology.
2014; 65(?):259-86. doi:
10.1146/annurev-arplant-050213-035705
. [PMID: 24471837] - Mustafa Köksal, Kevin Potter, Reuben J Peters, David W Christianson. 1.55Å-resolution structure of ent-copalyl diphosphate synthase and exploration of general acid function by site-directed mutagenesis.
Biochimica et biophysica acta.
2014 Jan; 1840(1):184-90. doi:
10.1016/j.bbagen.2013.09.004
. [PMID: 24036329] - David M Hershey, Xuan Lu, Jiachen Zi, Reuben J Peters. Functional conservation of the capacity for ent-kaurene biosynthesis and an associated operon in certain rhizobia.
Journal of bacteriology.
2014 Jan; 196(1):100-6. doi:
10.1128/jb.01031-13
. [PMID: 24142247] - K M Burgazli, K L Bui, M Mericliler, A T Albayrak, M Parahuleva, A Erdogan. The effects of different types of statins on proliferation and migration of HGF-induced Human Umbilical Vein Endothelial Cells (HUVECs).
European review for medical and pharmacological sciences.
2013 Nov; 17(21):2874-83. doi:
. [PMID: 24254555]
- Nils Günnewich, Yasuhiro Higashi, Xiaohong Feng, Kum-Boo Choi, Jürgen Schmidt, Toni M Kutchan. A diterpene synthase from the clary sage Salvia sclarea catalyzes the cyclization of geranylgeranyl diphosphate to (8R)-hydroxy-copalyl diphosphate.
Phytochemistry.
2013 Jul; 91(?):93-9. doi:
10.1016/j.phytochem.2012.07.019
. [PMID: 22959531] - Martha M Vaughan, Qiang Wang, Francis X Webster, Dave Kiemle, Young J Hong, Dean J Tantillo, Robert M Coates, Austin T Wray, Whitnee Askew, Christopher O'Donnell, James G Tokuhisa, Dorothea Tholl. Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory.
The Plant cell.
2013 Mar; 25(3):1108-25. doi:
10.1105/tpc.112.100057
. [PMID: 23512856] - F Xu, X H Huang, L L Li, G Deng, H Cheng, X F Rong, J B Li, S Y Cheng. Molecular cloning and characterization of GbDXS and GbGGPPS gene promoters from Ginkgo biloba.
Genetics and molecular research : GMR.
2013 Feb; 12(1):293-301. doi:
10.4238/2013.february.4.3
. [PMID: 23408416] - Chunyu Zhang, Rebecca E Cahoon, Sarah C Hunter, Ming Chen, Jixiang Han, Edgar B Cahoon. Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production.
The Plant journal : for cell and molecular biology.
2013 Feb; 73(4):628-39. doi:
10.1111/tpj.12067
. [PMID: 23137278] - Zhubo Dai, Yi Liu, Luqi Huang, Xueli Zhang. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae.
Biotechnology and bioengineering.
2012 Nov; 109(11):2845-53. doi:
10.1002/bit.24547
. [PMID: 22566191] - Gero P Hooff, W Gibson Wood, Ji-Hyun Kim, Urule Igbavboa, Wei-Yi Ong, Walter E Muller, Gunter P Eckert. Brain isoprenoids farnesyl pyrophosphate and geranylgeranyl pyrophosphate are increased in aged mice.
Molecular neurobiology.
2012 Aug; 46(1):179-85. doi:
10.1007/s12035-012-8285-6
. [PMID: 22692983] - Yuji Ishibashi, Sho-ichi Yamagishi, Takanori Matsui, Keisuke Ohta, Ryuichiro Tanoue, Masayoshi Takeuchi, Seiji Ueda, Kei-ichiro Nakamura, Seiya Okuda. Pravastatin inhibits advanced glycation end products (AGEs)-induced proximal tubular cell apoptosis and injury by reducing receptor for AGEs (RAGE) level.
Metabolism: clinical and experimental.
2012 Aug; 61(8):1067-72. doi:
10.1016/j.metabol.2012.01.006
. [PMID: 22386936] - Ji-Shan Fan, Dan-Ning Liu, Gang Huang, Zhi-Zhen Xu, Yi Jia, Hai-Gang Zhang, Xiao-Hui Li, Feng-Tian He. Panax notoginseng saponins attenuate atherosclerosis via reciprocal regulation of lipid metabolism and inflammation by inducing liver X receptor alpha expression.
