3-Methylxanthine (BioDeep_00000001242)

 

Secondary id: BioDeep_00000400355

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


3-methyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione

化学式: C6H6N4O2 (166.0491)
中文名称: 3-甲基黄嘌呤
谱图信息: 最多检出来源 Homo sapiens(plant) 18.77%

Reviewed

Last reviewed on 2024-07-02.

Cite this Page

3-Methylxanthine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/3-methylxanthine (retrieved 2024-12-23) (BioDeep RN: BioDeep_00000001242). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: c1(=O)[nH]c(=O)c2c(n1C)nc[nH]2
InChI: InChI=1S/C6H6N4O2/c1-10-4-3(7-2-8-4)5(11)9-6(10)12/h2H,1H3,(H,7,8)(H,9,11,12)

描述信息

3-methyl-9H-xanthine is a 3-methylxanthine tautomer where the imidazole proton is located at the 9-position. It has a role as a metabolite. It is a tautomer of a 3-methyl-7H-xanthine. 3-Methylxanthine, also known as 3 MX or purine analog, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety.
3-Methylxanthine is a caffeine and a theophylline metabolite. (PMID 16870158, 16678550)

3-Methylxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1076-22-8 (retrieved 2024-07-02) (CAS RN: 1076-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.
3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.

同义名列表

16 个代谢物同义名

3-methyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione; 3-Methyl-3,9-dihydro-2H,6H-purine-2,6-dione; 3-Methyl-3,7(9)-dihydro-purine-2,6-dione; 3,9-Dihydro-3-methyl-1H-purine-2,6-dione; 3-Methylxanthine, methyl-(13)C-labeled; 3-Methyl-3,9-dihydro-purine-2,6-dione; 3-Methylxanthine, monopotassium salt; 3-Methylxanthine, monosodium salt; 2,6-Dihydroxy-3-methylpurine; 2-oxo-3-Methylhypoxanthine; 3-Methyl xanthine; 3-Methylxanthine; Purine analog; 3 MX; 3-Methylxanthine; 3-Methylxanthine



数据库引用编号

29 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(3)

PlantCyc(0)

