Capsiate (BioDeep_00000001044)

 

Secondary id: BioDeep_00000619295

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


6-nonenoic acid, 8-methyl-, (4-hydroxy-3-methoxyphenyl)methyl ester, (6E)-

化学式: C18H26O4 (306.1831)
中文名称: 领头羊, 辣椒素酯
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 61.05%

分子结构信息

SMILES: CC(C)/C=C/CCCCC(OCC1=CC=C(O)C(OC)=C1)=O
InChI: InChI=1S/C18H26O4/c1-14(2)8-6-4-5-7-9-18(20)22-13-15-10-11-16(19)17(12-15)21-3/h6,8,10-12,14,19H,4-5,7,9,13H2,1-3H3/b8-6+

描述信息

Capsiate is a carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. It has a role as a plant metabolite, a hypoglycemic agent, an anti-allergic agent, an antioxidant, an angiogenesis inhibitor, an anti-inflammatory agent and a capsaicin receptor agonist. It is a carboxylic ester, a monomethoxybenzene and a member of phenols. It is functionally related to a vanillyl alcohol.
Capsiate is a natural product found in Apis cerana with data available.
A carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile.
Constituent of fruits of Capsicum annuum. Capsiate is found in many foods, some of which are orange bell pepper, herbs and spices, yellow bell pepper, and italian sweet red pepper.
Capsiate is found in fruits. Capsiate is a constituent of fruits of Capsicum annuum
Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].
Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].

同义名列表

20 个代谢物同义名

6-nonenoic acid, 8-methyl-, (4-hydroxy-3-methoxyphenyl)methyl ester, (6E)-; 6-Nonenoic acid, 8-methyl-, (4-hydroxy-3-methoxyphenyl)methyl ester, (E)-; (6E)-8-METHYL-6-NONENOIC ACID (4-HYDROXY-3-METHOXYPHENYL)METHYL ESTER; nonanoic acid, 8-methyl-, (4-hydroxy-3-methoxyphenyl)methyl ester; (4-hydroxy-3-methoxyphenyl)methyl (6E)-8-methylnon-6-enoate; (4-hydroxy-3-methoxyphenyl)methyl (E)-8-methylnon-6-enoate; (E)-4-Hydroxy-3-methoxybenzyl 8-methylnon-6-enoate; (E)-4-Hydroxy-3-methoxybenzyl8-methylnon-6-enoate; 4-Hydroxy-3-methoxybenzyl 8-methyl-6-nonenoate; Vanillyl (6E)-8-methylnon-6-enoic acid; vanillyl trans-8-methyl-non-6-enoate; vanillyl (6E)-8-methylnon-6-enoate; ZICNYIDDNJYKCP-SOFGYWHQSA-N; UNII-PX8I7HG5I3; Capsiate Natura; Dihydrocapsiate; Capsiic acid; PX8I7HG5I3; capsiate; Capsiate Natura;CH-19 Capsiate



