Putrescine (BioDeep_00000000876)
Secondary id: BioDeep_00000400198, BioDeep_00000868862
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs Toxin BioNovoGene_Lab2019
代谢物信息卡片
化学式: C4H12N2 (88.1)
中文名称: 1,4-丁二胺, 四亚甲基二胺, 腐胺, 腐胺 二盐酸盐, 1,4-二氨基丁烷
谱图信息:
最多检出来源 Homo sapiens(blood) 47.04%
Last reviewed on 2024-09-14.
Cite this Page
Putrescine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/putrescine (retrieved
2024-12-23) (BioDeep RN: BioDeep_00000000876). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CCN)CN
InChI: InChI=1/C4H12N2/c5-3-1-2-4-6/h1-6H2
描述信息
Putrescine is a four-carbon alkane-alpha,omega-diamine. It is obtained by the breakdown of amino acids and is responsible for the foul odour of putrefying flesh. It has a role as a fundamental metabolite and an antioxidant. It is a conjugate base of a 1,4-butanediammonium.
Putrescine is a toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. Putrescine is a solid. This compound belongs to the polyamines. These are compounds containing more than one amine group. Known drug targets of putrescine include putrescine-binding periplasmic protein, ornithine decarboxylase, and S-adenosylmethionine decarboxylase proenzyme.
Putrescine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
1,4-Diaminobutane is a natural product found in Eupatorium cannabinum, Populus tremula, and other organisms with data available.
Putrescine is a four carbon diamine produced during tissue decomposition by the decarboxylation of amino acids. Polyamines, including putrescine, may act as growth factors that promote cell division; however, putrescine is toxic at high doses.
Putrescine is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. Putrescine apparently has specific role in skin physiology and neuroprotection. Pharmacological interventions have demonstrated convincingly that a steady supply of polyamines is a prerequisite for cell proliferation to occur. Genetic engineering of polyamine metabolism in transgenic rodents has shown that polyamines play a role in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase is not compatible with murine embryogenesis. (A3286, A3287).
Putrescine is a metabolite found in or produced by Saccharomyces cerevisiae.
A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine.
Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. Putrescine apparently has specific role in skin physiology and neuroprotection. (PMID:15009201, 16364196). Pharmacological interventions have demonstrated convincingly that a steady supply of polyamines is a prerequisite for cell proliferation to occur. Genetic engineering of polyamine metabolism in transgenic rodents has shown that polyamines play a role in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase is not compatible with murine embryogenesis. Putrescine can be found in Citrobacter, Corynebacterium, Cronobacter and Enterobacter (PMID:27872963) (https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12099).
Putrescine is an organic chemical compound related to cadaverine; both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. The two compounds are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. They are also found in semen and some microalgae, together with related molecules like spermine and spermidine.
A four-carbon alkane-alpha,omega-diamine. It is obtained by the breakdown of amino acids and is responsible for the foul odour of putrefying flesh.
Acquisition and generation of the data is financially supported in part by CREST/JST.
KEIO_ID B001
同义名列表
59 个代谢物同义名
1,4-Diaminobutane, puriss., >=99.0\\% (GC); 1,4-Diaminobutane, purum, >=98.0\\% (GC); 1,4-Butanediamine-13C4, Putrescine-13C4; InChI=1/C4H12N2/c5-3-1-2-4-6/h1-6H; Putrescine, analytical standard; .alpha.,.omega.-Butanediamine; 1,4-Tetramethylenediamine; 1,4-Diaminobutane, 99\\%; tetramethylene diamine; tetramethylenediamine; Putrescine, free base; 1,4-Diamino-n-butane; 1,4-Butanediammonium; tetramethylendiamine; 1,4-Butylenediamine; Tetramethylendiamin; 4-amino-butyl-amine; 1,4-diamino butane; 1,4 diamino butane; 1,4-butane diamine; BUTANE,1,4-DIAMINO; Tetramethyldiamine; butane-1,4-diamine; 1,4-Diaminobutane; 1,4 Diaminobutane; 1,4 Butanediamine; 1,4-Butanediamine; Spectrum2_001935; Spectrum4_000237; Spectrum3_001198; Spectrum5_001005; Butylenediamine; UNII-V10TVZ52E4; PUTRESCINE [MI]; butylene amine; Lopac0_000972; DivK1c_000716; KBio2_002126; H2N(CH2)4NH2; KBio2_004694; NCI60_004431; KBio3_002375; KBio2_007262; KBio1_000716; IDI1_000716; V10TVZ52E4; putrescina; putrescine; AI3-25444; Putreszin; Putrescin; 1a99; 1i7c; 1i7m; 58I; PUT; Putrescine; Putrescine; 1,4-Diaminobutane
数据库引用编号
37 个数据库交叉引用编号
- ChEBI: CHEBI:17148
- KEGG: C00134
- PubChem: 1045
- HMDB: HMDB0001414
- Metlin: METLIN3226
- DrugBank: DB01917
- ChEMBL: CHEMBL46257
- Wikipedia: Putrescine
- MeSH: Putrescine
- ChemIDplus: 0000110601
- MetaCyc: PUTRESCINE
- KNApSAcK: C00001428
- foodb: FDB001494
- chemspider: 13837702
- CAS: 110-60-1
- MoNA: PR100038
- MoNA: KO002426
- MoNA: PS006801
- MoNA: KO002424
- MoNA: KO002425
- MoNA: KO002427
- MoNA: PS006802
- MoNA: KO002423
- medchemexpress: HY-N2407
- PMhub: MS000006695
- MetaboLights: MTBLC17148
- PubChem: 3434
- PDB-CCD: 58I
- PDB-CCD: PUT
- 3DMET: B00037
- NIKKAJI: J1.979H
- RefMet: Putrescine
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-193
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-143
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-793
- KNApSAcK: 17148
- LOTUS: LTS0238763
分类词条
相关代谢途径
Reactome(0)
BioCyc(6)
PlantCyc(0)
代谢反应
424 个相关的代谢反应过程信息。
Reactome(32)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Agmatine biosynthesis:
AGM + H2O ⟶ Putrescine + Urea
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Amine Oxidase reactions:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPN + Oxygen ⟶ 3AAPNAL + H2O2 + SPM
- Agmatine biosynthesis:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Amine Oxidase reactions:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Agmatine biosynthesis:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Amine Oxidase reactions:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Amine Oxidase reactions:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Amine Oxidase reactions:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
BioCyc(21)
- polyamine degradation (N-acetyl pathway):
N-acetyl-4-aminobutyrate + H2O ⟶ 4-aminobutyrate + acetate
- methionine salvage pathway:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-methylthioribose-1-phosphate + adenine
- superpathway of polyamine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- spermidine biosynthesis I:
S-adenosyl-L-methionine + H+ ⟶ S-adenosyl-L-methioninamine + CO2
- superpathway of polyamine biosynthesis II:
N-carbamoylputrescine + H2O + H+ ⟶ CO2 + ammonia + putrescine
- superpathway of polyamine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- spermine biosynthesis II:
H+ + L-ornithine ⟶ CO2 + putrescine
- spermidine biosynthesis I:
S-adenosyl-L-methionine + H+ ⟶ S-adenosyl-L-methioninamine + CO2
- polyamine biosynthesis:
L-ornithine ⟶ CO2 + putrescine
- putrescine biosynthesis III:
H+ + L-ornithine ⟶ CO2 + putrescine