代谢反应

4 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ADH5, BECN1, CFTR, CYP1A1, CYP2A6, CYP2E1, CYP3A4, HDAC2, NFKB1, NR3C1, XDH
Golgi apparatus, trans-Golgi network membrane 1 BECN1
Peripheral membrane protein 3 BECN1, CYP1A1, CYP2E1
Endosome membrane 2 BECN1, CFTR
Endoplasmic reticulum membrane 7 BECN1, CFTR, CYP1A1, CYP1A2, CYP2A6, CYP2E1, CYP3A4
Mitochondrion membrane 1 BECN1
Cytoplasmic vesicle, autophagosome 1 BECN1
Nucleus 8 BECN1, CFTR, ERH, HDAC2, JUND, NFKB1, NR3C1, PARP1
autophagosome 1 BECN1
cytosol 7 ADH5, BECN1, CFTR, NFKB1, NR3C1, PARP1, XDH
dendrite 2 ADORA1, BECN1
mitochondrial membrane 1 BECN1
nuclear body 2 BECN1, PARP1
phagocytic vesicle 1 BECN1
phosphatidylinositol 3-kinase complex, class III 1 BECN1
trans-Golgi network 1 BECN1
centrosome 1 NR3C1
nucleoplasm 5 HDAC2, JUND, NFKB1, NR3C1, PARP1
RNA polymerase II transcription regulator complex 1 JUND
Cell membrane 3 ADORA1, CFTR, DPP4
lamellipodium 1 DPP4
Early endosome membrane 1 CFTR
Multi-pass membrane protein 3 ADORA1, ATP4A, CFTR
Synapse 2 ADORA1, NR3C1
cell junction 1 DPP4
cell surface 2 CFTR, DPP4
Golgi membrane 1 INS
lysosomal membrane 2 CFTR, DPP4
mitochondrial inner membrane 2 CYP1A1, CYP2E1
neuronal cell body 1 ADORA1
presynaptic membrane 1 ADORA1
Cytoplasm, cytosol 1 PARP1
endosome 1 BECN1
plasma membrane 4 ADORA1, ATP4A, CFTR, DPP4
presynaptic active zone 1 ADORA1
terminal bouton 1 ADORA1
Membrane 8 ATP4A, CFTR, CYP2A6, CYP3A4, DPP4, HDAC2, NR3C1, PARP1
apical plasma membrane 3 ATP4A, CFTR, DPP4
basolateral plasma membrane 1 ADORA1
extracellular exosome 2 ADH5, DPP4
endoplasmic reticulum 1 BECN1
extracellular space 4 ATP4A, CRP, INS, XDH
intercellular canaliculus 1 DPP4
mitochondrion 5 ADH5, CYP1A1, NFKB1, NR3C1, PARP1
protein-containing complex 4 CFTR, HDAC2, NR3C1, PARP1
intracellular membrane-bounded organelle 5 CYP1A1, CYP1A2, CYP2A6, CYP2E1, CYP3A4
Microsome membrane 4 CYP1A1, CYP1A2, CYP2E1, CYP3A4
ESC/E(Z) complex 1 HDAC2
Secreted 3 CRP, DPP4, INS
extracellular region 4 CRP, DPP4, INS, NFKB1
Single-pass membrane protein 1 DPP4
mitochondrial matrix 1 NR3C1
anchoring junction 1 DPP4
transcription regulator complex 3 JUND, NFKB1, PARP1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NR3C1
dendritic spine 1 ADORA1
nucleolus 1 PARP1
midbody 1 ERH
Early endosome 1 CFTR
recycling endosome 1 CFTR
Single-pass type II membrane protein 1 DPP4
postsynaptic membrane 1 ADORA1
Apical cell membrane 3 ATP4A, CFTR, DPP4
Mitochondrion inner membrane 2 CYP1A1, CYP2E1
Membrane raft 1 DPP4
Cytoplasm, cytoskeleton, spindle 1 NR3C1
focal adhesion 1 DPP4
spindle 1 NR3C1
axolemma 1 ADORA1
Peroxisome 1 XDH
sarcoplasmic reticulum 1 XDH
nuclear speck 1 NR3C1
chromatin 5 HDAC2, JUND, NFKB1, NR3C1, PARP1
Chromosome 2 NR3C1, PARP1
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 2 HDAC2, PARP1
site of double-strand break 1 PARP1
nuclear envelope 1 PARP1
Recycling endosome membrane 1 CFTR
Endomembrane system 1 DPP4
endosome lumen 1 INS
chloride channel complex 1 CFTR
phagophore assembly site 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type I 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type II 1 BECN1
Nucleus, nucleoplasm 1 NR3C1
Golgi-associated vesicle membrane 1 CFTR
secretory granule lumen 2 INS, NFKB1
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
transcription repressor complex 1 JUND
specific granule lumen 1 NFKB1
histone deacetylase complex 1 HDAC2
endocytic vesicle 1 DPP4
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
NuRD complex 1 HDAC2
methylosome 1 ERH
calyx of Held 1 ADORA1
clathrin-coated endocytic vesicle membrane 1 CFTR
cytoplasmic microtubule 1 CYP2A6
Sin3-type complex 1 HDAC2
protein-DNA complex 1 PARP1
site of DNA damage 1 PARP1
[Isoform Alpha]: Cytoplasm 1 NR3C1
lamellipodium membrane 1 DPP4
transcription factor AP-1 complex 1 JUND
[Isoform Beta]: Nucleus 1 NR3C1
[Isoform Alpha-B]: Nucleus 1 NR3C1
Cell projection, lamellipodium membrane 1 DPP4
Cell projection, invadopodium membrane 1 DPP4
asymmetric synapse 1 ADORA1
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1
potassium:proton exchanging ATPase complex 1 ATP4A
cytoplasmic side of mitochondrial outer membrane 1 BECN1
[Dipeptidyl peptidase 4 soluble form]: Secreted 1 DPP4
[Beclin-1-C 35 kDa]: Mitochondrion 1 BECN1
[Beclin-1-C 37 kDa]: Mitochondrion 1 BECN1