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

10 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 CASP3, PPARG, PTGS2, SIRT1, SLC2A2
Peripheral membrane protein 1 PTGS2
Endosome membrane 1 TF
Endoplasmic reticulum membrane 1 PTGS2
Nucleus 6 CASP3, GABPA, JUN, PPARA, PPARG, SIRT1
cytosol 5 CASP3, LIPE, PPARG, SIRT1, SLC2A1
nucleoplasm 6 CASP3, GABPA, JUN, PPARA, PPARG, SIRT1
RNA polymerase II transcription regulator complex 2 JUN, PPARG
Cell membrane 6 LIPE, SLC2A1, SLC2A2, TNF, TRPA1, TRPV1
Multi-pass membrane protein 7 SLC2A1, SLC2A2, TRPA1, TRPV1, UCP1, UCP2, UCP3
cell surface 2 TF, TNF
glutamatergic synapse 1 CASP3
Golgi membrane 2 INS, SLC2A1
mitochondrial inner membrane 3 UCP1, UCP2, UCP3
neuronal cell body 3 CASP3, TNF, TRPV1
sarcolemma 1 SLC2A1
Cytoplasm, cytosol 1 LIPE
Presynapse 1 SLC2A1
plasma membrane 6 SLC2A1, SLC2A2, TF, TNF, TRPA1, TRPV1
Membrane 5 LIPE, SLC2A1, SLC2A2, TRPA1, TRPV1
apical plasma membrane 3 SLC2A1, SLC2A2, TF
basolateral plasma membrane 1 SLC2A1
brush border 1 SLC2A2
caveola 3 LIPE, PTGS2, SLC2A1
extracellular exosome 2 SLC2A1, TF
endoplasmic reticulum 1 PTGS2
extracellular space 3 INS, TF, TNF
perinuclear region of cytoplasm 2 PPARG, TF
intercalated disc 1 SLC2A1
mitochondrion 5 PCK2, SIRT1, UCP1, UCP2, UCP3
protein-containing complex 1 PTGS2
intracellular membrane-bounded organelle 1 PPARG
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
chromatin silencing complex 1 SIRT1
Secreted 2 INS, TF
extracellular region 3 INS, TF, TNF
basal part of cell 1 TF
mitochondrial matrix 1 PCK2
transcription regulator complex 1 JUN
photoreceptor inner segment 1 SLC2A1
external side of plasma membrane 2 TNF, TRPV1
Z disc 1 SLC2A1
cytoplasmic vesicle 1 TF
nucleolus 1 SIRT1
midbody 1 SLC2A1
Early endosome 1 TF
cell-cell junction 1 SLC2A2
clathrin-coated pit 1 TF
recycling endosome 2 TF, TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 TF
postsynaptic membrane 1 TRPV1
Mitochondrion inner membrane 3 UCP1, UCP2, UCP3
heterochromatin 1 SIRT1
Membrane raft 1 TNF
GABA-ergic synapse 1 TRPV1
Nucleus, PML body 1 SIRT1
PML body 1 SIRT1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 2 PTGS2, SIRT1
nuclear outer membrane 1 PTGS2
Postsynaptic cell membrane 1 TRPV1
Late endosome 1 TF
receptor complex 1 PPARG
Cell projection, neuron projection 1 TRPV1
neuron projection 1 PTGS2
chromatin 5 GABPA, JUN, PPARA, PPARG, SIRT1
stereocilium bundle 1 TRPA1
phagocytic cup 1 TNF
nuclear chromosome 1 JUN
blood microparticle 2 SLC2A1, TF
fibrillar center 1 SIRT1
nuclear envelope 1 SIRT1
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
female germ cell nucleus 1 SLC2A1
Melanosome 1 SLC2A1
euchromatin 2 JUN, SIRT1
basal plasma membrane 1 TF
secretory granule lumen 2 INS, TF
HFE-transferrin receptor complex 1 TF
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 INS, PTGS2, TF
cortical actin cytoskeleton 1 SLC2A1
endocytic vesicle 1 TF
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
clathrin-coated endocytic vesicle membrane 1 TF
death-inducing signaling complex 1 CASP3
female pronucleus 1 SLC2A1
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
Cell projection, dendritic spine membrane 1 TRPV1
dendritic spine membrane 1 TRPV1
vesicle coat 1 TF
transcription factor AP-1 complex 1 JUN
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
glucose transporter complex 1 SLC2A1
dense body 1 TF
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1