- putrescine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- superpathway of ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- putrescine degradation I:
2-oxoglutarate + putrescine ⟶ 4-aminobutanal + glt
- putrescine degradation II:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- arginine degradation III (arginine decarboxylase/agmatinase pathway):
H2O + agmatine ⟶ putrescine + urea
- superpathway of arginine and ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- putrescine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- putrescine biosynthesis II:
N-carbamoylputrescine + H2O + H+ ⟶ CO2 + ammonia + putrescine
- putrescine biosynthesis III:
H+ + L-ornithine ⟶ CO2 + putrescine
WikiPathways(2)
- Methionine de novo and salvage pathway:
Choline ⟶ Betaine
- GABA metabolism (aka GHB):
beta-alanine ⟶ malonic semialdehyde
Plant Reactome(325)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amine and polyamine biosynthesis:
ATP + D-glycerate ⟶ 3PG + ADP
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Spermidine biosynthesis:
Putrescine + SAM ⟶ MTAD + SPM
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
INOH(1)
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(43)
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Spermidine and Spermine Biosynthesis:
Ornithine ⟶ Carbon dioxide + Putrescine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Spermidine Biosynthesis I:
Adenosine triphosphate + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate
- beta-Alanine Metabolism:
(R)-pantoate + -Alanine + Adenosine triphosphate ⟶ Adenosine monophosphate + Hydrogen Ion + Pantothenic acid + Pyrophosphate
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Spermidine and Spermine Biosynthesis:
Putrescine + S-Adenosylmethioninamine ⟶ 5'-Methylthioadenosine + Spermidine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Spermidine and Spermine Biosynthesis:
Putrescine + S-Adenosylmethioninamine ⟶ 5'-Methylthioadenosine + Spermidine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Spermidine and Spermine Biosynthesis:
Putrescine + S-Adenosylmethioninamine ⟶ 5'-Methylthioadenosine + Spermidine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Spermidine and Spermine Biosynthesis:
Putrescine + S-Adenosylmethioninamine ⟶ 5'-Methylthioadenosine + Spermidine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Spermidine and Spermine Biosynthesis:
Putrescine + S-Adenosylmethioninamine ⟶ 5'-Methylthioadenosine + Spermidine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Spermidine Biosynthesis I:
Decarboxy-SAM + Putrescine ⟶ 5'-Methylthioadenosine + Hydrogen Ion + Spermidine
- S-Adenosyl-L-Methionine Biosynthesis:
5'-S-methyl-5'-thioadenosine + Water ⟶ 5-Methylthioribose + Adenine
- Spermidine Biosynthesis and Metabolism:
5'-S-methyl-5'-thioadenosine + Water ⟶ 5-Methylthioribose + Adenine
- S-Adenosyl-L-Methionine Biosynthesis:
5'-S-methyl-5'-thioadenosine + Water ⟶ 5-Methylthioribose + Adenine
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Putrescine Degradation II:
-glutamyl-L-putrescine + Hydrogen Ion + Oxygen ⟶ -Glutamyl- -butyraldehyde + Ammonium + Hydrogen peroxide
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Putrescine Degradation II:
-glutamyl-L-putrescine + Hydrogen Ion + Oxygen ⟶ -Glutamyl- -butyraldehyde + Ammonium + Hydrogen peroxide
PharmGKB(0)
338 个相关的物种来源信息
- 186623 - Actinopteri: LTS0238763
- 7898 - Actinopterygii: LTS0238763
- 155619 - Agaricomycetes: LTS0238763
- 8292 - Amphibia: LTS0238763
- 7118 - Antheraea: LTS0238763
- 7121 - Antheraea yamamai: 10.1016/0305-0491(91)90393-R
- 7121 - Antheraea yamamai: LTS0238763
- 4037 - Apiaceae: LTS0238763
- 4056 - Apocynaceae: LTS0238763
- 3701 - Arabidopsis: LTS0238763
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-1-53
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-5-1
- 3702 - Arabidopsis thaliana: LTS0238763
- 13345 - Ardisia crenata: 10.3389/FMOLB.2021.683671
- 6656 - Arthropoda: LTS0238763
- 4210 - Asteraceae: LTS0238763
- 24609 - Atropa: LTS0238763
- 2739822 - Atropa acuminata: 10.1016/0031-9422(91)80065-9
- 2739822 - Atropa acuminata: LTS0238763
- 33113 - Atropa belladonna: 10.1042/BJ0370717
- 33113 - Atropa belladonna: LTS0238763
- 4496 - Avena: LTS0238763
- 146531 - Avena byzantina:
- 4498 - Avena sativa:
- 4498 - Avena sativa: 10.1016/0031-9422(86)88024-4
- 4498 - Avena sativa: 10.1016/S0031-9422(00)82598-4
- 4498 - Avena sativa: LTS0238763
- 2 - Bacteria: LTS0238763
- 2797 - Bangiophyceae: LTS0238763
- 5204 - Basidiomycota: LTS0238763
- 7089 - Bombycidae: LTS0238763
- 7090 - Bombyx: LTS0238763
- 7091 - Bombyx mori: 10.1016/0305-0491(91)90393-R
- 7091 - Bombyx mori: LTS0238763
- 21571 - Boraginaceae: LTS0238763
- 6658 - Branchiopoda: LTS0238763
- 4423 - Brasenia: LTS0238763
- 4424 - Brasenia schreberi: 10.1139/B97-175
- 4424 - Brasenia schreberi: LTS0238763
- 3700 - Brassicaceae: LTS0238763
- 301914 - Brugmansia: LTS0238763
- 41689 - Brugmansia arborea: 10.1016/S0031-9422(01)00127-3
- 41689 - Brugmansia arborea: LTS0238763
- 512269 - Brugmansia × candida: 10.1016/S0031-9422(01)00127-3
- 4422 - Cabombaceae: LTS0238763
- 3822 - Canavalia: LTS0238763
- 3824 - Canavalia gladiata: 10.1016/0031-9422(90)85449-P
- 3824 - Canavalia gladiata: LTS0238763
- 4057 - Catharanthus: LTS0238763
- 4058 - Catharanthus roseus: 10.1016/S0176-1617(11)81890-0
- 4058 - Catharanthus roseus: LTS0238763
- 3051 - Chlamydomonadaceae: LTS0238763
- 3052 - Chlamydomonas: LTS0238763
- 3055 - Chlamydomonas reinhardtii:
- 3055 - Chlamydomonas reinhardtii: 10.1074/JBC.M110.122812
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0238763
- 3166 - Chlorophyceae: LTS0238763
- 3041 - Chlorophyta: LTS0238763
- 7711 - Chordata: LTS0238763
- 1890464 - Chroococcaceae: LTS0238763
- 3826 - Cicer: LTS0238763
- 3827 - Cicer arietinum: 10.1016/0031-9422(92)83265-Z
- 3827 - Cicer arietinum: LTS0238763
- 13426 - Cichorium: LTS0238763
- 13427 - Cichorium intybus: 10.1016/S0031-9422(98)00555-X
- 13427 - Cichorium intybus: LTS0238763
- 5878 - Ciliophora: LTS0238763
- 2706 - Citrus: LTS0238763
- 37334 - Citrus maxima: 10.1093/OXFORDJOURNALS.JBCHEM.A131200
- 37334 - Citrus maxima: LTS0238763
- 2749756 - Cornu: LTS0238763
- 6535 - Cornu aspersum: 10.1016/0305-0491(74)90139-4
- 6535 - Cornu aspersum: LTS0238763
- 13453 - Coryphaena: LTS0238763
- 34814 - Coryphaena hippurus: 10.1021/JF020148X
- 34814 - Coryphaena hippurus: LTS0238763
- 27766 - Coryphaenidae: LTS0238763
- 265316 - Cyanidiaceae: LTS0238763
- 2770 - Cyanidium: LTS0238763
- 2771 - Cyanidium caldarium: 10.1016/0031-9422(90)85082-Q
- 2771 - Cyanidium caldarium: LTS0238763
- 3028117 - Cyanophyceae: LTS0238763
- 6668 - Daphnia: LTS0238763
- 35525 - Daphnia magna: 10.1016/J.ENVINT.2009.12.006
- 35525 - Daphnia magna: LTS0238763
- 77658 - Daphniidae: LTS0238763
- 4074 - Datura: LTS0238763
- 4076 - Datura stramonium: 10.1042/BJ0370717
- 4076 - Datura stramonium: LTS0238763
- 188787 - Deinococci: LTS0238763
- 6042 - Demospongiae: LTS0238763
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 543 - Enterobacteriaceae: LTS0238763
- 561 - Escherichia: LTS0238763
- 562 - Escherichia coli: LTS0238763
