Cirsilineol (BioDeep_00000000645)

 

Secondary id: BioDeep_00000269930, BioDeep_00001867535

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-

化学式: C18H16O7 (344.0896)
中文名称: 3′-甲氧基蓟黄素, 甲基条叶蓟素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: c1(c(c(c2c(c1)oc(cc2=O)c1cc(c(cc1)O)OC)O)OC)OC
InChI: InChI=1S/C18H16O7/c1-22-13-6-9(4-5-10(13)19)12-7-11(20)16-14(25-12)8-15(23-2)18(24-3)17(16)21/h4-8,19,21H,1-3H3

描述信息

Cirsilineol, also known as 4,5-dihydroxy-3,6,7-trimethoxy-flavone or anisomelin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsilineol is considered to be a flavonoid lipid molecule. Cirsilineol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsilineol can be found in a number of food items such as common thyme, tarragon, common sage, and hyssop, which makes cirsilineol a potential biomarker for the consumption of these food products. Cirsilineol is a bioactive flavone isolated from Artemisia and from Teucrium gnaphalodes .
Cirsilineol is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone.
Cirsilineol is a natural product found in Thymus herba-barona, Salvia tomentosa, and other organisms with data available.
See also: Tangerine peel (part of).

同义名列表

21 个代谢物同义名

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-; 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-4H-1-benzopyran-4-one; 5-Hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-4H-chromen-4-one #; 5-Hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-4H-chromen-4-one; 5-hydroxy-2-(4-hydroxy-3-methoxy-phenyl)-6,7-dimethoxy-chromen-4-one; 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxychromen-4-one; Cirsilineol (5,4-dihydroxy-6,7,3-trimethoxyflavone); 4,5-dihydroxy-3,6,7-trimethoxy-flavone; 4,5-dihydroxy-3,6,7-trimethoxyflavone; 4,5-Dihydroxy-3,6,7-trimethoxyflavone; 5,4-Dihydroxy-6,7,3-trimethoxyflavone; Cirsilineol, analytical standard; VKOSQMWSWLZQPA-UHFFFAOYSA-N; UNII-08DZZ529FE; Cirsilineol; Cirsileneol; Fastigenin; Anisomelin; 08DZZ529FE; Eupatrin; Cirsilineol