文献列表

  • Vilton E L Moura E Silva, Valéria L G Panissa, Jason M Cholewa, Matheus Mesquita Vieira, Barbara M Antunes, Rayane C Moura, Priscila A Q Rossi, Marcos A P Santos, Fabio S Lira, Fabrício E Rossi. Ten weeks of Capsicum annuum L. extract supplementation did not change adipose tissue-derived hormones, appetite, body composition, and muscle strength when combined with resistance training in healthy untrained men: A clinical trial study. Nutrition research (New York, N.Y.). 2023 Dec; 122(?):33-43. doi: 10.1016/j.nutres.2023.11.010. [PMID: 38141553]
  • Hee-Sung Chae, Charles L Cantrell, Ikhlas A Khan, Robert L Jarret, Shabana I Khan. Capsiate-Rich Fraction of Capsicum annuum Induces Muscular Glucose Uptake, Ameliorates Rosiglitazone-Induced Adipogenesis, and Exhibits Activation of NRs Regulating Multiple Signaling Pathways. Journal of agricultural and food chemistry. 2023 Nov; 71(47):18395-18404. doi: 10.1021/acs.jafc.3c06148. [PMID: 37972244]
  • Ana Carolina de Aguiar, Gustavo Araujo Pereira, Cláudia Silva da Costa Ribeiro, Marcos Nogueira Eberlin, Lana Pereira Soares, Ana Lucia Tasca Gois Ruiz, Glaucia Maria Pastore, Julian Martínez. Capsicum chinense var. BRS Moema: chemical characterization by HPLC-ESI-MS/MS and antiproliferative screening. Food & function. 2023 Jul; 14(14):6432-6442. doi: 10.1039/d3fo01698f. [PMID: 37401347]
  • Reena Gupta, Bhupinder Kapoor, Monica Gulati, Bimlesh Kumar, Mukta Gupta, Sachin Kumar Singh, Ankit Awasthi. Sweet pepper and its principle constituent capsiate: functional properties and health benefits. Critical reviews in food science and nutrition. 2022; 62(26):7370-7394. doi: 10.1080/10408398.2021.1913989. [PMID: 33951968]
  • Francisco J Osuna-Prieto, Francisco M Acosta, Unai A Perez de Arrilucea Le Floc'h, Blanca Riquelme-Gallego, Elisa Merchan-Ramirez, Huiwen Xu, Juan Carlos De La Cruz-Márquez, Francisco J Amaro-Gahete, Jose A Llamas-Elvira, Eva M Triviño-Ibáñez, Antonio Segura-Carretero, Jonatan R Ruiz. Dihydrocapsiate does not increase energy expenditure nor fat oxidation during aerobic exercise in men with overweight/obesity: a randomized, triple-blinded, placebo-controlled, crossover trial. Journal of the International Society of Sports Nutrition. 2022; 19(1):417-436. doi: 10.1080/15502783.2022.2099757. [PMID: 35875695]
  • Fan Deng, Bing-Cheng Zhao, Xiao Yang, Ze-Bin Lin, Qi-Shun Sun, Yi-Fan Wang, Zheng-Zheng Yan, Wei-Feng Liu, Cai Li, Jing-Juan Hu, Ke-Xuan Liu. The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-induced ferroptosis. Gut microbes. 2021 Jan; 13(1):1-21. doi: 10.1080/19490976.2021.1902719. [PMID: 33779497]
  • Oreto Fayos, Neftalí Ochoa-Alejo, Octavio Martínez de la Vega, María Savirón, Jesús Orduna, Cristina Mallor, Gerardo F Barbero, Ana Garcés-Claver. Assessment of Capsaicinoid and Capsinoid Accumulation Patterns during Fruit Development in Three Chili Pepper Genotypes (Capsicum spp.) Carrying Pun1 and pAMT Alleles Related to Pungency. Journal of agricultural and food chemistry. 2019 Nov; 67(44):12219-12227. doi: 10.1021/acs.jafc.9b05332. [PMID: 31613626]
  • Li Fan, Haiyan Xu, Rengui Yang, Yufan Zang, Jingfang Chen, Hong Qin. Combination of Capsaicin and Capsiate Induces Browning in 3T3-L1 White Adipocytes via Activation of the Peroxisome Proliferator-Activated Receptor γ/β3-Adrenergic Receptor Signaling Pathways. Journal of agricultural and food chemistry. 2019 Jun; 67(22):6232-6240. doi: 10.1021/acs.jafc.9b02191. [PMID: 31075194]