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 33682 - Euglenozoa: LTS0238763
- 2759 - Eukaryota: LTS0238763
- 13516 - Eupatorium: LTS0238763
- 102770 - Eupatorium cannabinum: 10.1016/S0031-9422(00)95154-9
- 102770 - Eupatorium cannabinum: LTS0238763
- 3803 - Fabaceae: LTS0238763
- 4751 - Fungi: LTS0238763
- 7136 - Galleria: LTS0238763
- 7137 - Galleria mellonella: 10.1016/0305-0491(91)90393-R
- 7137 - Galleria mellonella: LTS0238763
- 1236 - Gammaproteobacteria: LTS0238763
- 58228 - Garcinia mangostana: 10.1007/S11306-019-1526-1
- 6448 - Gastropoda: LTS0238763
- 3846 - Glycine: LTS0238763
- 3847 - Glycine max: 10.1016/0031-9422(90)85450-T
- 3847 - Glycine max: LTS0238763
- 6533 - Helicidae: LTS0238763
- 1561072 - Heliotropiaceae: LTS0238763
- 21621 - Heliotropium: LTS0238763
- 168338 - Heliotropium angiospermum: 10.1016/S0031-9422(00)82598-4
- 168338 - Heliotropium angiospermum: LTS0238763
- 248297 - Heliotropium indicum: 10.1016/S0031-9422(00)82598-4
- 248297 - Heliotropium indicum: LTS0238763
- 6534 - Helix: LTS0238763
- 6536 - Helix pomatia: 10.1016/0305-0491(74)90139-4
- 6536 - Helix pomatia: LTS0238763
- 119430 - Hippospongia: LTS0238763
- 119431 - Hippospongia communis: 10.1515/BCHM2.1960.322.1.198
- 119431 - Hippospongia communis: LTS0238763
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 4512 - Hordeum: LTS0238763
- 4513 - Hordeum vulgare: 10.1016/0031-9422(86)88024-4
- 4513 - Hordeum vulgare: LTS0238763
- 51023 - Hydrilla: LTS0238763
- 51024 - Hydrilla verticillata: 10.1139/B97-175
- 51024 - Hydrilla verticillata: LTS0238763
- 55463 - Hydrocharis: LTS0238763
- 55464 - Hydrocharis morsus-ranae: 10.1016/S0031-9422(00)80829-8
- 55464 - Hydrocharis morsus-ranae: LTS0238763
- 26319 - Hydrocharitaceae: LTS0238763
- 8418 - Hylidae: LTS0238763
- 80649 - Hymenogastraceae: LTS0238763
- 71944 - Hypholoma: LTS0238763
- 72129 - Hypholoma fasciculare: 10.1055/S-0028-1097581
- 72129 - Hypholoma fasciculare: LTS0238763
- 50557 - Insecta: LTS0238763
- 405757 - Jacobaea: LTS0238763
- 189240 - Jacobaea carniolica: 10.1016/S0031-9422(00)95154-9
- 189240 - Jacobaea carniolica: LTS0238763
- 98722 - Jacobaea vulgaris: 10.1016/S0031-9422(00)95154-9
- 98722 - Jacobaea vulgaris: LTS0238763
- 5653 - Kinetoplastea: LTS0238763
- 271790 - Lablab: LTS0238763
- 35936 - Lablab purpureus: LTS0238763
- 4136 - Lamiaceae: LTS0238763
- 3853 - Lathyrus: LTS0238763
- 3860 - Lathyrus sativus: 10.1016/0031-9422(74)85020-X
- 3860 - Lathyrus sativus: LTS0238763
- 4196 - Lentibulariaceae: LTS0238763
- 4447 - Liliopsida: LTS0238763
- 8370 - Litoria: LTS0238763
- 681275 - Litoria verreauxii: 10.1038/SDATA.2018.33
- 681275 - Litoria verreauxii: LTS0238763
- 3867 - Lotus: LTS0238763
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0238763
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: LTS0238763
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0238763
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: LTS0238763
- 264956 - Lotus filicaulis: 10.1111/J.1365-3040.2010.02266.X
- 34305 - Lotus japonicus:
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0238763
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: LTS0238763
- 442940 - Lyallia: LTS0238763
- 442941 - Lyallia kerguelensis: 10.1016/S0031-9422(99)00191-0
- 442941 - Lyallia kerguelensis: LTS0238763
- 3928 - Lythraceae: LTS0238763
- 3398 - Magnoliopsida: LTS0238763
- 3749 - Malus: LTS0238763
- 3750 - Malus domestica:
- 3750 - Malus domestica: 10.21273/JASHS.119.1.70
- 3750 - Malus domestica: 10.21273/JASHS.119.4.735
- 3750 - Malus domestica: LTS0238763
- 283210 - Malus pumila:
- 283210 - Malus pumila: 10.21273/JASHS.119.1.70
- 283210 - Malus pumila: 10.21273/JASHS.119.4.735
- 283210 - Malus pumila: LTS0238763
- 40674 - Mammalia: LTS0238763
- 33208 - Metazoa: LTS0238763
- 6447 - Mollusca: LTS0238763
- 703407 - Montiaceae: LTS0238763
- 10066 - Muridae: LTS0238763
- 159030 - Murraya koenigii: 10.1080/15592324.2016.1249080
- 43711 - Murraya paniculata: 10.1080/15592324.2016.1249080
- 10088 - Mus: LTS0238763
- 10090 - Mus musculus: LTS0238763
- 10090 - Mus musculus: NA
- 4640 - Musa: LTS0238763
- 89151 - Musa × paradisiaca: 10.1016/S0031-9422(97)00211-2
- 4637 - Musaceae: LTS0238763
- 4085 - Nicotiana: LTS0238763
- 4087 - Nicotiana alata:
- 4087 - Nicotiana alata: 10.1016/0031-9422(84)83018-6
- 4087 - Nicotiana alata: 10.1016/S0031-9422(00)82598-4
- 4087 - Nicotiana alata: LTS0238763
- 4097 - Nicotiana tabacum:
- 4097 - Nicotiana tabacum: 10.1016/0031-9422(81)80099-4
- 4097 - Nicotiana tabacum: 10.1016/J.PHYTOCHEM.2006.11.003
- 4097 - Nicotiana tabacum: 10.1104/PP.78.2.323
- 4097 - Nicotiana tabacum: LTS0238763
- 4415 - Nuphar: LTS0238763
- 54801 - Nuphar japonica: 10.1139/B97-175
- 4410 - Nymphaeaceae: LTS0238763
- 6020 - Oligohymenophorea: LTS0238763
- 4527 - Oryza: LTS0238763
- 4530 - Oryza sativa: 10.1007/BF00024255
- 4530 - Oryza sativa: LTS0238763
- 49562 - Peucedanum: LTS0238763
- 1572681 - Peucedanum palustre: 10.1055/S-2006-958068
- 1572681 - Peucedanum palustre: LTS0238763
- 3328 - Picea: LTS0238763
- 3330 - Picea glauca: 10.1007/BF00232981
- 3330 - Picea glauca: LTS0238763
- 3318 - Pinaceae: LTS0238763
- 58019 - Pinopsida: LTS0238763
- 3887 - Pisum: LTS0238763
- 3888 - Pisum sativum: 10.1016/0031-9422(90)85450-T
- 3888 - Pisum sativum: LTS0238763
- 208194 - Pisum sativum subsp. sativum: 10.1016/0031-9422(90)85450-T
- 208194 - Pisum sativum subsp. sativum: LTS0238763
- 4479 - Poaceae: LTS0238763
- 21861 - Pogostemon: LTS0238763
- 28511 - Pogostemon cablin: 10.1021/JF304466T
- 28511 - Pogostemon cablin: LTS0238763
- 44947 - Pontederia crassipes: 10.1248/CPB.31.3315
- 16367 - Pontederiaceae: LTS0238763
- 3689 - Populus: LTS0238763
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0238763
- 6040 - Porifera: LTS0238763
- 135621 - Pseudomonadaceae: LTS0238763
- 286 - Pseudomonas: 10.2323/JGAM.37.431
- 286 - Pseudomonas: LTS0238763
- 287 - Pseudomonas aeruginosa: LTS0238763
- 39439 - Pseudomonas hydrogenovora: 10.2323/JGAM.37.431
- 39439 - Pseudomonas hydrogenovora: LTS0238763
- 303 - Pseudomonas putida: 10.1371/JOURNAL.PONE.0156509
- 303 - Pseudomonas putida: LTS0238763
- 71950 - Psilocybe: LTS0238763
- 3889 - Psophocarpus: LTS0238763
- 3891 - Psophocarpus tetragonolobus: 10.1016/0031-9422(90)85450-T
- 3891 - Psophocarpus tetragonolobus: LTS0238763
- 180039 - Psychotria punctata: 10.3389/FMOLB.2021.683671
- 7135 - Pyralidae: LTS0238763
- 2763 - Rhodophyta: LTS0238763
- 3745 - Rosaceae: LTS0238763
- 23513 - Rutaceae: LTS0238763
- 3688 - Salicaceae: LTS0238763
- 590 - Salmonella: LTS0238763
- 28901 - Salmonella enterica:
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0238763
- 7117 - Saturniidae: LTS0238763
- 3086 - Scenedesmaceae: LTS0238763
- 3087 - Scenedesmus: LTS0238763
- 104103 - Scenedesmus acutus: LTS0238763
- 18794 - Senecio: LTS0238763
- 2527776 - Senecio congestus: 10.1016/S0031-9422(00)95154-9
- 2527776 - Senecio congestus: LTS0238763
- 121553 - Senecio rupestris: 10.1016/S0031-9422(00)95154-9
- 121553 - Senecio rupestris: LTS0238763
- 121554 - Senecio squalidus: LTS0238763
- 121557 - Senecio sylvaticus: 10.1016/S0031-9422(00)95154-9