Journal of ethnopharmacology.
2012 Aug; 142(3):732-8. doi:
10.1016/j.jep.2012.05.053
. [PMID: 22683903] - Ling Li, Wei Zhang, Shaowu Cheng, Dongfeng Cao, Marc Parent. Isoprenoids and related pharmacological interventions: potential application in Alzheimer's disease.
Molecular neurobiology.
2012 Aug; 46(1):64-77. doi:
10.1007/s12035-012-8253-1
. [PMID: 22418893] - V S Soumyarani, N Jayakumari. Oxidatively modified high density lipoprotein promotes inflammatory response in human monocytes-macrophages by enhanced production of ROS, TNF-α, MMP-9, and MMP-2.
Molecular and cellular biochemistry.
2012 Jul; 366(1-2):277-85. doi:
10.1007/s11010-012-1306-y
. [PMID: 22527933] - Jingjing Li, Jixin Jiang, Hao Yin, Lifeng Wang, Ruijuan Tian, Haijie Li, Zengyong Wang, Dong Li, Yuebing Wang, Yu Gui, Michael P Walsh, Xi-Long Zheng. Atorvastatin inhibits myocardin expression in vascular smooth muscle cells.
Hypertension (Dallas, Tex. : 1979).
2012 Jul; 60(1):145-53. doi:
10.1161/hypertensionaha.112.195644
. [PMID: 22615115] - Qiong Chen, Ermao Wang, Liping Ma, Pei Zhai. Dietary resveratrol increases the expression of hepatic 7α-hydroxylase and ameliorates hypercholesterolemia in high-fat fed C57BL/6J mice.
Lipids in health and disease.
2012 May; 11(?):56. doi:
10.1186/1476-511x-11-56
. [PMID: 22607622] - Megumi Fujita, Makiko Tohi, Kyoko Sawada, Yasuhiro Yamamoto, Tsutomu Nakamura, Tatsurou Yagami, Motohiro Yamamori, Noboru Okamura. Involvement of the mevalonate pathway in the antiproliferative effect of zoledronate on ACHN renal cell carcinoma cells.
Oncology reports.
2012 May; 27(5):1371-6. doi:
10.3892/or.2012.1683
. [PMID: 22322451] - Jun-Ling Li, Qian-Qian Chen, Qiu-Ping Jin, Juan Gao, Pei-Ji Zhao, Shan Lu, Ying Zeng. IeCPS2 is potentially involved in the biosynthesis of pharmacologically active Isodon diterpenoids rather than gibberellin.
Phytochemistry.
2012 Apr; 76(?):32-9. doi:
10.1016/j.phytochem.2011.12.021
. [PMID: 22284743] - Yongjin J Zhou, Wei Gao, Qixian Rong, Guojie Jin, Huiying Chu, Wujun Liu, Wei Yang, Zhiwei Zhu, Guohui Li, Guofeng Zhu, Luqi Huang, Zongbao K Zhao. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production.
Journal of the American Chemical Society.
2012 Feb; 134(6):3234-41. doi:
10.1021/ja2114486
. [PMID: 22280121] - Zheng Zhang, Mi Wang, Sheng-Jiang Xue, Dong-Hong Liu, Yong-Bo Tang. Simvastatin ameliorates angiotensin II-induced endothelial dysfunction through restoration of Rho-BH4-eNOS-NO pathway.
Cardiovascular drugs and therapy.
2012 Feb; 26(1):31-40. doi:
10.1007/s10557-011-6351-3
. [PMID: 22083280] - Gudrun Nürenberg, Dietrich A Volmer. The analytical determination of isoprenoid intermediates from the mevalonate pathway.
Analytical and bioanalytical chemistry.
2012 Jan; 402(2):671-85. doi:
10.1007/s00216-011-5262-2
. [PMID: 21789486] - Munechika Enjoji, Motoyuki Kohjima, Kazuhiro Kotoh, Makoto Nakamuta. Metabolic disorders and steatosis in patients with chronic hepatitis C: metabolic strategies for antiviral treatments.
International journal of hepatology.