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

177 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ALB, ANXA5, BCL2, CASP9, DHFR, EDN1, MTOR, MYD88, PTGS2, TLR2, TLR4
Peripheral membrane protein 3 ANXA5, MTOR, PTGS2
Endosome membrane 2 MYD88, TLR4
Endoplasmic reticulum membrane 4 BCL2, HMOX1, MTOR, PTGS2
Nucleus 8 ALB, BCL2, CASP9, GABPA, HMOX1, MPO, MTOR, MYD88
cytosol 9 ALB, ANXA5, BCL2, CASP9, DHFR, HMOX1, IL1B, MTOR, MYD88
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
centrosome 1 ALB
nucleoplasm 4 GABPA, HMOX1, MPO, MTOR
Cell membrane 4 CYSLTR2, SELP, TLR4, TNF
Cytoplasmic side 2 HMOX1, MTOR
Multi-pass membrane protein 1 CYSLTR2
Golgi apparatus membrane 1 MTOR
cell surface 4 MYD88, TLR2, TLR4, TNF
Golgi apparatus 2 ALB, TLR2
Golgi membrane 1 MTOR
lysosomal membrane 1 MTOR
neuronal cell body 1 TNF
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 IL1B
Lysosome 3 IL1B, MPO, MTOR
plasma membrane 6 CYSLTR2, MYD88, SELP, TLR2, TLR4, TNF
Membrane 6 ANXA5, BCL2, HMOX1, MTOR, TLR2, TLR4
caveola 1 PTGS2
extracellular exosome 4 ALB, ANXA5, MPO, SELP
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 ALB, BCL2, HMOX1, PTGS2
extracellular space 9 ALB, EDN1, HMOX1, IL1B, IL4, IL5, MPO, SELP, TNF
perinuclear region of cytoplasm 2 HMOX1, TLR4
mitochondrion 3 BCL2, CASP9, DHFR
protein-containing complex 5 ALB, BCL2, CASP9, MYD88, PTGS2
intracellular membrane-bounded organelle 1 MPO
Microsome membrane 2 MTOR, PTGS2
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 3 SELP, TLR2, TLR4
Secreted 6 ALB, EDN1, IL1B, IL4, IL5, SELP
extracellular region 9 ALB, ANXA5, EDN1, IL1B, IL4, IL5, MPO, SELP, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
basal part of cell 1 EDN1
anchoring junction 1 ALB
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 4 ANXA5, SELP, TLR4, TNF
Early endosome 1 TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 2 TLR2, TNF
pore complex 1 BCL2
focal adhesion 1 ANXA5
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 ANXA5
secretory granule 2 IL1B, MPO
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 TLR2, TLR4
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
ciliary basal body 1 ALB
chromatin 1 GABPA
Cytoplasmic vesicle, phagosome membrane 1 TLR2
cell projection 1 TLR2
phagocytic cup 2 TLR4, TNF
phagocytic vesicle membrane 1 TLR2
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 1 ALB
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
cell body 1 TLR2
myelin sheath 1 BCL2
azurophil granule 1 MPO
platelet dense granule membrane 1 SELP
lipopolysaccharide receptor complex 1 TLR4
secretory granule membrane 1 TLR2
endoplasmic reticulum lumen 2 ALB, PTGS2
platelet alpha granule lumen 1 ALB
transport vesicle 1 EDN1
Secreted, extracellular exosome 1 IL1B
azurophil granule lumen 1 MPO
Single-pass type IV membrane protein 1 HMOX1
apoptosome 1 CASP9
vesicle membrane 1 ANXA5
phagocytic vesicle lumen 1 MPO
extrinsic component of cytoplasmic side of plasma membrane 1 MYD88
Cytoplasmic vesicle, phagosome 1 MTOR
Toll-like receptor 1-Toll-like receptor 2 protein complex 1 TLR2
Toll-like receptor 2-Toll-like receptor 6 protein complex 1 TLR2
extrinsic component of plasma membrane 1 MYD88
platelet alpha granule membrane 1 SELP
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
platelet dense granule lumen 1 SELP
rough endoplasmic reticulum lumen 1 EDN1
Weibel-Palade body 1 EDN1
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
ciliary transition fiber 1 ALB
caspase complex 1 CASP9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Dinesh Kumar Patel. Health Benefits, Therapeutic Applications, and Recent Advances of Cirsilineol in the Medicine: Potential Bioactive Natural Flavonoids of Genus Artemisia. Endocrine, metabolic & immune disorders drug targets. 2022 Nov; ?(?):. doi: 10.2174/1871530323666221122123456. [PMID: 36415094]
  • Meimei Ai, Shusheng Lin, Meixia Zhang, Tieli Wu, Nan Yang, Yu Li, Li Li. Cirsilineol attenuates LPS-induced inflammation in both in vivo and in vitro models via inhibiting TLR-4/NFkB/IKK signaling pathway. Journal of biochemical and molecular toxicology. 2021 Aug; 35(8):e22799. doi: 10.1002/jbt.22799. [PMID: 33949057]
  • Mahmoud A Al-Qudah, Hasan I Tashtoush, Ethar F Khlaifat, Sahar O Ibrahim, Ayman M Saleh, Hala I Al-Jaber, Musa H Abu Zarga, Sultan T Abu Orabi. Chemical constituents of the aerial parts of Salvia judaica Boiss. from Jordan. Natural product research. 2020 Oct; 34(20):2981-2985. doi: 10.1080/14786419.2019.1597349. [PMID: 31161797]
  • Akram Taleghani, Seyed Ahmad Emami, Zahra Tayarani-Najaran. Artemisia: a promising plant for the treatment of cancer. Bioorganic & medicinal chemistry. 2020 01; 28(1):115180. doi: 10.1016/j.bmc.2019.115180. [PMID: 31784199]