- 121557 - Senecio sylvaticus: LTS0238763
- 93496 - Senecio vernalis: 10.1016/S0031-9422(00)95154-9
- 93496 - Senecio vernalis: LTS0238763
- 76276 - Senecio vulgaris:
- 76276 - Senecio vulgaris: 10.1016/S0031-9422(00)95154-9
- 76276 - Senecio vulgaris: 10.1016/S0031-9422(97)00193-3
- 76276 - Senecio vulgaris: LTS0238763
- 4070 - Solanaceae: LTS0238763
- 121489 - Spongia: LTS0238763
- 119429 - Spongiidae: LTS0238763
- 35493 - Streptophyta: LTS0238763
- 40562 - Strophariaceae: LTS0238763
- 1890426 - Synechococcaceae: LTS0238763
- 1129 - Synechococcus: LTS0238763
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 32046 - Synechococcus elongatus: LTS0238763
- 32443 - Teleostei: LTS0238763
- 151998 - Tephroseris: LTS0238763
- 152001 - Tephroseris palustris: 10.1016/S0031-9422(00)95154-9
- 152001 - Tephroseris palustris: LTS0238763
- 91192 - Tetradesmus: LTS0238763
- 3088 - Tetradesmus obliquus: LTS0238763
- 5890 - Tetrahymena: LTS0238763
- 5911 - Tetrahymena thermophila: LTS0238763
- 291294 - Tetrahymenidae: LTS0238763
- 188786 - Thermaceae: LTS0238763
- 270 - Thermus: LTS0238763
- 274 - Thermus thermophilus: 10.1111/J.1574-6968.1990.TB04116.X
- 274 - Thermus thermophilus: LTS0238763
- 63045 - Thysselinum palustre: 10.1055/S-2006-958068
- 58023 - Tracheophyta: LTS0238763
- 22665 - Trapa: LTS0238763
- 22666 - Trapa natans: 10.1139/B97-175
- 22666 - Trapa natans: LTS0238763
- 4564 - Triticum: LTS0238763
- 4565 - Triticum aestivum: 10.1016/0031-9422(86)88024-4
- 4565 - Triticum aestivum: LTS0238763
- 5690 - Trypanosoma: LTS0238763
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0238763
- 5654 - Trypanosomatidae: LTS0238763
- 13747 - Utricularia: LTS0238763
- 192294 - Utricularia intermedia: 10.1016/S0031-9422(00)80829-8
- 192294 - Utricularia intermedia: LTS0238763
- 33090 - Viridiplantae: LTS0238763
- 3602 - Vitaceae: LTS0238763
- 3603 - Vitis: LTS0238763
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1111/J.1365-2621.2000.TB10254.X
- 29760 - Vitis vinifera: LTS0238763
- 203720 - Xanthoselinum: LTS0238763
- 203721 - Xanthoselinum alsaticum: 10.1055/S-2006-958068
- 203721 - Xanthoselinum alsaticum: LTS0238763
- 4575 - Zea: LTS0238763
- 4577 - Zea mays: 10.1016/0031-9422(86)88024-4
- 4577 - Zea mays: LTS0238763
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ludan Cao, Guo Wang, Xiuxu Ye, Fang Li, Shujun Wang, Huanling Li, Peng Wang, Jiabao Wang. Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi (Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-Arginine Treatment.
International journal of molecular sciences.
2024 Apr; 25(7):. doi:
10.3390/ijms25073965
. [PMID: 38612774] - Yong Gao, Chunli Zhong, Jianwen Qiu, Lan Zhao, Xinyi Xiong. The highly selective rhodol-based putrescine probe and visual sensors for on-site detection of putrescine in food spoilage.
Talanta.
2024 Apr; 270(?):125615. doi:
10.1016/j.talanta.2023.125615
. [PMID: 38169275] - Xiaoqiang Liu, Mei Yang, Jiahui Zhu, Junlan Zeng, Fei Qiu, Lingjiang Zeng, Chunxian Yang, Hongbo Zhang, Xiaozhong Lan, Min Chen, Zhihua Liao, Tengfei Zhao. Functional divergence of two arginine decarboxylase genes in tropane alkaloid biosynthesis and root growth in Atropa belladonna.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108439. doi:
10.1016/j.plaphy.2024.108439
. [PMID: 38408396] - Jing Ji, Jiaqi Zhang, Xinya Wang, Wenju Song, Baoying Ma, Runzhong Wang, Tiange Li, Gang Wang, Chunfeng Guan, Xiaoping Gao. The alleviation of salt stress on rice through increasing photosynthetic capacity, maintaining redox homeostasis and regulating soil enzyme activities by Enterobacter sp. JIV1 assisted with putrescine.
Microbiological research.
2024 Mar; 280(?):127590. doi:
10.1016/j.micres.2023.127590
. [PMID: 38142517] - Xia Wei, Shaojie Shi, Zixuan Lu, Chengyu Li, Xiangping Xu, Jinquan Chai, Xiaofei Liu, Tao Hu, Bin Wang. Elevated enteric putrescine suppresses differentiation of intestinal germinal center B cells.
International immunopharmacology.
2024 Jan; 128(?):111544. doi:
10.1016/j.intimp.2024.111544
. [PMID: 38266445] - Surpreet Kaur, Sucheta Sharma, Prabhjot Singla. Selenium treatment alters the accumulation of osmolytes in arsenic-stressed rice (Oryza sativa L.).
Environmental science and pollution research international.
2024 Jan; ?(?):. doi:
10.1007/s11356-024-31890-5
. [PMID: 38198089] - Pedro Monteiro, Luis Valledor, Sonia Osorio, Álvaro Camisón, José Gabriel Vallarino, Aurelio Gómez-Cadenas, Julio Javier Díez, Glória Pinto. Physiological, metabolic and hormonal responses of two Pinus spp., with contrasting susceptibility to brown-spot needle blight disease.
Tree physiology.
2024 Jan; ?(?):. doi:
10.1093/treephys/tpae003
. [PMID: 38195942] - Kai Yin, Guobing Cui, Xinping Bi, Meiling Liang, Zhijian Hu, Yi Zhen Deng. Intracellular polyamines regulate redox homeostasis with cAMP-PKA signalling during sexual mating/filamentation and pathogenicity of Sporisorium scitamineum.
Molecular plant pathology.
2024 Jan; 25(1):e13393. doi:
10.1111/mpp.13393
. [PMID: 37814404] - Edward Calabrese, A Wallace Hayes, Peter Pressman, Rachna Kapoor, Gaurav Dhawan, Vittorio Calabrese, Evgenios Agathokleous. Polyamines and hormesis: Making sense of a dose response dichotomy.
Chemico-biological interactions.
2023 Dec; 386(?):110748. doi:
10.1016/j.cbi.2023.110748
. [PMID: 37816449] - Naouar Ben Ali, Rajae Benkaddour, Safaa Rahmouni, Ouafaa Hamdoun, Ibtissam Boussaoudi, Mustapha Hassoun, Latifa Azaroual, Alain Badoc, Patrick Martin, Ahmed Lamarti. Influence of exogenous polyamines on the secondary somatic embryogenesis of cork oak (Quercus suber L.).
Bioengineered.
2023 12; 14(1):2288354. doi:
10.1080/21655979.2023.2288354
. [PMID: 38031347] - Wenjuan Wang, Shangli Shi, Wenjuan Kang, Long He. Enriched endogenous free Spd and Spm in alfalfa (Medicago sativa L.) under drought stress enhance drought tolerance by inhibiting H2O2 production to increase antioxidant enzyme activity.
Journal of plant physiology.
2023 Dec; 291(?):154139. doi:
10.1016/j.jplph.2023.154139
. [PMID: 37988872] - Huachao Xi, Xiaoqun Nie, Fang Gao, Xinxin Liang, Hu Li, Haiyan Zhou, Yujie Cai, Chen Yang. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine.
Science advances.
2023 10; 9(43):eadj9075. doi:
10.1126/sciadv.adj9075
. [PMID: 37878710] - Congcong Xie, Weihan Gu, Zhongqiao Chen, Zhibin Liang, Shufen Huang, Lian-Hui Zhang, Shaohua Chen. Polyamine signaling communications play a key role in regulating the pathogenicity of Dickeya fangzhongdai.
Microbiology spectrum.
2023 Oct; ?(?):e0196523. doi:
10.1128/spectrum.01965-23
. [PMID: 37874149] - Reza Zeynali, Sharareh Najafian, Mehdi Hosseinifarahi. Exogenous putrescine changes biochemical (antioxidant activity, polyphenol, flavonoid, and total phenol compounds) and essential oil constituents of Salvia officinalis L.
Chemistry & biodiversity.
2023 Sep; ?(?):e202301043. doi:
10.1002/cbdv.202301043
. [PMID: 37751472] - Andleeb Zehra, Harshal V Dhondge, Vitthal T Barvkar, Sanjay K Singh, Altafhusain B Nadaf. Evidence of polyamines mediated 2-acetyl-1-pyrroline biosynthesis in aromatic rice rhizospheric fungal species Aspergillus niger.
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].