文献列表

  • Binxing Zhou, Cunqiang Ma, Chengqin Zheng, Tao Xia, Bingsong Ma, Xiaohui Liu. 3-Methylxanthine production through biodegradation of theobromine by Aspergillus sydowii PT-2. BMC microbiology. 2020 08; 20(1):269. doi: 10.1186/s12866-020-01951-z. [PMID: 32854634]
  • Binxing Zhou, Cunqiang Ma, Tao Xia, Xiaohong Li, Chengqin Zheng, Tingting Wu, Xiaohui Liu. Isolation, characterization and application of theophylline-degrading Aspergillus fungi. Microbial cell factories. 2020 Mar; 19(1):72. doi: 10.1186/s12934-020-01333-0. [PMID: 32192512]
  • Binxing Zhou, Cunqiang Ma, Xiaoying Ren, Tao Xia, Xiaohong Li. LC-MS/MS-based metabolomic analysis of caffeine-degrading fungus Aspergillus sydowii during tea fermentation. Journal of food science. 2020 Feb; 85(2):477-485. doi: 10.1111/1750-3841.15015. [PMID: 31905425]
  • Binxing Zhou, Cunqiang Ma, Hongzhen Wang, Tao Xia. Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation. BMC microbiology. 2018 06; 18(1):53. doi: 10.1186/s12866-018-1194-8. [PMID: 29866035]
  • Felix Grases, Antonia Costa-Bauza, Joan Roig, Adrian Rodriguez. Xanthine urolithiasis: Inhibitors of xanthine crystallization. PloS one. 2018; 13(8):e0198881. doi: 10.1371/journal.pone.0198881. [PMID: 30157195]
  • Jin A Sohn, Han-Suk Kim, Jaeseong Oh, Joo-Youn Cho, Kyung-Sang Yu, Juyoung Lee, Seung Han Shin, Jin A Lee, Chang Won Choi, Ee-Kyung Kim, Beyong Il Kim, Eun Ae Park. Prediction of serum theophylline concentrations and cytochrome P450 1A2 activity by analyzing urinary metabolites in preterm infants. British journal of clinical pharmacology. 2017 06; 83(6):1279-1286. doi: 10.1111/bcp.13211. [PMID: 27995649]
  • Ying Liu, Yan Zhan, Yi-Fan Zhang, Xiao-Yan Chen, Da-Fang Zhong. [Quantitative analysis of theophylline and its metabolites in urine of Chinese healthy subjects after oral administration of theophylline sustained-release tablets]. Yao xue xue bao = Acta pharmaceutica Sinica. 2014 Jul; 49(7):1039-43. doi: . [PMID: 25233637]
  • Jung-woo Chae, Dong-hyun Kim, Byung-yo Lee, Eun jung Kim, Kwang-il Kwon. Development and validation of a sensitive LC-MS/MS method for the simultaneous quantitation of theophylline and its metabolites in rat plasma. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2012 Mar; 889-890(?):44-9. doi: 10.1016/j.jchromb.2012.01.028. [PMID: 22365533]
  • Su Jin Choi, Hye Jung Hur, Sang-Bong Lee, Mi-Sun Choi, Hyo-Jeong Kuh, Young-Hee Shin, Hwa Jeong Lee. A simple HPLC method for the quantification of mizoribine in human serum: pharmacokinetic applications. Biomedical chromatography : BMC. 2008 Nov; 22(11):1259-64. doi: 10.1002/bmc.1055. [PMID: 18661478]
  • Masayuki Nadai, Miki Kato, Hideo Yoshizumi, Masao Kimura, Shunsuke Kurono, Fumie Abe, Hiroko Saito, Takaaki Hasegawa. Possible involvement of organic anion and cation transporters in renal excretion of xanthine derivatives, 3-methylxanthine and enprofylline. Life sciences. 2007 Sep; 81(15):1175-82. doi: 10.1016/j.lfs.2007.07.032. [PMID: 17897683]
  • Yeomin Yoon, Hyung-Doo Park, Kyoung Un Park, Jin Q Kim, Yoon-Seok Chang, Junghan Song. Associations between CYP2E1 promoter polymorphisms and plasma 1,3-dimethyluric acid/theophylline ratios. European journal of clinical pharmacology. 2006 Aug; 62(8):627-31. doi: 10.1007/s00228-006-0165-4. [PMID: 16841220]