  • Azusa Takahashi, Hirohide Sakaguchi, Ohki Higuchi, Takashi Suzuki, Hideyuki Chiji. Intestinal absorption of black chokeberry cyanidin 3-glycosides is promoted by capsaicin and capsiate in a rat ligated small intestinal loop model. Food chemistry. 2019 Mar; 277(?):323-326. doi: 10.1016/j.foodchem.2018.10.094. [PMID: 30502153]
  • Yufan Zang, Li Fan, Jihua Chen, Ruixue Huang, Hong Qin. Improvement of Lipid and Glucose Metabolism by Capsiate in Palmitic Acid-Treated HepG2 Cells via Activation of the AMPK/SIRT1 Signaling Pathway. Journal of agricultural and food chemistry. 2018 Jul; 66(26):6772-6781. doi: 10.1021/acs.jafc.8b01831. [PMID: 29886733]
  • Csaba Zsiborás, Róbert Mátics, Péter Hegyi, Márta Balaskó, Erika Pétervári, Imre Szabó, Patrícia Sarlós, Alexandra Mikó, Judit Tenk, Ildikó Rostás, Dániel Pécsi, András Garami, Zoltán Rumbus, Orsolya Huszár, Margit Solymár. Capsaicin and capsiate could be appropriate agents for treatment of obesity: A meta-analysis of human studies. Critical reviews in food science and nutrition. 2018 Jun; 58(9):1419-1427. doi: 10.1080/10408398.2016.1262324. [PMID: 28001433]
  • Ritesh K Baboota, Pragyanshu Khare, Priyanka Mangal, Dhirendra Pratap Singh, Kamlesh K Bhutani, Kanthi K Kondepudi, Jaspreet Kaur, Mahendra Bishnoi. Dihydrocapsiate supplementation prevented high-fat diet-induced adiposity, hepatic steatosis, glucose intolerance, and gut morphological alterations in mice. Nutrition research (New York, N.Y.). 2018 03; 51(?):40-56. doi: 10.1016/j.nutres.2017.11.006. [PMID: 29673543]
  • Kana Ohyama, Katsuya Suzuki. Dihydrocapsiate improved age-associated impairments in mice by increasing energy expenditure. American journal of physiology. Endocrinology and metabolism. 2017 11; 313(5):E586-E597. doi: 10.1152/ajpendo.00132.2017. [PMID: 28811294]
  • A Y Zunun-Perez, T Guevara-Figueroa, S N Jimenez-Garcia, A A Feregrino-Perez, F Gautier, R G Guevara-Gonzalez. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. Journal of biosciences. 2017 Jun; 42(2):245-250. doi: 10.1007/s12038-017-9682-9. [PMID: 28569248]
  • Weihuan Huang, Wai San Cheang, Xiaobo Wang, Lin Lei, Yuwei Liu, Ka Ying Ma, Fangrui Zheng, Yu Huang, Zhen-Yu Chen. Capsaicinoids but not their analogue capsinoids lower plasma cholesterol and possess beneficial vascular activity. Journal of agricultural and food chemistry. 2014 Aug; 62(33):8415-20. doi: 10.1021/jf502888h. [PMID: 25078570]
  • Nian-Sheng Li, Xiu-Ju Luo, Zhong Dai, Bin Liu, Yi-Shuai Zhang, Zhi-Chun Yang, Jun Peng. Beneficial effects of capsiate on ethanol-induced mucosal injury in rats are related to stimulation of calcitonin gene-related Peptide release. Planta medica. 2012 Jan; 78(1):24-30. doi: 10.1055/s-0031-1280217. [PMID: 21928164]
  • Kunduru K Reddy, Thumu Ravinder, Rachapudi B N Prasad, Sanjit Kanjilal. Evaluation of the antioxidant activity of capsiate analogues in polar, nonpolar, and micellar media. Journal of agricultural and food chemistry. 2011 Jan; 59(2):564-9. doi: 10.1021/jf104244m. [PMID: 21166418]