2023 Sep; ?(?):. doi:
10.1007/s42770-023-01124-w
. [PMID: 37702923] - Sima Panahirad, Gholamreza Gohari, Gholamreza Mahdavinia, Hessam Jafari, Muhittin Kulak, Vasileios Fotopoulos, Rubén Alcázar, Mohammadreza Dadpour. Foliar application of chitosan-putrescine nanoparticles (CTS-Put NPs) alleviates cadmium toxicity in grapevine (Vitis vinifera L.) cv. Sultana: modulation of antioxidant and photosynthetic status.
BMC plant biology.
2023 Sep; 23(1):411. doi:
10.1186/s12870-023-04420-7
. [PMID: 37667189] - Yaping Song, Yanfang Ren, Yuhao Xue, Dandan Lu, Tengyu Yan, Junyu He. Putrescine (1,4-Diaminobutane) enhances antifungal activity in postharvest mango fruit against Colletotrichum gloeosporioides through direct fungicidal and induced resistance mechanisms.
Pesticide biochemistry and physiology.
2023 Sep; 195(?):105581. doi:
10.1016/j.pestbp.2023.105581
. [PMID: 37666606] - Elžbieta Jankovska-Bortkevič, Sigita Jurkonienė, Virgilija Gavelienė, Vaidevutis Šveikauskas, Rima Mockevičiūtė, Irina Vaseva, Dessislava Todorova, Marija Žižytė-Eidetienė, Donatas Šneideris, Petras Prakas. Dynamics of Polyamines, Proline, and Ethylene Metabolism under Increasing Cold in Winter Oilseed Rape.
International journal of molecular sciences.
2023 Jul; 24(14):. doi:
10.3390/ijms241411402
. [PMID: 37511158] - Blanka Kovács, Anett Kovács, Magda Pál, Tamás Spitkó, Csaba L Marton, Csaba Szőke. Changes in polyamine contents during Fusarium graminearum and Fusarium verticillioides inoculation in maize seedlings with or without seed-priming.
Biologia futura.
2023 Jun; 74(1-2):145-157. doi:
10.1007/s42977-023-00162-7
. [PMID: 37074618] - Sima Panahirad, Mohammadreza Dadpour, Gholamreza Gohari, Ali Akbari, Gholamreza Mahdavinia, Hessam Jafari, Muhittin Kulak, Rubén Alcázar, Vasileios Fotopoulos. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticle: A promising stress-protecting agent against cadmium stress in grapevine (Vitis vinifera cv. Sultana).
Plant physiology and biochemistry : PPB.
2023 Apr; 197(?):107653. doi:
10.1016/j.plaphy.2023.107653
. [PMID: 36965321] - Ben-Xue Chen, Yan-Bing Li, Huai-Pan Liu, Ronald Kurtenbach. Putrescine transformation to other forms of polyamines in filling grain embryos functioned in enhancing the resistance of maize plants to drought stress.
Plant physiology and biochemistry : PPB.
2023 Apr; 197(?):107654. doi:
10.1016/j.plaphy.2023.107654
. [PMID: 36989984] - Leandro Solmi, Franco R Rossi, Fernando M Romero, Marcel Bach-Pages, Gail M Preston, Oscar A Ruiz, Andrés Gárriz. Polyamine-mediated mechanisms contribute to oxidative stress tolerance in Pseudomonas syringae.
Scientific reports.
2023 Mar; 13(1):4279. doi:
10.1038/s41598-023-31239-x
. [PMID: 36922543] - Ilnaz Jalili, Ali Ebadi, Mohammad Ali Askari, Sepideh KalatehJari, Mohammad Ali Aazami. Foliar application of putrescine, salicylic acid, and ascorbic acid mitigates frost stress damage in Vitis vinifera cv. ̒Giziluzum̕.
BMC plant biology.
2023 Mar; 23(1):135. doi:
10.1186/s12870-023-04126-w
. [PMID: 36899321] - Marietta Sayegh, Qian Qian Ni, Viren Ranawana, Vassilis Raikos, Nicholas J Hayward, Helen Hayes, Gary Duncan, Louise Cantlay, Freda Farquharson, Michael Solvang, Graham Horgan, Petra Louis, Wendy Russell, Miriam Clegg, Frank Thies, Madalina Neacsu. Habitual consumption of high-fibre bread fortified with bean hulls increased plasma indole-3-propionic concentration and decreased putrescine and deoxycholic acid faecal concentrations in healthy volunteers.
The British journal of nutrition.
2023 Feb; ?(?):1-36. doi:
10.1017/s0007114523000491
. [PMID: 36847278] - Cintia Mariana Pereyra, Claudia Cristina Dal Lago, Cecilia Mónica Creus, María Alejandra Pereyra. Azospirillum baldaniorum Sp 245 inoculation affects cell wall and polyamines metabolisms in cucumber seedling roots.
FEMS microbiology letters.
2023 01; 370(?):. doi:
10.1093/femsle/fnad005
. [PMID: 36690345] - Jin Eom, Juhyun Choi, Sung-Suk Suh, Jong Bae Seo. SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiation.
Molecules and cells.
2022 Dec; 45(12):963-975. doi:
10.14348/molcells.2022.0123
. [PMID: 36572564] - Peiyun Li, Jun Mei, Mingtang Tan, Jing Xie. Effect of CO2 on the spoilage potential of Shewanella putrefaciens target to flavour compounds.
Food chemistry.
2022 Dec; 397(?):133748. doi:
10.1016/j.foodchem.2022.133748
. [PMID: 35905618] - Li Jun Gao, Xiang Pei Liu, Ke Ke Gao, Meng Qi Cui, Hui Hui Zhu, Gui Xin Li, Jing Ying Yan, Yun Rong Wu, Zhong Jie Ding, Xue Wei Chen, Jian Feng Ma, Nicholas P Harberd, Shao Jian Zheng. ART1 and putrescine contribute to rice aluminum resistance via OsMYB30 in cell wall modification.
Journal of integrative plant biology.
2022 Dec; ?(?):. doi:
10.1111/jipb.13429
. [PMID: 36515424] - Jiaxin Ran, Chunqiong Shang, Lina Mei, Shuang Li, Tian Tian, Guang Qiao. Overexpression of CpADC from Chinese Cherry (Cerasus pseudocerasus Lindl. 'Manaohong') Promotes the Ability of Response to Drought in Arabidopsis thaliana.
International journal of molecular sciences.
2022 Nov; 23(23):. doi:
10.3390/ijms232314943
. [PMID: 36499268] - Chun Quan Zhu, QianQian Wei, Ya Li Kong, Qing Shan Xu, Lin Pan, Lian Feng Zhu, Wen Hao Tian, Qian Yu Jin, Yi Jun Yu, Jun Hua Zhang. Ammonium improved cell wall and cell membrane P reutilization and external P uptake in a putrescine and ethylene dependent pathway.
Plant physiology and biochemistry : PPB.
2022 Nov; 191(?):67-77. doi:
10.1016/j.plaphy.2022.09.018
. [PMID: 36195034] - Heba Talat Ebeed. Genome-wide analysis of polyamine biosynthesis genes in wheat reveals gene expression specificity and involvement of STRE and MYB-elements in regulating polyamines under drought.
BMC genomics.
2022 Oct; 23(1):734. doi:
10.1186/s12864-022-08946-2
. [PMID: 36309637] - Jie Song, Peipei Sun, Weina Kong, Zongzhou Xie, Chunlong Li, Ji-Hong Liu. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress.
The New phytologist.
2022 Oct; ?(?):. doi:
10.1111/nph.18526
. [PMID: 36210523] - Sachie Nakatani, Yasuhiro Horimoto, Natsumi Nakabayashi, Mayumi Karasawa, Masahiro Wada, Kenji Kobata. Spermine Suppresses Adipocyte Differentiation and Exerts Anti-Obesity Effects In Vitro and In Vivo.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231911818
. [PMID: 36233120] - Zoltán Takács, Zalán Czékus, Irma Tari, Péter Poór. The role of ethylene signalling in the regulation of salt stress response in mature tomato fruits: Metabolism of antioxidants and polyamines.
Journal of plant physiology.
2022 Oct; 277(?):153793. doi:
10.1016/j.jplph.2022.153793
. [PMID: 35995003] - Qing Zhang, Meixia Liang, Ruoxuan Song, Zhizhong Song, Hao Song, Xuqiang Qiao. Brassinosteroids enhance resistance to manganese toxicity in Malus robusta Rehd. via modulating polyamines profile.
Journal of plant physiology.
2022 Oct; 277(?):153808. doi:
10.1016/j.jplph.2022.153808
. [PMID: 36088781] - Shih-Yao Lin, Chia-Fang Tsai, Asif Hameed, Tzung-Han Lee, Chiu-Chung Young. Niabella agricola sp. nov., isolated from paddy soil.