  • Rocco Orlando, Roberto Padrini, Mauro Perazzi, Sara De Martin, Pierpaolo Piccoli, Pietro Palatini. Liver dysfunction markedly decreases the inhibition of cytochrome P450 1A2-mediated theophylline metabolism by fluvoxamine. Clinical pharmacology and therapeutics. 2006 May; 79(5):489-99. doi: 10.1016/j.clpt.2006.01.012. [PMID: 16678550]
  • Sandrine Derkenne, Christine P Curran, Howard G Shertzer, Timothy P Dalton, Nadine Dragin, Daniel W Nebert. Theophylline pharmacokinetics: comparison of Cyp1a1(-/-) and Cyp1a2(-/-) knockout mice, humanized hCYP1A1_1A2 knock-in mice lacking either the mouse Cyp1a1 or Cyp1a2 gene, and Cyp1(+/+) wild-type mice. Pharmacogenetics and genomics. 2005 Jul; 15(7):503-11. doi: 10.1097/01.fpc.0000167326.00411.50. [PMID: 15970798]
  • Junghan Song, Kyoung Un Park, Hyung Doo Park, Yeomin Yoon, Jin Q Kim. High-throughput liquid chromatography-tandem mass spectrometry assay for plasma theophylline and its metabolites. Clinical chemistry. 2004 Nov; 50(11):2176-9. doi: 10.1373/clinchem.2004.035337. [PMID: 15502093]
  • Mirosława Zydroń, Jacek Baranowski, Irena Baranowska. Separation, pre-concentration, and HPLC analysis of methylxanthines in urine samples. Journal of separation science. 2004 Oct; 27(14):1166-72. doi: 10.1002/jssc.200401841. [PMID: 15537072]
  • Xin-Qiang Zheng, Yoko Koyama, Chifumi Nagai, Hiroshi Ashihara. Biosynthesis, accumulation and degradation of theobromine in developing Theobroma cacao fruits. Journal of plant physiology. 2004 Apr; 161(4):363-9. doi: 10.1078/0176-1617-01253. [PMID: 15128023]
  • K A Georgia, V F Samanidou, I N Papadoyannis. Use of novel solid-phase extraction sorbent materials for high-performance liquid chromatography quantitation of caffeine metabolism products methylxanthines and methyluric acids in samples of biological origin. Journal of chromatography. B, Biomedical sciences and applications. 2001 Aug; 759(2):209-18. doi: 10.1016/s0378-4347(01)00251-1. [PMID: 11499474]
  • M C Di Pietro, D Vannoni, R Leoncini, G Liso, R Guerranti, E Marinello. Determination of urinary methylated purine pattern by high-performance liquid chromatography. Journal of chromatography. B, Biomedical sciences and applications. 2001 Feb; 751(1):87-92. doi: 10.1016/s0378-4347(00)00471-0. [PMID: 11232859]
  • K Hirooka, M Shimizu, S Mineshita. Theophylline metabolism after cardiac surgery. Journal of clinical pharmacology. 2001 Feb; 41(2):157-62. doi: 10.1177/00912700122009962. [PMID: 11210395]
  • Y C Bechtel, H Lelouët, S Hrusovsky, M P Brientini, G Mantion, G Paintaud, J P Miguet, P R Bechtel. Caffeine metabolism before and after liver transplantation. International journal of clinical pharmacology and therapeutics. 2001 Feb; 39(2):53-60. doi: 10.5414/cpp39053. [PMID: 11270802]
  • S Dadashzadeh, H Tajerzaden. Dose dependent pharmacokinetics of theophylline: Michaelis-Menten parameters for its major metabolic pathways. European journal of drug metabolism and pharmacokinetics. 2001 Jan; 26(1-2):77-83. doi: 10.1007/bf03190380. [PMID: 11554438]
  • S Gates, J O Miners. Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism. British journal of clinical pharmacology. 1999 Mar; 47(3):299-305. doi: 10.1046/j.1365-2125.1999.00890.x. [PMID: 10215755]