  • Yoshiaki Shirai, Satoko Ueno, Akira Nakayama, Kiyoko Ikeuchi, Kazuyuki Ubukata, Ryuichi Mihara, Bruce K Bernard. Studies of the toxicological potential of capsinoids, XII: pharmacokinetic study of capsinoid-containing CH-19 Sweet extract in rats. International journal of toxicology. 2010 Mar; 29(2 Suppl):15S-21S. doi: 10.1177/1091581809359427. [PMID: 20388820]
  • Bruce K Bernard, Kazuyuki Ubukata, Ryuichi Mihara, Yoshiaki Sato, Hiroyuki Nemoto. Studies of the toxicological potential of capsinoids, XI: pharmacokinetic and tissue distribution study of 14C-dihydrocapsiate and metabolites in rats. International journal of toxicology. 2010 Mar; 29(2 Suppl):3S-14S. doi: 10.1177/1091581809357082. [PMID: 20388819]
  • Jose E Galgani, Donna H Ryan, Eric Ravussin. Effect of capsinoids on energy metabolism in human subjects. The British journal of nutrition. 2010 Jan; 103(1):38-42. doi: 10.1017/s0007114509991358. [PMID: 19671203]
  • Antonella Rosa, Angela Atzeri, Monica Deiana, M Paola Melis, Alessandra Incani, Giulia Corona, Debora Loru, Giovanni Appendino, M Assunta Dessì. Protective effect of vanilloids against tert-butyl hydroperoxide-induced oxidative stress in vero cells culture. Journal of agricultural and food chemistry. 2008 May; 56(10):3546-53. doi: 10.1021/jf073448t. [PMID: 18439017]
  • Eri Watanabe, Terutaka Kodama, Takeshi Masuyama, Shoji Tsubuku, Madoka Nakajima, Bruce K Bernard. Studies of the toxicological potential of capsinoids: VI. Single-dose toxicity study and micronucleus test of commercial-grade dihydrocapsiate. International journal of toxicology. 2008; 27 Suppl 3(?):73-7. doi: 10.1080/10915810802513569. [PMID: 19037800]
  • B Faraut, B Giannesini, V Matarazzo, T Marqueste, C Dalmasso, G Rougon, P J Cozzone, D Bendahan. Downregulation of uncoupling protein-3 in vivo is linked to changes in muscle mitochondrial energy metabolism as a result of capsiate administration. American journal of physiology. Endocrinology and metabolism. 2007 May; 292(5):E1474-82. doi: 10.1152/ajpendo.00292.2006. [PMID: 17264228]
  • Satoshi Haramizu, Wataru Mizunoya, Yoriko Masuda, Koichiro Ohnuki, Tatsuo Watanabe, Susumu Yazawa, Tohru Fushiki. Capsiate, a nonpungent capsaicin analog, increases endurance swimming capacity of mice by stimulation of vanilloid receptors. Bioscience, biotechnology, and biochemistry. 2006 Apr; 70(4):774-81. doi: 10.1271/bbb.70.774. [PMID: 16636441]
  • Antonella Rosa, Monica Deiana, Giulia Corona, Angela Atzeri, Alessandra Incani, Giovanni Appendino, M Assunta Dessì. Protective effect of capsinoid on lipid peroxidation in rat tissues induced by Fe-NTA. Free radical research. 2005 Nov; 39(11):1155-62. doi: 10.1080/10715760500178094. [PMID: 16298741]
  • Yumiko Tani, Toshiaki Fujioka, Miyuki Sumioka, Yukio Furuichi, Hiroki Hamada, Tatsuo Watanabe. Effects of capsinoid on serum and liver lipids in hyperlipidemic rats. Journal of nutritional science and vitaminology. 2004 Oct; 50(5):351-5. doi: 10.3177/jnsv.50.351. [PMID: 15754496]
  • Yoriko Masuda, Satoshi Haramizu, Kasumi Oki, Koichiro Ohnuki, Tatsuo Watanabe, Susumu Yazawa, Teruo Kawada, Shu-ichi Hashizume, Tohru Fushiki. Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. Journal of applied physiology (Bethesda, Md. : 1985). 2003 Dec; 95(6):2408-15. doi: 10.1152/japplphysiol.00828.2002. [PMID: 12959953]