2012; 2012(?):264017. doi:
10.1155/2012/264017
. [PMID: 22701799] - Xiumin Fu, Wenbin Kong, Gang Peng, Jingyi Zhou, Muhammad Azam, Changjie Xu, Don Grierson, Kunsong Chen. Plastid structure and carotenogenic gene expression in red- and white-fleshed loquat (Eriobotrya japonica) fruits.
Journal of experimental botany.
2012 Jan; 63(1):341-54. doi:
10.1093/jxb/err284
. [PMID: 21994170] - LingLin Wan, Juan Han, Min Sang, AiFen Li, Hong Wu, ShunJi Yin, ChengWu Zhang. De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels.
PloS one.
2012; 7(4):e35142. doi:
10.1371/journal.pone.0035142
. [PMID: 22536352] - Takeru Yokoi, Keisuke Isobe, Tohru Yoshimura, Hisashi Hemmi. Archaeal phospholipid biosynthetic pathway reconstructed in Escherichia coli.
Archaea (Vancouver, B.C.).
2012; 2012(?):438931. doi:
10.1155/2012/438931
. [PMID: 22645416] - Yoshinori Sugai, Yohei Ueno, Ken-ichiro Hayashi, Shingo Oogami, Tomonobu Toyomasu, Sadamu Matsumoto, Masahiro Natsume, Hiroshi Nozaki, Hiroshi Kawaide. Enzymatic (13)C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii.
The Journal of biological chemistry.
2011 Dec; 286(50):42840-7. doi:
10.1074/jbc.m111.302703
. [PMID: 22027823] - Axel Schmidt, Raimund Nagel, Trygve Krekling, Erik Christiansen, Jonathan Gershenzon, Paal Krokene. Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies).
Plant molecular biology.
2011 Dec; 77(6):577-90. doi:
10.1007/s11103-011-9832-7
. [PMID: 22002747] - Arun K Mishra, Nicole N Driessen, Ben J Appelmelk, Gurdyal S Besra. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction.
FEMS microbiology reviews.
2011 Nov; 35(6):1126-57. doi:
10.1111/j.1574-6976.2011.00276.x
. [PMID: 21521247] - Brian M Wasko, Jacqueline P Smits, Larry W Shull, David F Wiemer, Raymond J Hohl. A novel bisphosphonate inhibitor of squalene synthase combined with a statin or a nitrogenous bisphosphonate in vitro.
Journal of lipid research.
2011 Nov; 52(11):1957-64. doi:
10.1194/jlr.m016089
. [PMID: 21903868] - Sarah A Holstein, Craig H Kuder, Huaxiang Tong, Raymond J Hohl. Pleiotropic effects of a schweinfurthin on isoprenoid homeostasis.
Lipids.
2011 Oct; 46(10):907-21. doi:
10.1007/s11745-011-3572-y
. [PMID: 21633866] - Eun Sun Jang, Ji-Eon Won, Jae Il Jung, Sang-Hyub Lee, Jin Wook Kim, Sook-Hyang Jeong. The effect of antiviral therapy on serum cholesterol levels in chronic hepatitis C.
Gut and liver.
2011 Sep; 5(3):356-62. doi:
10.5009/gnl.2011.5.3.356
. [PMID: 21927666] - Tsuyoshi Goto, Hiroyuki Nagai, Kahori Egawa, Young-Il Kim, Sota Kato, Aki Taimatsu, Tomoya Sakamoto, Shogo Ebisu, Takahiro Hohsaka, Hiroh Miyagawa, Shigeru Murakami, Nobuyuki Takahashi, Teruo Kawada. Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARγ agonist.
The Biochemical journal.
2011 Aug; 438(1):111-9. doi:
10.1042/bj20101939
. [PMID: 21605082] - Y Ishibashi, T Matsui, M Takeuchi, S Yamagishi. Rosuvastatin blocks advanced glycation end products-elicited reduction of macrophage cholesterol efflux by suppressing NADPH oxidase activity via inhibition of geranylgeranylation of Rac-1.
Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.
2011 Aug; 43(9):619-24. doi:
10.1055/s-0031-1283148
. [PMID: 21823057] - Akira Honda, Yasushi Matsuzaki. Cholesterol and chronic hepatitis C virus infection.
Hepatology research : the official journal of the Japan Society of Hepatology.