  • T Tateishi, M Asoh, A Yamaguchi, T Yoda, Y J Okano, Y Koitabashi, S Kobayashi. Developmental changes in urinary elimination of theophylline and its metabolites in pediatric patients. Pediatric research. 1999 Jan; 45(1):66-70. doi: 10.1203/00006450-199901000-00011. [PMID: 9890610]
  • W L Macias, R F Bergstrom, B J Cerimele, K Kassahun, D E Tatum, J T Callaghan. Lack of effect of olanzapine on the pharmacokinetics of a single aminophylline dose in healthy men. Pharmacotherapy. 1998 Nov; 18(6):1237-48. doi: . [PMID: 9855322]
  • W Cao, H T Zhuo, G Chen, S S Ling. Pharmacokinetics of theophylline metabolites in 8 Chinese patients. Zhongguo yao li xue bao = Acta pharmacologica Sinica. 1998 Sep; 19(5):437-9. doi: . [PMID: 10375804]
  • N Rodopoulos, A Norman. Elimination of theophylline metabolites in healthy adults. Scandinavian journal of clinical and laboratory investigation. 1997 May; 57(3):233-40. doi: 10.3109/00365519709060032. [PMID: 9238759]
  • H Konishi, K Morita, A Yamaji. Effect of fluconazole on theophylline disposition in humans. European journal of clinical pharmacology. 1994; 46(4):309-12. doi: 10.1007/bf00194397. [PMID: 7957514]
  • T Ogiso, M Iwaki, T Tanino, K Okuyama, S Uno. Effect of mexiletine on elimination and metabolic conversion of theophylline and its major metabolites in rats. Biological & pharmaceutical bulletin. 1993 Feb; 16(2):163-7. doi: 10.1248/bpb.16.163. [PMID: 8364452]
  • K Ueno, K Miyai, M Kato, Y Kawaguchi, T Suzuki. Mechanism of interaction between theophylline and mexiletine. DICP : the annals of pharmacotherapy. 1991 Jul; 25(7-8):727-30. doi: 10.1177/106002809102500704. [PMID: 1949927]
  • M Sarkar, R E Polk, P S Guzelian, C Hunt, H T Karnes. In vitro effect of fluoroquinolones on theophylline metabolism in human liver microsomes. Antimicrobial agents and chemotherapy. 1990 Apr; 34(4):594-9. doi: 10.1128/aac.34.4.594. [PMID: 2344166]
  • G J Wijnands, T B Vree, T J Janssen, P J Guelen. Drug-drug interactions affecting fluoroquinolones. The American journal of medicine. 1989 Dec; 87(6C):47S-51S. doi: NULL. [PMID: 2603893]
  • M C Rogge, W R Solomon, A J Sedman, P G Welling, J R Koup, J G Wagner. The theophylline-enoxacin interaction: II. Changes in the disposition of theophylline and its metabolites during intermittent administration of enoxacin. Clinical pharmacology and therapeutics. 1989 Oct; 46(4):420-8. doi: 10.1038/clpt.1989.160. [PMID: 2791445]
  • I Bonnacker, D Berdel, R Süverkrüp, A von Berg. Renal clearance of theophylline and its major metabolites: age and urine flow dependency in paediatric patients. European journal of clinical pharmacology. 1989; 36(2):145-50. doi: 10.1007/bf00609186. [PMID: 2721539]
  • T B Vree, M Martea, R G Tiggeler, Y A Hekster, J C Hafkenscheid. Pharmacokinetics of theophylline and its metabolites in a patient undergoing continuous ambulatory peritoneal dialysis. Clinical pharmacokinetics. 1988 Dec; 15(6):390-5. doi: 10.2165/00003088-198815060-00003. [PMID: 3243042]
  • M C Rogge, W R Solomon, A J Sedman, P G Welling, R D Toothaker, J G Wagner. The theophylline-enoxacin interaction: I. Effect of enoxacin dose size on theophylline disposition. Clinical pharmacology and therapeutics. 1988 Nov; 44(5):579-87. doi: 10.1038/clpt.1988.197. [PMID: 3180639]