International journal of systematic and evolutionary microbiology.
2022 Oct; 72(10):. doi:
10.1099/ijsem.0.005559
. [PMID: 36260507] - Robert A Freudenberg, Luisa Wittemeier, Alexander Einhaus, Thomas Baier, Olaf Kruse. Advanced pathway engineering for phototrophic putrescine production.
Plant biotechnology journal.
2022 10; 20(10):1968-1982. doi:
10.1111/pbi.13879
. [PMID: 35748533] - Xin Mei, Liuhong Hu, Yuyan Song, Caibi Zhou, Ren Mu, Xintai Xie, Jing Li, Lan Xiang, Qingbei Weng, Ziyin Yang. Heterologous Expression and Characterization of Tea (Camellia sinensis) Polyamine Oxidase Homologs and Their Involvement in Stresses.
Journal of agricultural and food chemistry.
2022 Sep; 70(38):11880-11891. doi:
10.1021/acs.jafc.2c01549
. [PMID: 36106904] - Marina Urra, Javier Buezo, Beatriz Royo, Alfonso Cornejo, Pedro López-Gómez, Daniel Cerdán, Raquel Esteban, Víctor Martínez-Merino, Yolanda Gogorcena, Paraskevi Tavladoraki, Jose Fernando Moran. The importance of the urea cycle and its relationships to polyamine metabolism during ammonium stress in Medicago truncatula.
Journal of experimental botany.
2022 09; 73(16):5581-5595. doi:
10.1093/jxb/erac235
. [PMID: 35608836] - Jianshuang Gao, Zhuangzhuang Qian, Yuhe Zhang, Shunyao Zhuang. Exogenous spermidine regulates the anaerobic enzyme system through hormone concentrations and related-gene expression in Phyllostachys praecox roots under flooding stress.
Plant physiology and biochemistry : PPB.
2022 Sep; 186(?):182-196. doi:
10.1016/j.plaphy.2022.07.002
. [PMID: 35868108] - Haoqi Shi, Peiwen Xu, Wen Yu, Yazhi Cheng, Anming Ding, Weifeng Wang, Shengxin Wu, Yuhe Sun. Metabolomic and transcriptomic analysis of roots of tobacco varieties resistant and susceptible to bacterial wilt.
Genomics.
2022 09; 114(5):110471. doi:
10.1016/j.ygeno.2022.110471
. [PMID: 36055574] - Xinyue Bi, Huiyan Guo, Xiaodong Li, Lijiao Zheng, Mengnan An, Zihao Xia, Yuanhua Wu. A novel strategy for improving watermelon resistance to cucumber green mottle mosaic virus by exogenous boron application.
Molecular plant pathology.
2022 09; 23(9):1361-1380. doi:
10.1111/mpp.13234
. [PMID: 35671152] - Valentina Buffagni, Leilei Zhang, Biancamaria Senizza, Gabriele Rocchetti, Andrea Ferrarini, Begoña Miras-Moreno, Luigi Lucini. Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions.
Plant science : an international journal of experimental plant biology.
2022 Sep; 322(?):111346. doi:
10.1016/j.plantsci.2022.111346
. [PMID: 35697150] - Akihiro Matsui, Daisuke Todaka, Maho Tanaka, Kayoko Mizunashi, Satoshi Takahashi, Yuji Sunaoshi, Yuuri Tsuboi, Junko Ishida, Khurram Bashir, Jun Kikuchi, Miyako Kusano, Makoto Kobayashi, Kanako Kawaura, Motoaki Seki. Ethanol induces heat tolerance in plants by stimulating unfolded protein response.
Plant molecular biology.
2022 Sep; 110(1-2):131-145. doi:
10.1007/s11103-022-01291-8
. [PMID: 35729482] - Hong Fang, Fan Zhang, Chongyang Zhang, Dan Wang, Shuangqian Shen, Feng He, Hui Tao, Ruyi Wang, Min Wang, Debao Wang, Xionglun Liu, Jie Luo, Guo-Liang Wang, Yuese Ning. Function of hydroxycinnamoyl transferases for the biosynthesis of phenolamides in rice resistance to Magnaporthe oryzae.
Journal of genetics and genomics = Yi chuan xue bao.
2022 08; 49(8):776-786. doi:
10.1016/j.jgg.2022.02.008
. [PMID: 35231636] - Xiang P Liu, Li J Gao, Ben T She, Gui X Li, Yun R Wu, Ji M Xu, Zhong J Ding, Jian F Ma, Shao J Zheng. A novel kinase subverts aluminium resistance by boosting ornithine decarboxylase-dependent putrescine biosynthesis.
Plant, cell & environment.
2022 08; 45(8):2520-2532. doi:
10.1111/pce.14371
. [PMID: 35656839] - Magda Pál, Kamirán Áron Hamow, Altafur Rahman, Imre Majláth, Judit Tajti, Orsolya Kinga Gondor, Mohamed Ahres, Fatemeh Gholizadeh, Gabriella Szalai, Tibor Janda. Light Spectral Composition Modifies Polyamine Metabolism in Young Wheat Plants.
International journal of molecular sciences.
2022 Jul; 23(15):. doi:
10.3390/ijms23158394
. [PMID: 35955528] - Qiqi Lin, Huishan Wang, Jiahui Huang, Zhiqing Liu, Qunyi Chen, Guohui Yu, Zeling Xu, Ping Cheng, Zhibin Liang, Lian-Hui Zhang. Spermidine Is an Intercellular Signal Modulating T3SS Expression in Pseudomonas aeruginosa.
Microbiology spectrum.
2022 06; 10(3):e0064422. doi:
10.1128/spectrum.00644-22
. [PMID: 35435755] - Thomas Elder, José C Del Río, John Ralph, Jorge Rencoret, Hoon Kim. Density functional theory study on the coupling and reactions of diferuloylputrescine as a lignin monomer.
Phytochemistry.
2022 May; 197(?):113122. doi:
10.1016/j.phytochem.2022.113122
. [PMID: 35131641] - Dimitrios Tsikas, Björn Redfors. Pilot Study on Acute Effects of Pharmacological Intraperitoneal L-Homoarginine on Homeostasis of Lysine and Other Amino Acids in a Rat Model of Isoprenaline-Induced Takotsubo Cardiomyopathy.
International journal of molecular sciences.
2022 Apr; 23(9):. doi:
10.3390/ijms23094734
. [PMID: 35563125] - Anish Kundu, Shruti Mishra, Pritha Kundu, Abhimanyu Jogawat, Jyothilakshmi Vadassery. Piriformospora indica recruits host-derived putrescine for growth promotion in plants.
Plant physiology.
2022 03; 188(4):2289-2307. doi:
10.1093/plphys/kiab536
. [PMID: 34791442] - Charles Copeland. The feeling is mutual: Increased host putrescine biosynthesis promotes both plant and endophyte growth.
Plant physiology.
2022 03; 188(4):1939-1941. doi:
10.1093/plphys/kiac001
. [PMID: 35355052] - Julian Rieck, Serguei N Skatchkov, Christian Derst, Misty J Eaton, Rüdiger W Veh. Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body.
Biomolecules.
2022 03; 12(4):. doi:
10.3390/biom12040501
. [PMID: 35454090] - Ana Isabel González-Hernández, Loredana Scalschi, Begonya Vicedo, Emilio Luis Marcos-Barbero, Rosa Morcuende, Gemma Camañes. Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress.
International journal of molecular sciences.
2022 Mar; 23(6):. doi:
10.3390/ijms23062971
. [PMID: 35328394] - Dongqin Wei, De Wu, Wenxian Zeng, Lianqiang Che, Shengyu Xu, Zhengfeng Fang, Bin Feng, Jian Li, Yong Zhuo, Caimei Wu, Junjie Zhang, Yan Lin. Arginine promotes testicular development in boars through nitric oxide and putrescine.
Journal of animal physiology and animal nutrition.
2022 Mar; 106(2):266-275. doi:
10.1111/jpn.13602
. [PMID: 34212433] - Huai Kang Jing, Qi Wu, Jing Huang, Xiao Zheng Yang, Ye Tao, Ren Fang Shen, Xiao Fang Zhu. Putrescine is involved in root cell wall phosphorus remobilization in a nitric oxide dependent manner.
Plant science : an international journal of experimental plant biology.
2022 Mar; 316(?):111169. doi:
10.1016/j.plantsci.2021.111169
. [PMID: 35151453] - Jie Song, Hao Wu, Feng He, Jing Qu, Yue Wang, Chunlong Li, Ji-Hong Liu. Citrus sinensis CBF1 Functions in Cold Tolerance by Modulating Putrescine Biosynthesis through Regulation of Arginine Decarboxylase.
Plant & cell physiology.