2011 Aug; 41(8):697-710. doi:
10.1111/j.1872-034x.2011.00838.x
. [PMID: 21682830] - Wei Wen, Rongmin Yu. Artemisinin biosynthesis and its regulatory enzymes: Progress and perspective.
Pharmacognosy reviews.
2011 Jul; 5(10):189-94. doi:
10.4103/0973-7847.91118
. [PMID: 22279377] - Megan M Weivoda, Raymond J Hohl. The effects of direct inhibition of geranylgeranyl pyrophosphate synthase on osteoblast differentiation.
Journal of cellular biochemistry.
2011 Jun; 112(6):1506-13. doi:
10.1002/jcb.23087
. [PMID: 21503955] - Kazutaka Sakamoto, Makoto Osaki, Akira Hozumi, Hisataka Goto, Tatsuya Fukushima, Hideo Baba, Hiroyuki Shindo. Simvastatin suppresses dexamethasone-induced secretion of plasminogen activator inhibitor-1 in human bone marrow adipocytes.
BMC musculoskeletal disorders.
2011 Apr; 12(1):82. doi:
10.1186/1471-2474-12-82
. [PMID: 21524281] - Guanghong Cui, Luqi Huang, Xiaojing Tang, Jingxue Zhao. Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray.
Molecular biology reports.
2011 Apr; 38(4):2471-8. doi:
10.1007/s11033-010-0383-9
. [PMID: 21082262] - Shouji Shimoyama. Statins are logical candidates for overcoming limitations of targeting therapies on malignancy: their potential application to gastrointestinal cancers.
Cancer chemotherapy and pharmacology.
2011 Apr; 67(4):729-39. doi:
10.1007/s00280-011-1583-2
. [PMID: 21327931] - Stephan Martin, Christian Herder, Nanette C Schloot, Wolfgang Koenig, Tim Heise, Lutz Heinemann, Hubert Kolb. Residual beta cell function in newly diagnosed type 1 diabetes after treatment with atorvastatin: the Randomized DIATOR Trial.
PloS one.
2011 Mar; 6(3):e17554. doi:
10.1371/journal.pone.0017554
. [PMID: 21412424] - Nadav Sorek, Orit Gutman, Einat Bar, Mohamad Abu-Abied, Xuehui Feng, Mark P Running, Efraim Lewinsohn, Naomi Ori, Einat Sadot, Yoav I Henis, Shaul Yalovsky. Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function.
Plant physiology.
2011 Feb; 155(2):706-20. doi:
10.1104/pp.110.166850
. [PMID: 21139084] - Codruta Ignea, Ivana Cvetkovic, Sofia Loupassaki, Panagiotis Kefalas, Christopher B Johnson, Sotirios C Kampranis, Antonios M Makris. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids.
Microbial cell factories.
2011 Jan; 10(?):4. doi:
10.1186/1475-2859-10-4
. [PMID: 21276210] - Stéphane Jouneau, Mélanie Bonizec, Chantal Belleguic, Benoit Desrues, Graziella Brinchault, Jeanne Galaine, Jean-Pierre Gangneux, Corinne Martin-Chouly. Anti-inflammatory effect of fluvastatin on IL-8 production induced by Pseudomonas aeruginosa and Aspergillus fumigatus antigens in cystic fibrosis.
PloS one.
2011; 6(8):e22655. doi:
10.1371/journal.pone.0022655
. [PMID: 21826199] - Anja Verhulst, Hilde Geryl, Patrick D'Haese. No evidence for statin-induced proteinuria in healthy volunteers as assessed by proteomic analysis.
Journal of biomedicine & biotechnology.
2011; 2011(?):456076. doi:
10.1155/2011/456076
. [PMID: 21918593] - Vicenta Martínez-Sales, Virtudes Vila, Marcos Ferrando, Edelmiro Reganon. Atorvastatin neutralises the thrombin-induced tissue factor expresion in endothelial cells via geranylgeranyl pyrophosphate.
Cytotechnology.
2011 Jan; 63(1):1-5. doi:
10.1007/s10616-010-9319-4
. [PMID: 21052830] - Mohana Roy, Hsing-Jien Kung, Paramita M Ghosh. Statins and prostate cancer: role of cholesterol inhibition vs. prevention of small GTP-binding proteins.
American journal of cancer research.
2011; 1(4):542-61. doi:
. [PMID: 21984972]