  • S G Shin, D Juan, M Rammohan. Theophylline pharmacokinetics in normal elderly subjects. Clinical pharmacology and therapeutics. 1988 Nov; 44(5):522-30. doi: 10.1038/clpt.1988.189. [PMID: 3180633]
  • D C Knoppert, M Spino, R Beck, J J Thiessen, S M MacLeod. Cystic fibrosis: enhanced theophylline metabolism may be linked to the disease. Clinical pharmacology and therapeutics. 1988 Sep; 44(3):254-64. doi: 10.1038/clpt.1988.147. [PMID: 3046811]
  • C Saunier, P du Souich, D Hartemann, A Sautegeau. Theophylline disposition during acute and chronic hypoxia in the conscious dog. Research communications in chemical pathology and pharmacology. 1987 Sep; 57(3):291-9. doi: . [PMID: 3671881]
  • S Bompadre, P Ercolani, L Leone. [Determination of theophylline in the plasma by rapid solid-phase extraction]. Bollettino della Societa italiana di biologia sperimentale. 1987 Aug; 63(8):717-23. doi: NULL. [PMID: 3663373]
  • J Beckmann, W Elsässer, U Gundert-Remy, R Hertrampf. Enoxacin--a potent inhibitor of theophylline metabolism. European journal of clinical pharmacology. 1987; 33(3):227-30. doi: 10.1007/bf00637553. [PMID: 3480222]
  • U Gundert-Remy, B Krüdewagen, R Hildebrandt. Plasma concentrations of theophylline and its metabolites in a theophylline intoxicated child--reevaluation of published Km-values. British journal of clinical pharmacology. 1986 Nov; 22(5):617-8. doi: 10.1111/j.1365-2125.1986.tb02945.x. [PMID: 3790410]
  • N R Scott, J Chakraborty, V Marks. Urinary metabolites of caffeine in pregnant women. British journal of clinical pharmacology. 1986 Oct; 22(4):475-8. doi: 10.1111/j.1365-2125.1986.tb02920.x. [PMID: 3768258]
  • I M Ramzan, G Levy. Kinetics of drug action in disease states. XVI. Pharmacodynamics of theophylline-induced seizures in rats. The Journal of pharmacology and experimental therapeutics. 1986 Mar; 236(3):708-13. doi: . [PMID: 3485196]
  • R Sellman, P J Klemi. Kidney toxicity of 3-methylxanthine in the rat. Journal of applied toxicology : JAT. 1984 Dec; 4(6):304-7. doi: 10.1002/jat.2550040605. [PMID: 6520319]
  • D Berdel, G Heimann. [Peculiarities of the pharmacokinetics and pharmacodynamics of theophylline in children]. Wiener klinische Wochenschrift. 1984 Aug; 96(16):616-21. doi: . [PMID: 6516414]
  • D D Tang-Liu, R L Williams, S Riegelman. Nonlinear theophylline elimination. Clinical pharmacology and therapeutics. 1982 Mar; 31(3):358-69. doi: 10.1038/clpt.1982.46. [PMID: 7060318]
  • S M Madsen, U Ribel. Pharmacokinetics of theophylline and 3-methylxanthine in guinea pigs. I. Single dose administration. Acta pharmacologica et toxicologica. 1981 Jan; 48(1):1-7. doi: 10.1111/j.1600-0773.1981.tb01579.x. [PMID: 7223434]
  • T J Monks, C A Lawrie, J Caldwell. The effect of increased caffeine intake on the metabolism and pharmacokinetics of theophylline in man. Biopharmaceutics & drug disposition. 1981 Jan; 2(1):31-7. doi: 10.1002/bdd.2510020104. [PMID: 7236869]
  • S M Madsen, U Ribel. Pharmacokinetics of theophylline and 3-methylxanthine in guinea pigs. II. Multiple dose administration. Acta pharmacologica et toxicologica. 1981 Jan; 48(1):8-12. doi: 10.1111/j.1600-0773.1981.tb01580.x. [PMID: 7223441]
  • . . . . doi: . [PMID: 14977550]