2022 Jan; 63(1):19-29. doi:
10.1093/pcp/pcab135
. [PMID: 34478552] - Ana Isabel González-Hernández, Loredana Scalschi, Pilar Troncho, Pilar García-Agustín, Gemma Camañes. Putrescine biosynthetic pathways modulate root growth differently in tomato seedlings grown under different N sources.
Journal of plant physiology.
2022 Jan; 268(?):153560. doi:
10.1016/j.jplph.2021.153560
. [PMID: 34798464] - Siguang Ma, Xinpeng Zhou, Mohammad Shah Jahan, Shirong Guo, Mimi Tian, Ranran Zhou, Hongyun Liu, Bingjie Feng, Sheng Shu. Putrescine regulates stomatal opening of cucumber leaves under salt stress via the H2O2-mediated signaling pathway.
Plant physiology and biochemistry : PPB.
2022 Jan; 170(?):87-97. doi:
10.1016/j.plaphy.2021.11.028
. [PMID: 34861587] - Md Jahirul Islam, Md Jalal Uddin, Mohammad Anwar Hossain, Robert Henry, Mst Kohinoor Begum, Md Abu Taher Sohel, Masuma Akter Mou, Juhee Ahn, Eun Ju Cheong, Young-Seok Lim. Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (Beta vulgaris L.).
PloS one.
2022; 17(1):e0262099. doi:
10.1371/journal.pone.0262099
. [PMID: 34995297] - Rehana Sardar, Shakil Ahmed, Nasim Ahmad Yasin. Role of exogenously applied putrescine in amelioration of cadmium stress in Coriandrum sativum by modulating antioxidant system.
International journal of phytoremediation.
2022; 24(9):955-962. doi:
10.1080/15226514.2021.1985961
. [PMID: 34632884] - Maryam Marzban, Farah Farahani, Seyed Mohammad Atyabi, Zahra Noormohammadi. Induced genetic and chemical changes in medicinally important plant Catharanthus roseus (L.) G. Don: cold plasma and phytohormones.
Molecular biology reports.
2022 Jan; 49(1):31-38. doi:
10.1007/s11033-021-06789-w
. [PMID: 34773551] - Hong Fang, Shuangqian Shen, Dan Wang, Fan Zhang, Chongyang Zhang, Zixuan Wang, Qianqian Zhou, Ruyi Wang, Hui Tao, Feng He, Chenkun Yang, Meng Peng, Xinyu Jing, Zeyun Hao, Xionglun Liu, Jie Luo, Guo-Liang Wang, Yuese Ning. A monocot-specific hydroxycinnamoylputrescine gene cluster contributes to immunity and cell death in rice.
Science bulletin.
2021 12; 66(23):2381-2393. doi:
10.1016/j.scib.2021.06.014
. [PMID: 36654124] - Canying Li, Jie Zhu, Lei Sun, Yuan Cheng, Jiabao Hou, Yiting Fan, Yonghong Ge. Exogenous γ-aminobutyric acid maintains fruit quality of apples through regulation of ethylene anabolism and polyamine metabolism.
Plant physiology and biochemistry : PPB.
2021 Dec; 169(?):92-101. doi:
10.1016/j.plaphy.2021.11.008
. [PMID: 34773806] - Maryam Mohammadi-Cheraghabadi, Seyed Ali Mohammad Modarres-Sanavy, Fatemeh Sefidkon, Sajad Rashidi-Monfared, Ali Mokhtassi-Bidgoli. Improving water deficit tolerance of Salvia officinalis L. using putrescine.
Scientific reports.
2021 11; 11(1):21997. doi:
10.1038/s41598-021-00656-1
. [PMID: 34753954] - Franco R Rossi, Andrés Gárriz, María Marina, Fernando L Pieckenstain. Modulation of polyamine metabolism in Arabidopsis thaliana by salicylic acid.
Physiologia plantarum.
2021 Nov; 173(3):843-855. doi:
10.1111/ppl.13478
. [PMID: 34109645] - Aida Ansari, Babak Andalibi, Mehdi Zarei, Farid Shekari. Combined effect of putrescine and mycorrhizal fungi in phytoremediation of Lallemantia iberica in Pb-contaminated soils.
Environmental science and pollution research international.
2021 Nov; 28(41):58640-58659. doi:
10.1007/s11356-021-14821-6
. [PMID: 34120281] - Orsolya Kinga Gondor, Judit Tajti, Kamirán Áron Hamow, Imre Majláth, Gabriella Szalai, Tibor Janda, Magda Pál. Polyamine Metabolism under Different Light Regimes in Wheat.
International journal of molecular sciences.
2021 Oct; 22(21):. doi:
10.3390/ijms222111717
. [PMID: 34769148] - Rakesh K Upadhyay, Jonathan Shao, Autar K Mattoo. Genomic analysis of the polyamine biosynthesis pathway in duckweed Spirodela polyrhiza L.: presence of the arginine decarboxylase pathway, absence of the ornithine decarboxylase pathway, and response to abiotic stresses.
Planta.
2021 Oct; 254(5):108. doi:
10.1007/s00425-021-03755-5
. [PMID: 34694486] - Meng Li, Chenghui Wang, Jiali Shi, Yujie Zhang, Tao Liu, Hongyan Qi. Abscisic acid and putrescine synergistically regulate the cold tolerance of melon seedlings.
Plant physiology and biochemistry : PPB.
2021 Sep; 166(?):1054-1064. doi:
10.1016/j.plaphy.2021.07.011
. [PMID: 34293605] - Almas Jahan, Muhammad Iqbal, Arif Malik. Individual Rather Than Simultaneous Priming with Glutathione and Putrescine Reduces Chromium Cr6+ Toxicity in Contrasting Canola (Brassica napus L.) Cultivars.
Bulletin of environmental contamination and toxicology.
2021 Sep; 107(3):427-432. doi:
10.1007/s00128-021-03219-2
. [PMID: 33837795] - Sophie Maiocchi, Jacqueline Ku, Tom Hawtrey, Irene De Silvestro, Ernst Malle, Martin Rees, Shane R Thomas, Jonathan C Morris. Polyamine-Conjugated Nitroxides Are Efficacious Inhibitors of Oxidative Reactions Catalyzed by Endothelial-Localized Myeloperoxidase.
Chemical research in toxicology.
2021 06; 34(6):1681-1692. doi:
10.1021/acs.chemrestox.1c00094
. [PMID: 34085520] - Arijit Ghosh, Indraneel Saha, Subhas Chandra Debnath, Mirza Hasanuzzaman, Malay Kumar Adak. Chitosan and putrescine modulate reactive oxygen species metabolism and physiological responses during chili fruit ripening.
Plant physiology and biochemistry : PPB.
2021 Jun; 163(?):55-67. doi:
10.1016/j.plaphy.2021.03.026
. [PMID: 33812227] - Jing Cui, Marlene Davanture, Emmanuelle Lamade, Michel Zivy, Guillaume Tcherkez. Plant low-K responses are partly due to Ca prevalence and the low-K biomarker putrescine does not protect from Ca side effects but acts as a metabolic regulator.
Plant, cell & environment.
2021 05; 44(5):1565-1579. doi:
10.1111/pce.14017
. [PMID: 33527435] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Zsolt Szabó, Márton Péter, László Héja, Julianna Kardos. Dual Role for Astroglial Copper-Assisted Polyamine Metabolism during Intense Network Activity.
Biomolecules.
2021 04; 11(4):. doi:
10.3390/biom11040604
. [PMID: 33921742] - M V Ploskonos. Polyamines of biological fluids of the body and the diagnostic value of their determination in clinical and laboratory researches (review of literature).
Klinicheskaia laboratornaia diagnostika.
2021 Apr; 66(4):197-204. doi:
10.51620/0869-2084-2021-66-4-197-204
. [PMID: 33878239] - Ahmed M Hashem, Simon Moore, Shangjian Chen, Chenchen Hu, Qing Zhao, Ibrahim Eid Elesawi, Yanni Feng, Jennifer F Topping, Junli Liu, Keith Lindsey, Chunli Chen. Putrescine Depletion Affects Arabidopsis Root Meristem Size by Modulating Auxin and Cytokinin Signaling and ROS Accumulation.
International journal of molecular sciences.
2021 Apr; 22(8):. doi:
10.3390/ijms22084094
. [PMID: 33920993] - Changxin Liu, Rubén Alcázar. A new insight into the contribution of putrescine to defense in Arabidopsis thaliana.
Plant signaling & behavior.
2021 04; 16(4):1885187. doi:
10.1080/15592324.2021.1885187
. [PMID: 33576705] - María Carmen Piñero, Ginés Otálora, Jacinta Collado, Josefa López-Marín, Francisco M Del Amor. Foliar application of putrescine before a short-term heat stress improves the quality of melon fruits (Cucumis melo L.).