  • Zsuzsanna Hajdú, Judit Hohmann, Peter Forgo, Imre Máthé, Judit Molnár, István Zupkó. Antiproliferative activity of Artemisia asiatica extract and its constituents on human tumor cell lines. Planta medica. 2014 Dec; 80(18):1692-7. doi: 10.1055/s-0034-1383146. [PMID: 25295671]
  • Kaan Polatoğlu, Omer Cem Karakoç, Fatih Demirci, Ayhan Gökçe, Nezhun Gören. Chemistry and biological activities of Tanacetum chiliophyllum var. oligocephalum extracts. Journal of AOAC International. 2013 Nov; 96(6):1222-7. doi: 10.5740/jaoacint.sgepolatoglu. [PMID: 24645497]
  • Hyun Ah Jung, Jin Ju Park, Md Nurul Islam, Seung Eun Jin, Byung-Sun Min, Je-Hyun Lee, Hee Sook Sohn, Jae Sue Choi. Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation. Archives of pharmacal research. 2012 Jun; 35(6):1021-35. doi: 10.1007/s12272-012-0610-0. [PMID: 22870812]
  • Shuangqing Wu, Qun Sun, Chunjun Chu, Jian Zhang. [Chemical constituents of Eupatorium lindleyanum]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2012 Apr; 37(7):937-40. doi: . [PMID: 22792793]
  • Hala I Al-Jaber, Khadeja K Abrouni, Mahmuod A Al-Qudah, Musa H Abu Zarga. New terpenes from Salvia palaestina Benth. and Salvia syriaca L. growing wild in Jordan. Journal of Asian natural products research. 2012; 14(7):618-25. doi: 10.1080/10286020.2012.682151. [PMID: 22574636]
  • Gjoshe Stefkov, Svetlana Kulevanova, Biljana Miova, Suzana Dinevska-Kjovkarovska, Per Mølgaard, Anna K Jäger, Knud Josefsen. Effects of Teucrium polium spp. capitatum flavonoids on the lipid and carbohydrate metabolism in rats. Pharmaceutical biology. 2011 Sep; 49(9):885-92. doi: 10.3109/13880209.2011.552187. [PMID: 21619454]
  • Philippe Rasoanaivo, Colin W Wright, Merlin L Willcox, Ben Gilbert. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malaria journal. 2011 Mar; 10 Suppl 1(?):S4. doi: 10.1186/1475-2875-10-s1-s4. [PMID: 21411015]
  • Ye Yin, Fang-Yuan Gong, Xing-Xin Wu, Yang Sun, Yi-Hua Li, Ting Chen, Qiang Xu. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. Journal of ethnopharmacology. 2008 Oct; 120(1):1-6. doi: 10.1016/j.jep.2008.07.029. [PMID: 18721870]
  • Takahiko Isobe, Matsumi Doe, Yoshiki Morimoto, Kumiko Nagata, Ayumi Ohsaki. The anti-Helicobacter pylori flavones in a Brazilian plant, Hyptis fasciculata, and the activity of methoxyflavones. Biological & pharmaceutical bulletin. 2006 May; 29(5):1039-41. doi: 10.1248/bpb.29.1039. [PMID: 16651742]
  • Ipseeta Mohanty, Dharamvir Singh Arya, Suresh Kumar Gupta. Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury. BMC complementary and alternative medicine. 2006 Feb; 6(?):3. doi: 10.1186/1472-6882-6-3. [PMID: 16504000]
  • Sam Medhat Salah, Anna Katharina Jäger. Two flavonoids from Artemisia herba-alba Asso with in vitro GABAA-benzodiazepine receptor activity. Journal of ethnopharmacology. 2005 May; 99(1):145-6. doi: 10.1016/j.jep.2005.01.031. [PMID: 15848034]
  • Chun-nian He, Chun-lan Wang, Shun-xing Guo, Jun-shan Yang, Pei-gen Xiao. [Study on chemical constituents in herbs of Anoectochilus roxburghii II]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 May; 30(10):761-3. doi: ". [PMID: 16075715]
  • Sheng Lin, Qi-Wei Zhang, Ning-Ning Zhang, Yong-Xin Zhang. [Determination of flavonoids in buds of Herba Artemisiae Scopariae by HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Apr; 30(8):591-4. doi: . [PMID: 16011282]
  • Jun Watanabe, Hiroshi Shinmoto, Tojiro Tsushida. Coumarin and flavone derivatives from estragon and thyme as inhibitors of chemical mediator release from RBL-2H3 Cells. Bioscience, biotechnology, and biochemistry. 2005 Jan; 69(1):1-6. doi: 10.1271/bbb.69.1. [PMID: 15665459]
  • Tsuneatsu Nagao, Fumiko Abe, Junei Kinjo, Hikaru Okabe. Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biological & pharmaceutical bulletin. 2002 Jul; 25(7):875-9. doi: 10.1248/bpb.25.875. [PMID: 12132661]
  • Qi-wei Zhang, Yong-xi Zhang, Ying Zhang, Yong-qing Xiao, Zhi-min Wang. [Studies on chemical constituents in buds of Artemisia scoparia]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2002 Mar; 27(3):202-4. doi: . [PMID: 12774401]
  • Qi-wei Zhang, Yong-xin Zhang, Ying Zhang, Guo-gang Liang. [Determination of cirsilineol in Herba Artemisiae scopariae collected in autumn by HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2002 Jan; 27(1):23-5. doi: ". [PMID: 12774348]
  • H J Heo, H Y Cho, B Hong, H K Kim, E K Kim, B G Kim, D H Shin. Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against Abeta-induced oxidative stress in PC12 cells. Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis. 2001 Sep; 8(3):194-201. doi: 10.3109/13506120109007362. [PMID: 11676296]
  • P Valentão, P B Andrade, F Areias, F Ferreres, R M Seabra. Analysis of vervain flavonoids by HPLC/Diode array detector method. Its application to quality control. Journal of agricultural and food chemistry. 1999 Nov; 47(11):4579-82. doi: 10.1021/jf990444i. [PMID: 10552853]