Journal of the science of food and agriculture.
2021 Mar; 101(4):1428-1435. doi:
10.1002/jsfa.10756
. [PMID: 32833253] - Mohsin Amin, Shiying Tang, Liliana Shalamanova, Rebecca L Taylor, Stephen Wylie, Badr M Abdullah, Kathryn A Whitehead. Polyamine biomarkers as indicators of human disease.
Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.
2021 Mar; 26(2):77-94. doi:
10.1080/1354750x.2021.1875506
. [PMID: 33439737] - Gholamreza Gohari, Sima Panahirad, Mostafa Sadeghi, Ali Akbari, Elnaz Zareei, Seyed Morteza Zahedi, Mohammad Kazem Bahrami, Vasileios Fotopoulos. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv. 'Sultana') against salt stress.
BMC plant biology.
2021 Feb; 21(1):120. doi:
10.1186/s12870-021-02901-1
. [PMID: 33639848] - Saima Ameen Ghoto, Muhammad Yar Khuhawar. Silver Nanoparticles for a Colorimetric Determination of Putrescine and Cadaverine in Biological Samples.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2021 Feb; 37(2):267-274. doi:
10.2116/analsci.20p153
. [PMID: 32779576] - Dilyana Doneva, Magda Pál, Liliana Brankova, Gabriella Szalai, Judit Tajti, Radwan Khalil, Beti Ivanovska, Violeta Velikova, Svetlana Misheva, Tibor Janda, Violeta Peeva. The effects of putrescine pre-treatment on osmotic stress responses in drought-tolerant and drought-sensitive wheat seedlings.
Physiologia plantarum.
2021 Feb; 171(2):200-216. doi:
10.1111/ppl.13150
. [PMID: 32548914] - Luana Lionetto, Martina Guglielmetti, Fabiola Cipolla, Simone Bernardini, Bianca Emanuela Koehler, Matilde Capi, Donatella De Bernardini, Martina Curto, Roberto Manetti, Ferdinando Nicoletti, Maurizio Simmaco, Paolo Martelletti. Polyamines serum levels in episodic and chronic migraine.
Expert review of neurotherapeutics.
2021 02; 21(2):249-254. doi:
10.1080/14737175.2021.1862650
. [PMID: 33295216] - Elham Ziaee, Behzad Shareghi, Sadegh Farhadian, Lida Momeni, Fatemeh Heibati-Goojani. The effect of putrescine on stability and structural properties of bovine serum albumin.
Journal of biomolecular structure & dynamics.
2021 Jan; 39(1):254-262. doi:
10.1080/07391102.2020.1719199
. [PMID: 31997719] - Cheng Liu, Yuanyuan Wang, Wei Zheng, Jia Wang, Ya Zhang, Wei Song, Aili Wang, Xu Ma, Guanghui Li. Putrescine as a Novel Biomarker of Maternal Serum in First Trimester for the Prediction of Gestational Diabetes Mellitus: A Nested Case-Control Study.
Frontiers in endocrinology.
2021; 12(?):759893. doi:
10.3389/fendo.2021.759893
. [PMID: 34970221] - Norin Nabil Hamouda, Chris Van den Haute, Roeland Vanhoutte, Ragna Sannerud, Mujahid Azfar, Rupert Mayer, Álvaro Cortés Calabuig, Johannes V Swinnen, Patrizia Agostinis, Veerle Baekelandt, Wim Annaert, Francis Impens, Steven H L Verhelst, Jan Eggermont, Shaun Martin, Peter Vangheluwe. ATP13A3 is a major component of the enigmatic mammalian polyamine transport system.
The Journal of biological chemistry.
2021 Jan; 296(?):100182. doi:
10.1074/jbc.ra120.013908
. [PMID: 33310703] - Muniba Tariq, Anis Ali Shah, Nasim Ahmad Yasin, Aqeel Ahmad, Muhammad Rizwan. Enhanced performance of Bacillus megaterium OSR-3 in combination with putrescine ammeliorated hydrocarbon stress in Nicotiana tabacum.
International journal of phytoremediation.
2021; 23(2):119-129. doi:
10.1080/15226514.2020.1801572
. [PMID: 32755316] - Xin Yin, Yunqiang Yang, Yanqiu Lv, Yan Li, Danni Yang, Yanling Yue, Yongping Yang. BrrICE1.1 is associated with putrescine synthesis through regulation of the arginine decarboxylase gene in freezing tolerance of turnip (Brassica rapa var. rapa).
BMC plant biology.
2020 Nov; 20(1):504. doi:
10.1186/s12870-020-02697-6
. [PMID: 33148172] - Changxin Liu, Kostadin E Atanasov, Nazanin Arafaty, Ester Murillo, Antonio F Tiburcio, Jürgen Zeier, Rubén Alcázar. Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana.
Plant, cell & environment.
2020 11; 43(11):2755-2768. doi:
10.1111/pce.13874
. [PMID: 32839979] - Su H Chu, Jing Cui, Jeffrey A Sparks, Bing Lu, Sara K Tedeschi, Cameron B Speyer, LauraKay Moss, Marie L Feser, Lindsay B Kelmenson, Elizabeth A Mewshaw, Jess D Edison, Kevin D Deane, Clary Clish, Jessica Lasky-Su, Elizabeth W Karlson, Karen H Costenbader. Circulating plasma metabolites and risk of rheumatoid arthritis in the Nurses' Health Study.
Rheumatology (Oxford, England).
2020 11; 59(11):3369-3379. doi:
10.1093/rheumatology/keaa125
. [PMID: 32310291] - Thomas Boehm, Matthias Karer, Elisabeth Gludovacz, Karin Petroczi, Marlene Resch, Kornelia Schuetzenberger, Kristaps Klavins, Nicole Borth, Bernd Jilma. Simple, sensitive and specific quantification of diamine oxidase activity in complex matrices using newly discovered fluorophores derived from natural substrates.
Inflammation research : official journal of the European Histamine Research Society ... [et al.].
2020 Sep; 69(9):937-950. doi:
10.1007/s00011-020-01359-5
. [PMID: 32488317] - Lei Liu, Dan Liu, Ziyang Wang, Chunlei Zou, Bin Wang, He Zhang, Zhijia Gai, Pengfei Zhang, Yubo Wang, Caifeng Li. Exogenous allantoin improves the salt tolerance of sugar beet by increasing putrescine metabolism and antioxidant activities.
Plant physiology and biochemistry : PPB.
2020 Sep; 154(?):699-713. doi:
10.1016/j.plaphy.2020.06.034
. [PMID: 32750647] - Jiatong Xu, Songbiao Zhu, Lina Xu, Xiaohui Liu, Wenxi Ding, Qingtao Wang, Yuling Chen, Haiteng Deng. CA9 Silencing Promotes Mitochondrial Biogenesis, Increases Putrescine Toxicity and Decreases Cell Motility to Suppress ccRCC Progression.
International journal of molecular sciences.
2020 Aug; 21(16):. doi:
10.3390/ijms21165939
. [PMID: 32824856] - Yuhua Wang, Fei Xiong, Shouhua Nong, Jieren Liao, Anqi Xing, Qiang Shen, Yuanchun Ma, Wanping Fang, Xujun Zhu. Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress.
Scientific reports.
2020 07; 10(1):12240. doi:
10.1038/s41598-020-69253-y
. [PMID: 32699288] - Nanxiang Xiong, Xiaofei Gao, Hongyang Zhao, Feng Cai, Fang-Cheng Zhang, Ye Yuan, Weichao Liu, Fangping He, Lauren G Zacharias, Hong Lin, Hieu S Vu, Chao Xing, Dong-Xiao Yao, Fei Chen, Benyan Luo, Wenzhi Sun, Ralph J DeBerardinis, Hao Xu, Woo-Ping Ge. Using arterial-venous analysis to characterize cancer metabolic consumption in patients.
Nature communications.
2020 06; 11(1):3169. doi:
10.1038/s41467-020-16810-8
. [PMID: 32576825] - Scarlett Puebla-Barragan, Justin Renaud, Mark Sumarah, Gregor Reid. Malodorous biogenic amines in Escherichia coli-caused urinary tract infections in women-a metabolomics approach.
Scientific reports.
2020 06; 10(1):9703. doi:
10.1038/s41598-020-66662-x
. [PMID: 32546787] - Anton Larenkov, Marat Rakhimov, Kristina Lunyova, Olga Klementyeva, Alesya Maruk, Aleksei Machulkin. Pharmacokinetic Properties of 68Ga-labelled Folic Acid Conjugates: Improvement Using HEHE Tag.
Molecules (Basel, Switzerland).
2020 Jun; 25(11):. doi:
10.3390/molecules25112712
. [PMID: 32545327]